• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      立足學生實際,引領(lǐng)數(shù)學探究
      ——以“二次根式的加減”教學設(shè)計為例

      2023-09-27 01:27:46山東省膠州市瑞華實驗初級中學崔彩紅
      中學數(shù)學 2023年18期
      關(guān)鍵詞:根式乘法運算

      ?山東省膠州市瑞華實驗初級中學 崔彩紅

      在初中數(shù)學教學中,探究性教學的發(fā)展并不盡如人意.影響其發(fā)展的原因主要有兩個:其一是教師為了追求速度習慣于“強灌”,限制了學生思維能力的發(fā)展,影響了學生自主學習能力的提升;其二是學生長期受傳統(tǒng)教學模式的影響,對教師產(chǎn)生了過度的依賴,使得學生在獨立思考和自主探究中并不能很好地獲取有價值的信息.那么,為了克服以上問題,在為學生提供一個和諧、平等的探究情境的基礎(chǔ)上,精心設(shè)計問題,讓學生在問題的引領(lǐng)下學會發(fā)現(xiàn)、學會探索、學會交流,以此逐漸提高學生的自主學習能力.

      筆者在教學“二次根式的加減”時,立足于學生最近發(fā)展區(qū),充分挖掘?qū)W生的已有知識和經(jīng)驗,引導學生運用類比、遷移等方法探索二次根式的運算方法、公式、規(guī)律等,取得了較好的教學效果.現(xiàn)將教學過程呈現(xiàn)給大家,供參考!

      1 教學實錄

      1.1 直觀引入,引領(lǐng)探究

      圖1

      學生按照要求將圖1中的1個長方形剪成圖2所示的兩個長方形.完成操作后,通過精心設(shè)計的問題幫助學生解決“知其然”.過程如下:

      圖2

      師:想一想,長方形剪開前后面積變了嗎?

      生齊聲答:面積不變.

      師:根據(jù)這一特征你可以得到怎樣的等量關(guān)系?

      生1:S1=S2+S3.

      師:如果用具體的數(shù)來表示,能得到什么式子?

      生齊聲答:有.

      問題給出后,預(yù)留時間讓學生思考、探究,很快就有學生有了發(fā)現(xiàn).

      師:不錯的想法,通過轉(zhuǎn)化得到了我們熟悉的問題.請詳細說一說你是如何計算的?

      師:認真觀察以上計算過程,如果直接用除法來計算,你認為該如何計算呢?

      師:通過以上探究過程,你有什么發(fā)現(xiàn)?

      生6:二次根式的運算與整式的運算基本相同,整式的運算法則在二次根式的運算中同樣適用.

      設(shè)計意圖:從具體實例出發(fā),通過對面積不變規(guī)律的探索,發(fā)現(xiàn)二次根式的運算和整式運算間的內(nèi)在聯(lián)系.教學中將抽象的代數(shù)問題賦予直觀的幾何背景,通過經(jīng)歷由具體到抽象的過程,提高學生參與課堂的積極性,培養(yǎng)學生的數(shù)學抽象能力,幫助學生積累豐富的活動經(jīng)驗,提高學生的數(shù)學探究能力.

      1.2 類比思考,探尋規(guī)律

      探究活動2:通過類比進一步探索二次根式的計算與整式中乘法法則和乘法公式的聯(lián)系.

      師:以下算式你會算嗎?(用PPT給出題目.)

      預(yù)留時間讓學生思考、交流.

      生7的思路給出后,教師讓學生將問題進行到底,并嘗試利用乘法法則直接計算,以此通過對比分析發(fā)現(xiàn)二者的內(nèi)在聯(lián)系,形成猜想.

      學生根據(jù)上述解題經(jīng)驗,只需利用二次根式的乘法法則即可得到結(jié)果.

      生8:可以看成將正方形的邊長同時增加或減少相同的長度,求它的面積.結(jié)合其幾何意義不難發(fā)現(xiàn),完全平方公式同樣適用于二次根式的運算.

      師:很好!如果用一般式該如何表示呢?

      師:結(jié)合整式的乘法法則和乘法公式,試猜想一下,還有哪些公式、法則同樣適用二次根式呢?

      在教師的鼓勵和引導下,學生繼續(xù)探究,發(fā)現(xiàn)平方差公式、多項式乘多項式法則、冪的運算法則同樣適用于二次根式,并給出相應(yīng)的驗證過程,寫出對應(yīng)的一般形式.

      設(shè)計意圖:在探究1的基礎(chǔ)上,啟發(fā)學生類比整式的乘法法則和乘法公式,尋找二次根式的運算規(guī)律.在探究過程中,啟發(fā)學生將代數(shù)式賦予幾何背景,更加直觀地理解抽象的代數(shù)問題,幫助學生建構(gòu)更加完善、牢固的知識認知體系.

      1.3 深入探究,內(nèi)化能力

      探究活動3:自主探索二次根式混合運算的方法和規(guī)律.

      師:試一試,以下算式該如何計算呢?(用PPT給出練習.)

      問題給出后,鼓勵學生嘗試用自己已有的知識和方法解決問題.解題后,預(yù)留時間讓學生進行互動交流,并總結(jié)歸納混合運算的方法和規(guī)律.學生通過經(jīng)歷操作、交流、歸納等過程,發(fā)現(xiàn)無理數(shù)混合運算順序與有理數(shù)順序是一樣的.

      師:對于第(2)題,你能用簡便的方法來計算嗎?

      1.4 綜合應(yīng)用,拓展提升

      師:以下問題你會解嗎?(PPT給出課堂練習.)

      2 教學思考

      在以上教學過程中,教師提供機會讓學生去觀察、去交流、去表達、去分析、去聯(lián)想、去概括,讓學生主動提出問題、分析問題和解決問題,并通過對問題的深度探索來掌握運算的方法,理解數(shù)學的本質(zhì),提升學習能力.真正的學習不是直接接受知識,而是通過經(jīng)歷知其然、知其所以然的過程主動獲得知識,培養(yǎng)學生自主學習和合作學習的能力,讓學生在自主探究和合作交流中掌握數(shù)學研究方法,形成良好的學習習慣.

      對于教師,要學會相信學生、尊重學生,摒棄以往的以教代學、以講代練的舊的教學模式,善于結(jié)合教學實際精心設(shè)計問題,讓學生在問題的引導下經(jīng)歷知識發(fā)現(xiàn)、深化和內(nèi)化的過程,以此提高數(shù)學教學品質(zhì).

      總之,在數(shù)學教學中,教師應(yīng)以發(fā)展學生為目標,立足于教學實際,通過創(chuàng)設(shè)有價值的教學情境帶領(lǐng)學生經(jīng)歷知識形成的過程,在求同和求異思維的碰撞下理解數(shù)學的本質(zhì),讓學生的數(shù)學思維在學習中得到自然生長.

      猜你喜歡
      根式乘法運算
      算乘法
      重視運算與推理,解決數(shù)列求和題
      我們一起來學習“乘法的初步認識”
      《整式的乘法與因式分解》鞏固練習
      有趣的運算
      如何比較二次根式的大小
      把加法變成乘法
      1.2 整式與二次根式
      閱卷手記——二次根式
      挖掘隱含,確定正負
      新邵县| 柞水县| 特克斯县| 新安县| 长寿区| 新巴尔虎右旗| 阜康市| 新晃| 辰溪县| 沅陵县| 阿城市| 应城市| 康保县| 甘德县| 台南市| 铜川市| 南江县| 韶山市| 朝阳县| 塘沽区| 汾阳市| 南开区| 龙陵县| 尼木县| 黄石市| 陕西省| 泽库县| 毕节市| 精河县| 内江市| 德清县| 定结县| 靖宇县| 隆德县| 奉新县| 云南省| 台南县| 噶尔县| 察隅县| 老河口市| 昌平区|