• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    配位競爭策略制備的兩個鎂基金屬有機骨架及其選擇性CO2捕集

    2023-02-03 10:23:22董雨奧朱敦如
    無機化學(xué)學(xué)報 2023年1期
    關(guān)鍵詞:化工學(xué)院南京大學(xué)配位

    董雨奧 馮 哲 朱敦如*,,2

    (1南京工業(yè)大學(xué)化工學(xué)院,材料化學(xué)工程國家重點實驗室,南京 211816)

    (2南京大學(xué)配位化學(xué)國家重點實驗室,南京 210023)

    Recently, porous metal?organic frameworks(MOFs)have attracted much attention in recent two decades because of their potential applications in many areas including gas separation,catalysis,and proton conduction[1?4].In particular,the potential utility of MOFs in gas storage and gas separation of important industrial gases such as CO2/CH4,C2,and C3hydrocar?bons has been demonstrated[5?8].This is because of the designability and tunability of functional sites and the pore size/shape of MOF materials[9].To efficiently con?struct MOFs for gas storage and related applications,a better understanding of the function and connectivity of the ligands is important.For instance,Kitagawa et al.developed a solid solution strategy via a fine ligand matrix for gate opening of the flexible MOFs[10?11].Bai and co?workers reported a series of highly porous MOFs based on the ligands with inserting amide group for selective CO2capture[12?13].Notably,some workers prefer to adopt two or more ligands for preparing 3D porous MOFs[14].However,understanding the coordina?tion competition between these ligands,particularly for the matrix with sharply different sizes,remains a diffi?culty since the complex reactions and self?assembly of building blocks occur almost simultaneously.

    To study the coordination competition,the selec?tion of suitable solvents is important as they act as the media to dissolve the ligands and metal salts or as the templates to induce the self?assembly of the metal salts and ligands[15].In addition,solvents may also work as a co ?ligand to take part in coordination[16?17].However,some solvents may be subjected to decompose under hydrothermal conditions[3].For example,N,N?dimethyl?formamide(DMF),a commonly used solvent for hydro?thermal reactions,often decomposes to the dimethyl?amine cation and formate anion under solvothermal conditions.It is worthwhile to note that the dimethyl?amine cation can be used for the charge balance of the negative MOF network[4,18],while the small HCO2-anion can be applied as the ligand for thein?situsyn?thesis of MOFs.Inspired by these observations,herein we report two Mg?MOFs via coordination competitive strategy(Scheme 1).The HCO2-anions generated from DMF decomposition reacted directly with Mg2+to form a 3Ddiatopological MOF,[Mg3(HCO2)6]·DMF(1).However,under the same conditions but with a compet?ing ligand H4L(1,1′∶3′,1″?terphenyl?3,3″,5,5″?tetracar?boxylic acid),a new 3Dsratopological Mg?MOF,[Mg2(L)(H2O)3]·2H2O·2CH3CN·DMF(2),was obtained.This result indicates that the short formic acid cannot meet the coordination requirement of Mg2+when a large?sized ligand H4L is involved.Gas adsorption stud?ies reveal that 1 has a good ability for selective CO2capture from CH4contained mixture.

    Scheme 1 Syntheses of two Mg?MOFs based on coordination competitive strategy

    1 Experimental

    1.1 Materials and methods

    All commercially available chemicals were of ana?lytical grade and used without further purification.H4L was purchased from Shanghai Kaiyulin Pharmaceutical Co.,Ltd.The C,H,and N elemental analyses were per?formed on a PerkinElmer 240 micro analyzer.The FT?IR spectra were performed on a Nicolet 380 FT?IR spectrometer with KBr pellets.Powder X?ray diffrac?tion(PXRD)data were collected on a Bruker D8 Advance diffractometer under CuKαradiation(λ=0.154 06 nm)at 40 kV and 30 mA in a range of 5°?40°.Thermogravimetric analysis(TGA)was carried out on a NETZSCH STA 449C thermal analyzer under an N2atmosphere with a heating rate of 10℃·min-1.

    1.2 Synthesis of MOF 1

    Mg(NO3)2·6H2O(1.08 g,4.21 mmol)and HNO3(0.25 mL)were added into a mixed solution(7 mL)of DMF and CH3CN(5∶1,V/V)and stirred forca.10 min at room temperature(RT).The solution was transferred and sealed in a 20 mL Teflon?lined autoclave,and then heated at 110℃for 48 h.After cooling to RT,colorless crystals of 1 were isolated by filtration,washed with ethanol,and dried in air.Yield:39.2% (based on Mg2+).Anal.Calcd.for C9H13Mg3NO13(% ):C,25.98;H,3.15;N,3.37.Found(% ):C,25.81;H,3.01;N,3.25.FT?IR(KBr discs,cm-1):1 674(s),1 609(vs),1 353(s),1 096(w),709(m).

    1.3 Synthesis of MOF 2

    Mg(NO3)2·6H2O(10.8 mg,0.042 mmol),H4L(8.5 mg,0.021 mmol),and HNO3(10 μL)were added into a mixed solution(1.5 mL)of DMF and CH3CN(5∶1,V/V)and stirred forca.10 min at RT.The solution was transferred and sealed in a 10 mL Teflon?lined auto?clave,and then heated at 110℃for 48 h.After cooling to RT,colorless crystals of 2 were isolated by filtration,washed with DMF,and dried in air.Yield:15.3% (based on H4L).Anal.Calcd.for C29H33Mg2N3O14(% ):C,50.03;H,4.78;N,6.36.Found(% ):C,50.25;H,4.61;N,6.22.FT?IR(KBr discs,cm-1):3 443(w),2 931(w),1 663(s),1 506(w),1 398(s),1 252(w),1 100(m),1 021(m),952(w),862(w),770(m),732(s).

    1.4 Crystal structure determination

    The crystal data of the MOFs were measured on a Bruker Smart Apex Ⅱ CCD diffractometer at 298 K using graphite monochromated MoKαradiation(λ=0.071 073 nm).Data reduction was made with the Bruker Saint program.The structure was solved by direct methods and refined with the full?matrix least squares technique using the SHELXTL package[19].The coordinates of the non?hydrogen atoms were refined anisotropically,and all the hydrogen atoms were put in calculated positions or located from the Fourier maps.DMF molecule was disordered over two sites and refined with an occupancy of 0.685(17)for C7?C9,N1,O13 and 0.315(17)for C7A?C9A,N1A,and O13A.The crystallographic data are listed in Table 1,and selected bond lengths are given in Table 2.

    Table 1 Crystal data and structure refinements for MOFs 1 and 2

    Continued Table 1

    Table 2 Selected bond distances(nm)for MOFs 1 and 2

    CCDC:2194650,1;2202252,2.

    1.5 Sample activation

    The ethanol?exchanged samples were prepared by immersing as?synthesized crystals in ethanol for 3 d to remove the DMF solvent,and the extract was decanted every 8 h and fresh ethanol was replaced.The com?pletely activated sample was obtained by heating the ethanol?exchanged sample at 120 ℃ for 24 h under a dynamic high vacuum.

    1.6 Gas adsorption experiments

    In the gas sorption measurements,ultra?high?purity grade N2,CH4(>99.999% ),and CO2gases(99.995% )were used throughout the adsorption experiments.Low?pressure N2,CO2,and CH4adsorption measurements were performed on Micromeritics ASAP 2020 M+C sur?face area analyzer.Helium was used for the estimation of the dead volume,assuming that it is not adsorbed at any of the studied temperatures.The pore size distribu?tion was obtained from the DFT method in the Micromeritics ASAP2020 software package based on the N2sorption at 77 K.

    1.7 High?pressure gravimetric gas sorption measurements

    High?pressure adsorption of CO2and CH4was measured using an IGA?003 gravimetric adsorption instrument(Hiden?Isochema,UK)over a pressure range of 0?2 000 kPa at 273 and 298 K,respectively.Before measurements,about 120 mg ethanol?exchanged samples were loaded into the sample basket within the adsorption instrument and then degassed under high vacuum at 130℃for 20 h to obtain about 65 mg fully desolvated samples.At each pressure,the sample mass was monitored until equilibrium was reached(within 25 min).

    1.8 Gas selectivity

    Ideal adsorption solution theory(IAST)was used to predict binary mixture adsorption from the experi?mental pure?gas isotherms[20?21].To perform the integra?tions required by IAST,the single?component iso?therms should be fitted by a proper model.There is no restriction on the choice of the model to fit the adsorp?tion isotherm,but data over the pressure range under study should be fitted very precisely.The dual?site Langmuir?Freundlich equation was used to fit the experimental data:

    wherepis the pressure of the bulk gas at equilibrium with the adsorbed phase(kPa);qis the adsorbed amount of the adsorbent(mol·kg-1);qm1andqm2are the saturation capacities(mol·kg-1)of sites 1 and 2,respec?tively;b1andb2are the affinity coefficients(kPa-1)of sites 1 and 2,respectively;andn1andn2represent the deviations from an ideal homogeneous surface.TheR2values for all the fitted isotherms were over 0.999 97.Hence,the fitted isotherm parameters were applied to perform the necessary integrations in IAST.

    1.9 Estimation of the isosteric heats of gas adsorption

    A virial?type expression comprising the temperature?independent parametersaiandbiwas employed to calculate the enthalpies of adsorption for CH4and CO2(at 273 and 298 K)on 1.In each case,the data were fitted using the following equation:

    wherepis the pressure(Torr),Nis the adsorbed amount(mmol·g-1),Tis the temperature(K),aiandbiare virial coefficients,andmandnrepresent the num?ber of coefficients required to adequately describe the isotherms(mandnwere gradually increased until the contribution of extra addedaandbcoefficients were deemed to be statistically insignificant towards the overall fit,and the average value of the squared devia?tions from the experimental ones was minimized).

    whereQstis the coverage?dependent isosteric heat of adsorption andRis the universal gas constant.

    2 Results and discussion

    2.1 Synthesis and structural characterization

    Under solvothermal conditions,MOF 1 was syn?thesized by adding only Mg(NO3)2·6H2O to DMF/CHCN solution in the presence of HNO.The HCO-332ligand comes from the decomposition of DMF at high temperature,autoclave high pressure,and special acid?ic conditions.This simple synthetic approach is quite different from the reported methods earlier for the for?mate?based MOFs(Mn2+,Co2+,and Ni2+)in which the HCO2H was directly used as an organic linker[22?26].In addition,the present synthetic route can be easily scaled up to prepare MOF 1 in gram grade at a time.Under the same condition,MOF 2 was prepared after adding H4L and Mg(NO3)2·6H2O to DMF/CH3CN solu?tion in the presence of HNO3.

    Although the crystal structure of MOF 1 is known[25],the synthetic methods are quite different.1 crystallizes in the monoclinicP21/nspace group(Fig.1,Table 1),which is also different from another formate?based Mg?MOF with thePbcnspace group[26].Of partic?ular interest is that there is a pentanuclear Mg5cluster consisting of Mg1,Mg2,Mg3,Mg3i,and Mg4 ions,which can be viewed as a[Mg4@Mg2]tetrahedron with the Mg2 ion in the center to act as a secondary building unit(SBU).The SBUs are further connected by the for?mate anions to form a neutral 3Ddianet topology(Fig.1e).1 possesses 1D channels along theb?axis with a diameter of about 0.44 nm(Fig.1d).The channels are filled with DMF molecules,which form two intermolec?ular hydrogen bonds with the H atoms of HCO2-anions(C2…O13 0.354 6(2)nm,C5iii…O13 0.313 1(2)nm,Fig.S1,Supporting information).Interestingly,all the H atoms of HCO2-anions point to the channels in 1(Fig.S2),which may also provide strong interactions with CO2after removing the DMF,reflecting high selective CO2capture.

    Fig.1 Structure of MOF 1:(a)OPTEP drawing of the asymmetric unit with 50% thermal ellipsoids probability;(b)a pentanuclear Mg5cluster consisting of Mg1?Mg3,Mg3i,and Mg4 ions;(c)a[Mg4@Mg2]tetrahedron with the Mg2 ion in the center;(d)1D channels along the b?axis with a diameter of about 0.44 nm;(e)corresponding dia topology

    MOF 2 crystallizes in the monoclinicP21/cspace group with relatively large unit cell parameters.In this asymmetric unit,two Mg2+ions,one L4-ligand,and three coordinated water molecules are observed(Fig.2a,Table 1).However,the HCO2-anion was not observed in 2,despite that the synthetic condition was the same as that of 1.This result demonstrates that there is a coordination competition between H4L and formate acid.The small?sized formate ions cannot meet the coordination requirements of Mg2+in the presence of a large?sized H4L ligand.Further analysis shows that the Mg?O distances in both 1 and 2 are all in a normal range(0.196 4(4)?0.228 4(4)nm).In MOF 2,each L4-ligand is connected by six Mg2+ions with a distorted[MgO6]octahedron.Due to the chelate coordination nature of two carboxylate groups in L4-,two Mg2+ions can be viewed as a binuclear cluster,which is bridged by four different L4-ions.Interestingly,this connection mode makes 2 show the obvious 1D channels with dumbbell window aperture along thea?axis.The win?dow size is 1.42 nm(Fig.2d).Further packing of these channels forms a 3D porous framework(Fig.2e).To better understand this structure,topology analysis was performed.Each L4-linker can be viewed as a 4?connected node(Fig.2b)and the binuclear Mg2cluster can be described as another 4?connected node(Fig.2c).Thus,2 shows a 3Dsratopology[27?29].In addition,the ideal porosity of 2 is as high as 49.2% ,making it a highly porous MOF material.

    Fig.2 Structure of MOF 2:(a)OPTEP drawing of the asymmetric unit with 30% thermal ellipsoids probability;(b)connection of L4-;(c)connection of Mg2cluster;(d)a twisted window aperture along the a?axis with a size of 1.42 nm;(e)packing view of the 3D framework;(f)corresponding sra topology

    PXRD patterns of as?synthesized samples were in good agreement with their simulated results,revealing the high purity of the bulk products(Fig.3a).Addition?ally,activated 1 possessed identical PXRD peaks to the simulated ones,indicating good framework stability of activated 1.However,after guest removal,nearly no diffraction peaks were observed on activated 2(Fig.3b),reflecting that the framework of 2 collapses.In addi?tion,the TGA curve of 1 shows that the weight loss of 18.0% between RT and 200℃can be assigned to the removal of one DMF molecule(Calcd.17.6% ,Fig.3c).For 2,the first weight loss of 28.2% from RT to 145℃is ascribed to the removal of two CH3CN molecules,two lattice water molecules and one DMF molecule(Calcd.27.5% ).The second weight loss of 7.1% until 245℃is ascribed to the loss of three coordinated water molecules(Calcd.7.8% ,Fig.3d).Compared with the decomposition temperatures of 390℃for 1 and 300℃for 2,it is worthwhile to note that the short linker pre?fers to form a more stable porous MOF material.

    Fig.3 PXRD patterns(a,b)and TGA curves(c,d)of MOFs 1 and 2

    2.2 Pore evaluation and single gas adsorption

    The permanent micro?porosity of MOFs 1 and 2 was evaluated by N2adsorption isotherm at 77 K(Fig.4a and S3).The N2adsorption isotherm of 1 shows a quick uptake with a type?Ⅰ behavior at low pressure and a total uptake of 104.5 cm3·g-1atp/p0=1.The Brunauer?Emmett?Teller(BET)and Langmuir surface areas were calculated to be 342 and 378 m2·g-1,respec?tively.As shown in Fig.4b,the pore size centered at about 0.40 nm,which was very close to the value deter?mined from the crystal structure(Fig.1d).However,nearly negligible uptake was found in 2,which agrees with the decomposition of the framework after the removal of guest(Fig.3b).

    Due to the micro?porosity of MOF 1,pure gas?component sorption isotherms of CO2and CH4were collected at 273 and 298 K,respectively(Fig.4c).With reversible type?Ⅰ isotherms,1 exhibited a higher CO2uptake(mass fraction)of 2.4% (0.53 mmol·g-1)at 298 K and 15 kPa,the partial pressure of CO2in the flue gas.This value was higher than that of NJU?Bai50(2.11% )[27],FZU(2.01% )[30]and approaching to that of ZIF?78(3.3% )[31].Interestingly,by reducing the adsorp?tion temperature to 273 K,the uptake at 15 kPa increased by more than two times(5.3% ),which makes 1 a good CO2collector.In addition,the excess CO2uptake reached 11.7% (2.6mmol·g-1)at 273 K and 100 kPa,while the unsaturation CO2uptake was as high as 17.2% (3.9 mmol·g-1)at 2 000 kPa.With a nearly similar adsorption trend,the maximum CO2uptake was about 14.7% at 298 K and 2 000 kPa.Although the CO2uptake at 2 000 kPa was limited by the volume of the micropore,the uptake value of 1 at 100 kPa was higher than those of the known micropo?rous MOFs[32].However,corresponding CH4uptakes of 1 at 2 000 kPa were only 4.4% at 273 K and 4.0% at 298 K.This adsorption difference indicates the high potential of 1 for selective CO2capture from CH4?contained mixture.

    Fig.4 (a)N2adsorption isotherms of MOF 1 at 77 K;(b)Pore size distribution of 1;(c)Single gas adsorption isotherms of 1;(d)IAST selectivity of 1;(e)Qstof 1 for CO2and CH4;(f)PXRD patterns of treated 1

    The unique CO2adsorption isotherms encouraged us to further examine the capacity of MOF 1 for the selective capture of CO2/CH4at 298 K.IAST was employed to predict multi?component adsorption behaviors from the experimental pure?gas isotherms.The predicted adsorption selectivity in 1 as a function of bulk pressure is presented in Fig.4d,S4,and S5.The equimolar selectivity of CO2over CH4was very sensitive to the loading,which showed two steps in the changes of selectivity:a quick decrease from 11 to 5.2 at the low?pressure region and a slow increase from 5.2 to 6.6 following the increased pressure.Interestingly,the CO2/CH4selectivity was also sensitive to the gas ratio,particularly at high pressure.The higher the CO2concentration was,the higher selectivity was.To under?stand these results,the adsorption enthalpies were calculated by the virial method(Fig.S6 and S7).1 exhibited a strong binding affinity(33.5 kJ·mol-1)for CO2at zero coverage,and the enthalpy of adsorption increased to 36.5 kJ·mol-1at about 500 kPa.The initial high value indicates that there are interactions between the H atom of the HCO2-ion and CO2mole?cule,while the increased values stem from pressure?driven CO2…CO2interactions.However,1 had a rela?tively low enthalpy of adsorption(21.5 kJ·mol-1)for CH4.

    Moreover,the framework structure of MOF 1 after the adsorption measurements and water treatment for one month was still kept,confirmed by the PXRD pat?terns(Fig.4f).The convenient synthesis,high stability towards the water,good selectivity,and facile regenera?tion make 1 a promising porous MOF material for the separation of CO2and CH4for long?term use.

    3 Conclusions

    In summary,two Mg?based MOFs 1 and 2 were prepared by using a coordination competition strategy between formic acid generated from the decomposition of DMF and 1,1′∶3′,1″?terphenyl?3,3″,5,5″?tetracarbox?ylic acid.MOF 1 possesses a 3Ddiatopological net?work and has a 1D channel,while MOF 2 has a unique binuclear Mg2cluster,yielding a 3Dsratopology net?work.These results demonstrate that ligands with the same coordinating groups and different sizes are diffi?cult to be compatible with when reacting with Mg2+ions.In addition,with good water stability,1 exhibited quick CO2uptake and good selectivity for CO2/CH4sep?aration in a wide pressure range at 298 K.This work permits us to envision that coordination competition strategy may be an important method for the design and preparation of MOF materials in the future.

    Supporting information is available at http://www.wjhxxb.cn

    猜你喜歡
    化工學(xué)院南京大學(xué)配位
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    我校黨委書記柴林一行赴南京大學(xué)交流學(xué)習(xí)
    國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    [Zn(Hcpic)·(H2O)]n配位聚合物的結(jié)構(gòu)與熒光性能
    《南京大學(xué)學(xué)報數(shù)學(xué)半年刊》征稿簡則
    【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    德不配位 必有災(zāi)殃
    《化工學(xué)報》贊助單位
    Comprendre et s'entendre
    échange humain sous le contexte de la mondialisation
    超色免费av| 亚洲一码二码三码区别大吗| 国产在线免费精品| 天天操日日干夜夜撸| 亚洲美女视频黄频| 午夜福利视频精品| 精品99又大又爽又粗少妇毛片| 日韩一区二区视频免费看| 精品国产一区二区三区久久久樱花| 99香蕉大伊视频| 男女高潮啪啪啪动态图| 97精品久久久久久久久久精品| 天天影视国产精品| 狠狠婷婷综合久久久久久88av| 国产国语露脸激情在线看| 久久久久久久久免费视频了| 999精品在线视频| 精品人妻在线不人妻| 肉色欧美久久久久久久蜜桃| 成人国产麻豆网| 最近中文字幕高清免费大全6| 三级国产精品片| 久久久精品免费免费高清| 日本免费在线观看一区| 中文字幕色久视频| 国产片特级美女逼逼视频| 老女人水多毛片| 亚洲经典国产精华液单| 99热网站在线观看| 一级毛片我不卡| 一二三四在线观看免费中文在| 一级爰片在线观看| 成年动漫av网址| 久久av网站| 最近中文字幕2019免费版| 男女边摸边吃奶| 一区二区av电影网| 日韩大片免费观看网站| 日韩av免费高清视频| 啦啦啦在线观看免费高清www| 亚洲内射少妇av| 久久久久久久精品精品| 亚洲av免费高清在线观看| 国产无遮挡羞羞视频在线观看| 三上悠亚av全集在线观看| 国产成人精品一,二区| 一级爰片在线观看| 欧美+日韩+精品| 久久久久久久久久久免费av| av.在线天堂| 国产成人精品无人区| 永久网站在线| 一级毛片黄色毛片免费观看视频| 精品酒店卫生间| 久久国产精品大桥未久av| 成年美女黄网站色视频大全免费| 欧美变态另类bdsm刘玥| 成年女人在线观看亚洲视频| 亚洲精华国产精华液的使用体验| 在线精品无人区一区二区三| 夫妻性生交免费视频一级片| 1024视频免费在线观看| 国产精品人妻久久久影院| 亚洲欧洲精品一区二区精品久久久 | 亚洲av综合色区一区| 免费看不卡的av| 丝袜人妻中文字幕| 我的亚洲天堂| 国产乱来视频区| 丁香六月天网| 97在线人人人人妻| 乱人伦中国视频| 亚洲国产看品久久| 午夜免费男女啪啪视频观看| 80岁老熟妇乱子伦牲交| 不卡视频在线观看欧美| 日本黄色日本黄色录像| 高清黄色对白视频在线免费看| 免费观看a级毛片全部| av网站在线播放免费| 天堂8中文在线网| 久久ye,这里只有精品| 我的亚洲天堂| videossex国产| 97人妻天天添夜夜摸| 久热久热在线精品观看| 日韩电影二区| 精品人妻偷拍中文字幕| 在线观看国产h片| 一区二区三区激情视频| videosex国产| 午夜激情久久久久久久| 国产 精品1| 国产午夜精品一二区理论片| 日韩中字成人| 久久韩国三级中文字幕| 日韩电影二区| 婷婷色综合大香蕉| 一区二区三区乱码不卡18| 亚洲精品国产av蜜桃| 黄色毛片三级朝国网站| a级毛片黄视频| 中文字幕制服av| 久久国产精品男人的天堂亚洲| 国产精品.久久久| 国产精品 国内视频| 一本—道久久a久久精品蜜桃钙片| xxx大片免费视频| 日日爽夜夜爽网站| 日韩欧美精品免费久久| 亚洲国产欧美日韩在线播放| 考比视频在线观看| 亚洲精品日韩在线中文字幕| 精品一区二区免费观看| 国产片内射在线| 久久国产亚洲av麻豆专区| 亚洲欧美中文字幕日韩二区| 999精品在线视频| 精品少妇黑人巨大在线播放| 日韩av在线免费看完整版不卡| 日本av免费视频播放| 91在线精品国自产拍蜜月| a级毛片黄视频| 美女午夜性视频免费| 80岁老熟妇乱子伦牲交| 久久久久久久久久人人人人人人| 视频在线观看一区二区三区| 色吧在线观看| 一本色道久久久久久精品综合| 国产亚洲欧美精品永久| a级毛片黄视频| 精品人妻在线不人妻| 亚洲久久久国产精品| videos熟女内射| 尾随美女入室| 电影成人av| 一本色道久久久久久精品综合| 热re99久久国产66热| 欧美人与性动交α欧美软件| 男人添女人高潮全过程视频| 国产精品国产三级专区第一集| 成人漫画全彩无遮挡| 如何舔出高潮| 最近最新中文字幕大全免费视频 | 满18在线观看网站| 日本av手机在线免费观看| 成年av动漫网址| 黄频高清免费视频| 免费观看性生交大片5| 日韩制服丝袜自拍偷拍| 日韩一本色道免费dvd| 欧美日韩视频高清一区二区三区二| 亚洲美女搞黄在线观看| 国产精品 国内视频| 黄色怎么调成土黄色| 国产在线一区二区三区精| 天天操日日干夜夜撸| 黄片播放在线免费| 久久精品国产亚洲av天美| 精品国产乱码久久久久久男人| 免费久久久久久久精品成人欧美视频| 妹子高潮喷水视频| 中文字幕另类日韩欧美亚洲嫩草| av天堂久久9| 自线自在国产av| 国产成人精品久久二区二区91 | 中文字幕av电影在线播放| 十八禁高潮呻吟视频| 美女大奶头黄色视频| 久久综合国产亚洲精品| 国产精品麻豆人妻色哟哟久久| 日韩一本色道免费dvd| 一区二区三区四区激情视频| 日韩欧美一区视频在线观看| 日韩精品有码人妻一区| 9热在线视频观看99| 国产毛片在线视频| 成年女人毛片免费观看观看9 | 成人18禁高潮啪啪吃奶动态图| 男人舔女人的私密视频| 国产福利在线免费观看视频| 色视频在线一区二区三区| 极品少妇高潮喷水抽搐| 亚洲精品,欧美精品| 国产精品久久久久久av不卡| 国产精品国产av在线观看| 日韩中字成人| 一级黄片播放器| 国产精品.久久久| 2018国产大陆天天弄谢| 天天躁夜夜躁狠狠躁躁| 亚洲精品久久久久久婷婷小说| 好男人视频免费观看在线| 美女中出高潮动态图| 久久精品亚洲av国产电影网| av不卡在线播放| 欧美激情 高清一区二区三区| 一区二区av电影网| 免费黄色在线免费观看| 欧美xxⅹ黑人| 丝袜美足系列| 另类亚洲欧美激情| 亚洲一级一片aⅴ在线观看| 亚洲五月色婷婷综合| 亚洲av电影在线进入| www.熟女人妻精品国产| 少妇精品久久久久久久| 人人妻人人澡人人看| 国产精品99久久99久久久不卡 | 视频区图区小说| 九色亚洲精品在线播放| 欧美最新免费一区二区三区| 国产高清国产精品国产三级| 亚洲图色成人| 亚洲美女黄色视频免费看| 久久久a久久爽久久v久久| 亚洲av欧美aⅴ国产| 亚洲色图综合在线观看| 亚洲欧美成人精品一区二区| 亚洲精品国产一区二区精华液| 飞空精品影院首页| 日产精品乱码卡一卡2卡三| 亚洲婷婷狠狠爱综合网| 久久精品国产亚洲av涩爱| 可以免费在线观看a视频的电影网站 | 黄色 视频免费看| 国产成人精品久久久久久| 中文字幕最新亚洲高清| 18禁观看日本| 国产一区二区三区av在线| 免费日韩欧美在线观看| 波野结衣二区三区在线| 精品一区在线观看国产| 亚洲少妇的诱惑av| 亚洲美女黄色视频免费看| 国产精品嫩草影院av在线观看| 伦精品一区二区三区| 国产精品亚洲av一区麻豆 | 不卡视频在线观看欧美| 中国国产av一级| 精品亚洲成a人片在线观看| 日产精品乱码卡一卡2卡三| 精品卡一卡二卡四卡免费| 一个人免费看片子| 亚洲精品在线美女| 人妻人人澡人人爽人人| 亚洲精品国产av蜜桃| 国产成人精品福利久久| 欧美bdsm另类| 精品卡一卡二卡四卡免费| 高清在线视频一区二区三区| 久久女婷五月综合色啪小说| 亚洲欧美成人综合另类久久久| 91精品国产国语对白视频| 中文字幕亚洲精品专区| 亚洲,欧美,日韩| 免费人妻精品一区二区三区视频| 久久久久久久精品精品| 亚洲精品一区蜜桃| 丝袜美腿诱惑在线| 免费不卡的大黄色大毛片视频在线观看| 好男人视频免费观看在线| 国产亚洲av片在线观看秒播厂| 大陆偷拍与自拍| 99热国产这里只有精品6| 高清不卡的av网站| 久久久久久人妻| 国产欧美亚洲国产| 亚洲av成人精品一二三区| 丝袜美足系列| 波多野结衣av一区二区av| 成人毛片60女人毛片免费| 亚洲精品国产色婷婷电影| 亚洲精品在线美女| 波野结衣二区三区在线| 丰满迷人的少妇在线观看| 国产又爽黄色视频| 成人国产av品久久久| 超碰97精品在线观看| 国产成人精品无人区| 9191精品国产免费久久| 久久久国产精品麻豆| 丰满迷人的少妇在线观看| 美女中出高潮动态图| av片东京热男人的天堂| 欧美成人午夜免费资源| 久久精品久久久久久噜噜老黄| 麻豆乱淫一区二区| 精品人妻偷拍中文字幕| a 毛片基地| 国产av精品麻豆| 亚洲 欧美一区二区三区| 1024香蕉在线观看| 日韩中文字幕视频在线看片| 伊人久久大香线蕉亚洲五| 青草久久国产| 热re99久久精品国产66热6| 母亲3免费完整高清在线观看 | 亚洲精品美女久久av网站| 多毛熟女@视频| 国产精品久久久av美女十八| 亚洲综合色惰| 久久精品国产鲁丝片午夜精品| 欧美人与性动交α欧美精品济南到 | 黄网站色视频无遮挡免费观看| 亚洲精品中文字幕在线视频| 国产精品久久久久久精品电影小说| 精品一品国产午夜福利视频| 国产精品偷伦视频观看了| 国产成人a∨麻豆精品| 热99久久久久精品小说推荐| 久久久久精品久久久久真实原创| 亚洲国产精品成人久久小说| 尾随美女入室| 搡女人真爽免费视频火全软件| 99久久精品国产国产毛片| 国产一区有黄有色的免费视频| 男女啪啪激烈高潮av片| 亚洲 欧美一区二区三区| 老女人水多毛片| av有码第一页| 日本wwww免费看| 国产精品久久久久久精品电影小说| 亚洲第一青青草原| 日韩中字成人| www日本在线高清视频| 亚洲成av片中文字幕在线观看 | 亚洲欧美中文字幕日韩二区| 欧美精品人与动牲交sv欧美| 人妻少妇偷人精品九色| 亚洲av欧美aⅴ国产| 99久国产av精品国产电影| 99国产综合亚洲精品| 毛片一级片免费看久久久久| 国产成人精品在线电影| 欧美日韩国产mv在线观看视频| 大香蕉久久网| 午夜日韩欧美国产| 美女脱内裤让男人舔精品视频| 亚洲国产欧美网| 国产在线视频一区二区| 黄色毛片三级朝国网站| 亚洲经典国产精华液单| 国产成人a∨麻豆精品| 国产一区二区激情短视频 | 你懂的网址亚洲精品在线观看| videossex国产| 成人亚洲精品一区在线观看| 一区二区三区四区激情视频| videosex国产| 午夜老司机福利剧场| 国产白丝娇喘喷水9色精品| 免费观看无遮挡的男女| 欧美最新免费一区二区三区| 9191精品国产免费久久| 香蕉丝袜av| 欧美日韩国产mv在线观看视频| 午夜福利在线免费观看网站| 91精品国产国语对白视频| 国产一区二区激情短视频 | 精品人妻偷拍中文字幕| 久久人人爽人人片av| 麻豆av在线久日| 哪个播放器可以免费观看大片| 午夜激情av网站| 电影成人av| 国产精品免费视频内射| av在线观看视频网站免费| 少妇人妻精品综合一区二区| 国产精品成人在线| 成人二区视频| 最新中文字幕久久久久| 新久久久久国产一级毛片| 女人精品久久久久毛片| 日本欧美视频一区| 中文字幕色久视频| 国产精品香港三级国产av潘金莲 | 色吧在线观看| 日韩视频在线欧美| 欧美少妇被猛烈插入视频| 两个人免费观看高清视频| 欧美另类一区| a级片在线免费高清观看视频| 国产精品一区二区在线不卡| 国产探花极品一区二区| 日日摸夜夜添夜夜爱| 看十八女毛片水多多多| 99九九在线精品视频| 人体艺术视频欧美日本| 不卡av一区二区三区| 亚洲av日韩在线播放| 曰老女人黄片| 久久久亚洲精品成人影院| 免费黄色在线免费观看| 久久99精品国语久久久| 欧美亚洲日本最大视频资源| 亚洲欧洲国产日韩| 极品少妇高潮喷水抽搐| 一级片'在线观看视频| 亚洲三级黄色毛片| 欧美另类一区| 国产探花极品一区二区| 亚洲婷婷狠狠爱综合网| 亚洲欧美精品自产自拍| 丝袜脚勾引网站| 久久久久久久久久久久大奶| 丰满饥渴人妻一区二区三| 日本色播在线视频| 国产深夜福利视频在线观看| 中国三级夫妇交换| 久久狼人影院| 国产一区二区 视频在线| 99re6热这里在线精品视频| 亚洲精品av麻豆狂野| 久久女婷五月综合色啪小说| 免费日韩欧美在线观看| 婷婷色麻豆天堂久久| 久久久久久免费高清国产稀缺| 日韩中字成人| 免费黄频网站在线观看国产| 欧美国产精品一级二级三级| 亚洲在久久综合| 午夜福利视频精品| 免费女性裸体啪啪无遮挡网站| 在线 av 中文字幕| 国产黄色免费在线视频| 18禁动态无遮挡网站| 菩萨蛮人人尽说江南好唐韦庄| 天天躁狠狠躁夜夜躁狠狠躁| 午夜久久久在线观看| 欧美老熟妇乱子伦牲交| 啦啦啦在线免费观看视频4| 免费高清在线观看日韩| 国产片特级美女逼逼视频| 亚洲av中文av极速乱| 亚洲精品中文字幕在线视频| 色婷婷av一区二区三区视频| 一区福利在线观看| 成人漫画全彩无遮挡| 久久鲁丝午夜福利片| 91精品伊人久久大香线蕉| 日本免费在线观看一区| 侵犯人妻中文字幕一二三四区| av在线观看视频网站免费| 久久久久久人人人人人| 一级毛片 在线播放| 男人添女人高潮全过程视频| 两个人看的免费小视频| 国产精品.久久久| 我要看黄色一级片免费的| 久久久亚洲精品成人影院| 国产无遮挡羞羞视频在线观看| 久久精品久久久久久噜噜老黄| videos熟女内射| 国产精品三级大全| 捣出白浆h1v1| 91久久精品国产一区二区三区| 午夜福利,免费看| 一区二区三区四区激情视频| 狠狠婷婷综合久久久久久88av| 日韩 亚洲 欧美在线| 国产一区二区三区av在线| 久久精品国产亚洲av天美| 在线观看三级黄色| 亚洲男人天堂网一区| av卡一久久| 高清黄色对白视频在线免费看| 国产日韩欧美视频二区| 精品国产一区二区久久| 欧美在线黄色| 人人妻人人添人人爽欧美一区卜| 成人亚洲欧美一区二区av| 丝袜脚勾引网站| 亚洲熟女精品中文字幕| 久久久a久久爽久久v久久| 丰满乱子伦码专区| 五月开心婷婷网| 欧美 亚洲 国产 日韩一| 国产精品 国内视频| 久热久热在线精品观看| 爱豆传媒免费全集在线观看| 熟女av电影| 午夜日韩欧美国产| 老鸭窝网址在线观看| 亚洲国产欧美日韩在线播放| 久久久久视频综合| 亚洲第一青青草原| 欧美日韩国产mv在线观看视频| 老鸭窝网址在线观看| 飞空精品影院首页| 精品午夜福利在线看| 午夜福利一区二区在线看| 啦啦啦中文免费视频观看日本| 色网站视频免费| 国产精品免费视频内射| 日韩不卡一区二区三区视频在线| 一区福利在线观看| 啦啦啦在线免费观看视频4| 久久人妻熟女aⅴ| 日韩中文字幕欧美一区二区 | 69精品国产乱码久久久| 国产精品麻豆人妻色哟哟久久| 久久久久人妻精品一区果冻| 久久精品人人爽人人爽视色| 777久久人妻少妇嫩草av网站| 亚洲色图 男人天堂 中文字幕| 精品亚洲成国产av| 成人漫画全彩无遮挡| 黑丝袜美女国产一区| 一级a爱视频在线免费观看| 日韩伦理黄色片| 久久狼人影院| 高清不卡的av网站| 中文天堂在线官网| 国产成人欧美| 免费不卡的大黄色大毛片视频在线观看| 亚洲欧美成人精品一区二区| 午夜91福利影院| 一级,二级,三级黄色视频| 久久久久久人妻| 日本猛色少妇xxxxx猛交久久| 精品人妻熟女毛片av久久网站| 我要看黄色一级片免费的| 久久99蜜桃精品久久| 丁香六月天网| 久久久久久久久免费视频了| 免费观看在线日韩| 久久久久久免费高清国产稀缺| 中国三级夫妇交换| 欧美人与善性xxx| 中文字幕精品免费在线观看视频| 青草久久国产| 国产精品久久久av美女十八| xxxhd国产人妻xxx| 亚洲欧美精品自产自拍| 如何舔出高潮| 日本猛色少妇xxxxx猛交久久| 美女高潮到喷水免费观看| 男人爽女人下面视频在线观看| 美女主播在线视频| 一区福利在线观看| av卡一久久| 亚洲精品日韩在线中文字幕| 国产日韩欧美亚洲二区| 久久久久久久久免费视频了| 亚洲欧美精品自产自拍| 欧美日韩亚洲高清精品| 欧美精品国产亚洲| 亚洲成av片中文字幕在线观看 | 成人亚洲欧美一区二区av| 麻豆乱淫一区二区| 亚洲成国产人片在线观看| 人妻一区二区av| 热99国产精品久久久久久7| 日本午夜av视频| 在线观看免费视频网站a站| 在线观看免费高清a一片| 美女大奶头黄色视频| www.自偷自拍.com| 精品一区在线观看国产| 熟女电影av网| 一级黄片播放器| 成人国产av品久久久| 国产成人精品久久二区二区91 | h视频一区二区三区| 国产精品久久久久久av不卡| 男女啪啪激烈高潮av片| 精品亚洲成a人片在线观看| 黄片播放在线免费| 国产成人精品无人区| 久久人人97超碰香蕉20202| 欧美精品av麻豆av| 免费观看av网站的网址| 亚洲国产成人一精品久久久| 黑人猛操日本美女一级片| 亚洲经典国产精华液单| 韩国高清视频一区二区三区| 黄频高清免费视频| 欧美日韩亚洲高清精品| 黑人猛操日本美女一级片| 精品国产一区二区三区久久久樱花| 热re99久久精品国产66热6| 午夜激情久久久久久久| 90打野战视频偷拍视频| 韩国高清视频一区二区三区| 又粗又硬又长又爽又黄的视频| 日韩熟女老妇一区二区性免费视频| 久久人人爽人人片av| 成年女人毛片免费观看观看9 | 91成人精品电影| xxxhd国产人妻xxx| 日韩人妻精品一区2区三区| 涩涩av久久男人的天堂| 久久99热这里只频精品6学生| 电影成人av| 老女人水多毛片| 日日爽夜夜爽网站| 国产成人精品无人区| 99久久人妻综合| 色视频在线一区二区三区| av网站免费在线观看视频| 新久久久久国产一级毛片| 久久99热这里只频精品6学生| 狠狠婷婷综合久久久久久88av| 在线免费观看不下载黄p国产| 免费高清在线观看视频在线观看| 熟妇人妻不卡中文字幕| 亚洲综合色网址| 欧美老熟妇乱子伦牲交| av在线播放精品| 亚洲欧美精品自产自拍| 999精品在线视频| 久久久久国产一级毛片高清牌| 国产又色又爽无遮挡免| 最近中文字幕高清免费大全6|