• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于三腳架羧酸和咪唑基配體的兩種鎘基配合物的合成、結(jié)構與熒光性質(zhì)

    2023-02-03 10:23:20陳魯園侯向陽王記江
    無機化學學報 2023年1期
    關鍵詞:延安大學三腳架咪唑

    唐 龍 陳魯園 侯向陽 王 瀟 王記江

    (1延安大學新能源與新功能材料重點實驗室,延安大學化學與化學工程學院,陜西化學反應工程重點實驗室,延安 716000)

    (2陜西精藝化工有限公司,榆林 719300)

    0 Introduction

    Metal?organic coordination polymers(MOCPs)of mixed?ligand assembly have become a very attractive research field[1?4].Due to its many advantages,it has applications in many fields,such as absorption,hetero?geneous catalysis,electrochemistry,ion exchange,and fluorescence sensing[5?8].The mixed ?ligand strategy by the judicious choice of various organic linkers has been proven to be high?efficient for the construction of MOCPs.Among such systems,the most outstanding is the incorporation of polycarboxylates and N?donors co?ligands,which has successfully been utilized to generate more diverse and interesting polymeric net?works with potential properties and contributes to refin?ing our knowledge of self?assembly processes[9?11].Within polycarboxylate ligands,aromatic polycarboxyl compounds have extensively been documented as mul?tifunctional structures,owing to their versatile linking capability by virtue of both covalent bonding and supra?molecular interactions[12?14].Luminescent metal?organic coordination polymers(LMOCPs)are a very important branch of MOCPs.At present,lots of studies have proved that LMOCPs as fluorescent sensors are feasi?ble and effective in detecting pollutants.LMOCPs gen?erally emit light in the following ways:organic ligands emit light,and the charge transfer between metal ions and ligands can emit light[15?17].The tunable structures and properties of cadmium ?based coordination poly?mers provide an important advantage to fluorescence sensing materials.

    In our strategy,multidentate O?or N?donor ligands have also been employed in the construction of coordi?nation polymers(CPs).Among the family of organic carboxylate,tripodal carboxylate shows more superiori?ty,the ligand 4,4′,4″?s?triazine?2,4,6?tribenzoic acid(H3tatb)as a class example of tripodal ligands has been utilized,and some MOCPs based on H3tatb have also been investigated[18?21].To explore the influence of N ?donor ligands on achieving different dimensional and topological structures based on tripodal carboxylate ligands,we also employ 1,4?bis(imidazole?1?ylmethyl)benzene(1,4?bimb)and 1,4?bis(1?imidazoly)benzene(1,4?bib)with different conformations as co?ligands.Two cadmium?based CPs,[Cd(Htatb)(1,4?bimb)]·H2O(1)and[Cd(Htatb)(1,4?bib)(H2O)]·DMF(2),were synthe?sized and characterized.In addition,their fluorescent properties were also investigated.

    1 Experimental

    1.1 Materials and chemical analysis

    The H3tatb,1,4?bimb,and 1,4?bib ligands were purchased in the Jinan Henghua Sci.&Technol.Co.,Ltd.All other reagents and solvents employed were commercially available and used without further purifi?cation.Elemental analyses were performed with a Perkin?Elmer 2400 CHN Elemental analyzer.Infrared spectra on KBr pellets were recorded on a Nicolet 170SX FT?IR spectrophotometer in a range of 400?4 000 cm-1.Thermogravimetric(TG)analyses were con?ducted with a Nietzsch STA 449C micro analyzer under the atmosphere at a heating rate of 5℃·min-1.Powder X?ray diffraction(PXRD)patterns were recorded on a Shimadzu XRD?7000 diffractometer analyzer.The working voltage was 40 kV,the current was 40mA,the radiation source was CuKα(λ=0.154 18 nm),and the scanning range was 20°?80°.The fluorescence spectra were obtained using a Hitachi F?7100 fluorescence spectrophotometer at room temperature.

    1.2 Synthesis of CP 1

    A mixture of Cd(NO3)2·4H2O(0.1 mmol,0.031 g),H3tatb(0.1 mmol,0.044 g),1,4?bimb(0.1 mmol,0.024 g)and 8 mL DMF?H2O(1∶1,V/V)was stirred for 30 min in the air.The mixture was then transferred to a 20 mL airtight glass reactor and kept at 100℃for 5 d under autogenous pressure,and then cooled to room temperature at a rate of 5℃·h-1.Colorless crystals of 1 were obtained and washed with DMF and dried in the air(Yield:49% based on Cd).Elemental analysis Calcd.for C38H29N7O7Cd(% ):C,56.48;H,3.62;N,12.13.Found(% ):C,56.62;H,3.72;N,12.24.IR data(KBr,cm-1):3 424(w),3 108(s),1 719(s),1 656(w),1 581(w),1 522(vs),1 364(m),1 122(w),1 063(m),1 013(w),933(w),822(m),766(s),647(w).

    1.3 Synthesis of CP 2

    The preparation of 2 was the same as that of 1 except using 1,4?bib ligand(0.1 mmol,0.021 g)instead of 1,4?bimb.Colorless crystals of 2 were obtained and washed with DMF and dried in the air(yield:51% based on Cd). Elemental analysis Calcd. for C39H32N8O8Cd(% ):C,54.91;H,3.78;N,13.13.Found(% ):C,54.83;H,3.87;N,13.21.IR data(KBr,cm-1):3 429(w),3 122(w),1 713(m),1 655(w),1 540(m),1 516(vs),1 401(m),1 362(s),1 237(m),1 112(m),1 088(m),1 016(m),939(w),833(m),771(s),650(w).

    1.4 X?ray crystallographic studies

    Diffraction intensities for CPs 1 and 2 were col?lected at 293 K on a Bruker SMART 1000 CCD diffrac?tometer employing graphite?monochromated MoKαradiation(λ=0.071 073 nm).A semi?empirical absorp?tion correction was applied using the SADABS pro?gram[22].The structures were solved by direct methods and refined by full?matrix least?squares onF2using the SHELXS 2014 and SHELXL 2014 programs,respectively[23?24].Non ?hydrogen atoms were refined anisotropically and hydrogen atoms were placed in geo?metrically calculated positions and refined using a rid?ing model.The crystallographic data for CPs 1 and 2 are listed in Table 1,and selected bond lengths and angles are listed in Table S1(Supporting information).

    Table 1 Crystal data and structural refinement summary of CPs 1 and 2

    CCDC:2178172,1;2178173,2.

    2 Results and discussion

    2.1 Description of the structure

    2.1.1 Crystal structures of CP 1

    Single?crystal X?ray analysis reveals that CP 1 exhibits a 4?fold interpenetrating 3D structure.The asymmetric unit of 1 comprises one CdⅡion,one Htatb2-ion,one 1,4?bimb molecule,and one free water molecule.Each five?coordinated CdⅡcenter is sur?rounded by two nitrogen atoms coming from two 1,4?bimb molecules,and three oxygen atoms from two Htatb2-ions,taking a distorted square pyramidal geom?etry(Fig.1).The bond lengths of Cd—O/N are in a range of 0.220 25(18)?0.244 1(2)nm,and the O/N—Cd—O/N bond angles cover a range of 53.80(8)°?134.41(9)°.In CP 1,the tripodal carboxylate ligands are partly deprotonated and one carboxylate group adoptsμ1?η1?η0to link one CdⅡion,and another one adoptsμ1?η1?η1chelating mode to link one CdⅡion,resulting in a 1D chain structure,further through 1,4?bimb ligand bridging,the adjacent chains are connect?ed to generate a 2D layer structure(Fig.2).These 2D layers are further joined by O—H…O hydrogen bond?ing(O6…O2 distance:0.257 8(3)nm,O6—H6…O2 angle:162.3(4)°)to produce a 3D architecture(Fig.3).To simplify the 3D framework,we considered the Htatb2-anion as a 3?connected node and CdⅡion as a 5?connected node,1,4?bimb ligand as linkers,and topological analysis by TOPOS program suggests that the 3D framework can be simplified as a 3,5?connected net with a point symbol of(3·72)(32·75·83)(Fig.S1).However,due to the absence of large guest molecules to fill the void space,the potential voids are filled via mutual interpenetration of three independent equiva?lent frameworks,generating a four?fold interpenetrating 3D architecture(Fig.4).

    Fig.1 Coordination environment of Cdion in CP 1

    Fig.2 Two?dimensional layer structure of CP 1

    Fig.3 Three?dimensional architecture of CP 1

    Fig.4 Four?fold interpenetrating 3D architecture of CP 1

    2.1.2 Crystal structures of CP 2

    CP 2 shows a 2?fold interpenetrating 3D structure.Each seven?coordinated CdⅡion is located in a[CdO5N2]distorted pentagonal bipyramid geometry and is coordinated to five oxygen atoms of two Htatb2-ions and a coordination water molecule,and two nitrogen atoms of two 1,4?bib molecules,as shown in Fig.5.The bond lengths of Cd—O and Cd—N are in a range of 0.225 1(4)?0.263 7(3)nm,these bond lengths are simi?lar to those found in related cadmium?based coordina?tion polymers[25].Compared with CP 1,the carboxylic groups of 2 adoptμ1?η1?η1andμ1?η1?η1chelating mode to link CdⅡions,resulting in a 1D chain structure(Fig.S2),and through 1,4?bib ligand bridging,the adjacent chains are connected to generate a 2D layer structure(Fig.6).These 2D layers are further joined through O—H…O hydrogen bonding(O5…O2 distance: 0.259 7(5)nm,O5—H5…O2 angle:161.76(4)°)to produce a 3D architecture(Fig.S3).Topological analysis by the TOPOS program suggests that the 3D framework can be simplified as a 3,5?connected net with a point sym?bol of(3·72)(32·75·83)(Fig.7).It is noteworthy that there are large open channels in CP 2.It is apt to form interpenetrating frameworks,accordingly,the final structure of CP 2 is a two?fold interpenetrating 3D framework(Fig.8).

    Fig.5 Coordination environment of Cdion in CP 2

    Fig.6 Two?dimensional layer structure of CP 2

    Fig.7 3,5?connected net topology of CP 2

    Fig.8 Two?fold interpenetrating 3D architecture of CP 2

    2.2 TG analysis

    The experimental diffraction patterns featured peaks that are almost consistent with the simulated pat?terns,indicating that the products are almost pure phases(Fig.S4 and S5).To study the thermal stability of CPs 1 and 2,TG analyses were performed on the polycrystalline samples under a nitrogen atmosphere(Fig.S6 and S7).TG curve of 1 revealed that the first weight loss of 2.4% from 50 to 110℃corresponds to the loss of the lattice water molecules(Calcd.2.23% ),and then the larger weight loss(Obsd.84.3% )occurred in a range of 240?490 ℃,corresponding to the decom?position of the Htatb2-and 1,4?bimb ligands(Calcd.83.86% ).The TG curve of 2 showed two?step weight losses.The first weight loss in a range of 60?170 ℃(Obsd.10.9% ,Calcd.10.68% )is assignable to the loss of DMF and coordination water molecules.The second weight loss of 76.4% in a temperature range of 240?460℃corresponds to the release of the Htatb2-and 1,4?bib ligands(Calcd.76.14% ).The final decomposi?tion products of 1 and 2 were confirmed to be CdO,which has also been further confirmed by the PXRD patterns of the CPs.

    2.3 Infrared spectra of CPs 1 and 2

    IR spectra of CPs 1 and 2 showed features attrib?utable to compositions of the coordination polymers(Fig.S8 and S9).The observed strong characteristic peaks appearing around 3 424 and 3 429 cm-1in spec?tra are attributed to the O—H stretching vibrations,respectively.Due to partial deprotonation of carboxyl?ate in 1 and 2,the absorptions of about 1 719 and 1 713 cm-1can be attributed to the stretching vibrations of theνCOOHin the carboxylate.The presence of the char?acteristic bands at 1 656 and 1 655 cm-1for 1 and 2 suggests theν—C=N—stretching vibrations of Htatb2-ion.The intense characteristic peaks appearing around 1 581 and 1 522,1 364 cm-1for 1,1 540 and 1 516,1 401 cm-1for 2 in the IR spectra correspond to asym?metric and symmetric stretching vibrations of carboxyl?ic groups,respectively.The presence of the characteris?tic bands at 1 122 and 1 112 cm-1for 1 and 2 suggests theνC—Ostretching vibrations.The presence of the char?acteristic bands at 1 063 cm-1for 1 and 1 088 cm-1for 2 suggests theνC—Nstretching vibrations of the imidaz?ole ring.The absorptions of 640?850 cm-1of 1 and 2 can be attributed to theγC—Hout?of?plane bending vi?bration of the phenyl ring.

    2.4 Photoluminescence properties

    The luminescent emission spectra of CPs 1 and 2 were examined in the solid state at room temperature as shown in Fig.9.The main emission peak of the free H3tatb appeared at 454 nm(λex=364 nm),which can be assigned to the intra?ligandπ*?πtransitions[26].CP 1 showed a strong emission peak at 409 nm(λex=369 nm),however,the intense emission of 1,4?bimb was observed at 473 nm(λex=400 nm),respectively.Rela?tive to their ligands,1 showed a blue shift,probably owing to ligand ?to?metal charge transfer(LMCT)[27?28].CP 2 showed an emission peak at 394 nm(λex=334 nm),in comparison with that of free H3tatb and 1,4?bib(an intense emission at 398 nm withλex=306 nm),which are attributed to H3tatb or 1,4?bib ligand?based charge transfer[29?30].

    Fig.9 Emission spectra of the ligands and CPs 1,2

    2.5 Detection of nitroaromatic compounds

    The luminescent responses of CPs 1 and 2 were investigated by treating suspensions(2 mg dispersed in 2 mL aqueous solution)with 50 μmol·L-1different ana?lytes such asp?nitrobenzoic acid(p?NBA),m?nitroani?line (m?NA),o?nitroaniline (o?NA),o?nitrophenol(o?NP),p?nitrophenol(p?NP),p?nitrophenylhydrazine(p?NPH),nitrobenzene(NB),2,4?dinitrophenylhydra?zine(2,4?DNPH),2,4,6?trinitrophenol(2,4,6?TNP),and 2,4,6?trinitrophenyl hydrazine(2,4,6?TNPH),respec?tively.Among these nitroaromatic compounds,NB almost quenched the luminescent intensity of1(Fig.10).The result indicates that 1 may be regarded as a potential luminescent sensor for detecting NB.The luminescent intensities gradually decreased with the increasing concentration of NB.The best quenching efficiency observed for NB was calculated to be 99.17% upon incremental addition of 0 ?400 μL 1 mmol·L-1NB solution(Fig.11).To further analyze the luminescent titration results,the Stern ?Volmer equa?tion:I0/I=1+KsvcNBwas used to calculate the lumines?cence quenching constant,in whichI0andIare the luminescence intensities before and after the addition of NB,Ksvis the quenching constant(L·mol-1),andcNBis the concentration of NB (mmol·L-1),respective?ly[31?32].At low concentrations,the Stern?Volmer curves displayed an almost linear relationship,and the linear equation wasI0/I=0.851 58+148.684 9cNB.TheKsvfor NB was calculated to be 1.49×105L·mol-1(Fig.12).The Stern?Volmer curve deviated from the linear corre?lation when the concentration increased,demonstrating the simultaneous involvement of both the static and dynamic quenching process.Further detailed analysis denoted that the LOD(limit of detection)was 0.197 μmol·L-1according to 3σ/k(σandkrepresent the standard error and slope,respectively)[33?34].

    Fig.10 Fluorescent spectra(left)and fluorescent intensities(right)of CP 1 dispersed in aqueous solutions of different nitroaromatic analytes

    Fig.11 Fluorescence response of CP 1 upon incremental addition of 1 mmol·L-1NB in aqueous solutions

    Fig.12 Stern?Volmer plot of I0/I vs cNBin the aqueous dispersion of CP 1(left);The area enlarged view for linearity of the plot at lower concentrations of NB(right)

    In the fluorescence titration,emission profiles of CP 2 showed selective and significant quenching for 2,4,6?TNP,and relatively low quenching was observed for other nitroaromatic analytes(Fig.13).The best quenching efficiency observed for 2,4,6?TNP was cal?culated to be 99.76% upon incremental addition of 0?80 μL 1 mmol·L-12,4,6?TNP solution(Fig.14).When the concentration of 2,4,6?TNP is as low as 0.074 mmol·L-1,the luminescent intensity of 2 is completely quenched by 2,4,6?TNP.As shown in Fig.15,good lin?earity of the plot at low concentrations of 2,4,6?TNP was observed which fitted well with the Stern?Volmer equation(I0/I=0.536 92+468.319 7cTNP).High fluores?cence quenching efficiency was proved by the high Stern ?Volmer quenching constant(Ksv=4.68×105L·mol-1),and further detailed analysis denoted that the LOD was 0.062 6 μmol·L-1.However,a nonlinear curvature at higher concentrations of 2,4,6?TNP was obtained.The nonlinear nature of the Stern?Volmer plot of 2,4,6?TNP can be attributed to self?absorption,a combination of static and dynamic quenching,or an en?ergy?transfer process between 2,4,6?TNP and 2[35?36].

    Fig.13 Fluorescent spectra(left)and fluorescent intensities(right)of CP 2 dispersed in aqueous solutions of different nitroaromatic analytes

    Fig.14 Fluorescence response of CP 2 upon incremental addition of 1mmol·L-12,4,6?TNP in aqueous solutions

    Fig.15 Stern?Volmer plot of I0/I vs c2,4,6?TNPin the aqueous dispersion of CP 2(left);The area enlarged view for linearity of the plot at lower concentrations of 2,4,6?TNP(right)

    2.6 Detection of metal ions

    To examine the potential of CP 1 for sensing metal ions,changes in the fluorescence intensity of 1 dis?persed in water on the addition of different metal ions,including Na+,K+,Mg2+,Ca2+,Ba2+,Al3+,Fe3+,Co2+,Ni2+,Cu2+,Zn2+,Cd2+,Ag+,Pb2+,and Hg2+in aqueous solutions,were investigated(Fig.16).Among these met?al ions aqueous solutions,high fluorescence quenching of the luminescent intensity of 1 was observed in Fe3+aqueous solution.To further study how the presence of non?Fe3+metal cations affected the recognition of 1 to Fe3+ions,all previously tested metal cations were ana?lyzed again by adding to the solution of 1 containing Fe3+.The fluorescence spectra produced by these new mixtures are shown in Fig.17.From these results,it can be seen that the emission intensity of 1 and Fe3+was subject to fluctuation when in the presence of the testing cations.However,these fluctuations were deemed mostly minor concerning relative percent change,therefore,the conclusion shows that 1 still retains significant selectivity for the recognition of Fe3+ions even in the matrix containing all cations tested[37].The luminescent intensities gradually decreased with the increasing concentration of Fe3+,and the best quenching efficiency observed for Fe3+was calculated to be 97.92% upon incremental addition of 0 ?160 μL 1 mmol·L-1Fe3+solution(Fig.18).As shown in Fig.19,good linearity of the plot at low concentrations of Fe3+was observed which fitted well with the Stern?Volmer equation(I0/I=1.063 76+82.839 7cFe3+).High fluores?cence quenching efficiency was proved by the high Stern ?Volmer quenching constant(Ksv=8.28×104L·mol-1),and further detailed analysis denoted that the LOD was 0.354 μmol·L-1.However,a nonlinear curva?ture at higher concentrations of Fe3+was obtained,revealing that both dynamic and static quenching take place.

    Fig.16 Fluorescent spectra(left)and fluorescent intensities(right)of CP 1 dispersed in aqueous solutions with various metal cations

    Fig.17 Fluorescent spectra(left)and fluorescent intensities(right)of CP 1 and Fe3+in the presence of other cations

    Fig.18 Fluorescence response of CP 1 upon incremental addition of 1 mmol·L-1Fe3+in aqueous solutions

    Fig.19 Stern?Volmer plot of I0/I vscFe3+in the aqueous dispersion of CP 1(left);The area enlarged view for linearity of the plot at lower concentrations of Fe3+(right)

    2.7 Detection of anions

    To examine the potential of CP 2 for sensing anions,changes in the fluorescence intensity of 2 dis?persed in water on the addition of different anions,including I-,Br-,Cl-,IO3-,ClO3-,NO3-,CO32-,SO42-,CrO42-,Cr2O72-,and PO43-in aqueous solutions,were investigated(Fig.20).Among these anions,high fluores?cence quenching of the luminescent intensity of 2 was observed in CrO42-aqueous solution.To further study how the presence of non?CrO42-anions affects the rec?ognition of 2 to CrO42-anions,all previously tested anions were analyzed again by adding to the CP 2 solu?tion containing CrO42-.The fluorescence spectra pro?duced by these new mixtures are shown in Fig.21.From these results,it can be seen that the emission intensity of 2 and CrO42-was subject to fluctuation when in the presence of the testing anions.However,these fluctuations were deemed mostly minor with respect to relative percent change,so the conclusion shows that 2 still retains significant selectivity for the recognition of CrO42-anions even in the matrix contain?ing all anions tested.The luminescent intensities grad?ually decreased with the increasing concentration of CrO42-.The best quenching efficiency observed for CrO42-was calculated to be 97.45% upon incremental addition(0 ?200 μL)of 1 mmol·L-1CrO42-solution(Fig.22).As shown in Fig.23,good linearity of the plot at low concentrations of CrO42-was observed which fitted well with the Stern?Volmer equationHigh fluorescence quench?ing efficiency was proved by the high Stern?Volmer quenching constant(Ksv=7.01×104L·mol-1).Further detailed analysis denoted that the LOD was 0.418 μmol·L-1.A nonlinear curvature at higher concentra?tions of CrO42-was obtained,revealing both dynamic and static quenching take place.

    Fig.20 Fluorescent spectra(left)and fluorescent intensities(right)of CP 2 dispersed in aqueous solutions of different anions

    Fig.21 Fluorescent spectra(left)and fluorescent intensities(right)of CP 2 and CrO42-in the presence of other anions

    Fig.22 Fluorescence response of CP 2 upon incremental addition of 1 mmol·L-1CrO42-in aqueous solutions

    Fig.23 Stern?Volmer plot of in the aqueous dispersion of CP 2(left);The area enlarged view for linearity of the plot at lower concentrations of CrO42-(right)

    3 Conclusions

    In summary,two cadmium?based coordination polymers have been synthesized and characterized by the self?assembly of Cdsalts with H3tatb and imidaz?olyl ligands.CPs 1 and 2 display the 2D layer struc?ture,further these layers are joined by O—H…O hydrogen bonding to generate the interpenetrating 3D architecture.The fluorescent properties of CPs 1 and 2 have been investigated.CP 1 was highly selective and sensitive towards NB and Fe3+through different detec?tion mechanisms,while CP 2 was highly selective and sensitive towards 2,4,6?TNP and CrO42-through differ?ent detection mechanisms.This work demonstrates the potential application of fluorescent CPs 1 and 2 as multi?responsive probes for the detection of nitroaro?matic compounds and anions or cations in the aqueous phase.

    Supporting information is available at http://www.wjhxxb.cn

    猜你喜歡
    延安大學三腳架咪唑
    延安大學王必成教授書寫
    唐都學刊(2023年2期)2023-03-24 08:21:46
    《延安大學學報(社會科學版)》征稿啟事
    益氣養(yǎng)陰方聯(lián)合甲巰咪唑片治療甲狀腺功能亢進癥的臨床觀察
    Research on the Application of English Reading Strategies for Junior High School Students
    無 題
    文苑(2016年17期)2016-11-26 12:40:05
    巧放三腳架
    左咪唑與丙硫苯咪唑驅(qū)豬體內(nèi)寄生蟲的效果對比試驗
    普萘洛爾與甲巰咪唑?qū)卓哼M癥的臨床治療效果觀察
    美國麥格普公司新型M—LOK相機三腳架適配器
    輕兵器(2015年20期)2015-09-10 07:22:44
    右美托咪定聯(lián)合咪唑安定鎮(zhèn)靜在第三磨牙拔除術中的應用
    国产精品永久免费网站| 日韩欧美三级三区| 一个人免费在线观看电影| 国产人妻一区二区三区在| 又黄又爽又刺激的免费视频.| h日本视频在线播放| 97人妻精品一区二区三区麻豆| 欧美一区二区国产精品久久精品| 别揉我奶头~嗯~啊~动态视频| 久久久久久久亚洲中文字幕| 精品不卡国产一区二区三区| 免费av毛片视频| 欧美zozozo另类| 91精品国产九色| 亚洲性久久影院| 神马国产精品三级电影在线观看| 噜噜噜噜噜久久久久久91| 成人av在线播放网站| 天堂网av新在线| 亚洲电影在线观看av| 91麻豆精品激情在线观看国产| 91久久精品国产一区二区成人| 久久草成人影院| 日日摸夜夜添夜夜添av毛片| 日韩中字成人| 欧美xxxx黑人xx丫x性爽| 亚洲精品乱码久久久v下载方式| 国产成人freesex在线 | 亚洲图色成人| 亚洲人成网站在线播放欧美日韩| 精品午夜福利在线看| 国产亚洲av嫩草精品影院| 国产在视频线在精品| 波野结衣二区三区在线| 久久精品国产清高在天天线| 99在线视频只有这里精品首页| 十八禁国产超污无遮挡网站| 日本免费一区二区三区高清不卡| 俄罗斯特黄特色一大片| 99热这里只有精品一区| 国产白丝娇喘喷水9色精品| 精品久久久久久久久亚洲| 日韩成人av中文字幕在线观看 | 日韩制服骚丝袜av| 99久久精品国产国产毛片| 丝袜喷水一区| 大型黄色视频在线免费观看| 日本色播在线视频| 亚洲国产精品成人综合色| 99热这里只有精品一区| 日本黄色视频三级网站网址| 97在线视频观看| 熟女人妻精品中文字幕| 特级一级黄色大片| www.色视频.com| 美女内射精品一级片tv| 尤物成人国产欧美一区二区三区| 亚洲成人久久性| 亚洲熟妇熟女久久| aaaaa片日本免费| 亚洲国产日韩欧美精品在线观看| 亚洲国产精品sss在线观看| 日本爱情动作片www.在线观看 | 亚洲综合色惰| 简卡轻食公司| 国产精品不卡视频一区二区| 亚洲乱码一区二区免费版| av在线天堂中文字幕| 99热全是精品| 久久久久久久久久成人| 色综合亚洲欧美另类图片| videossex国产| 国产 一区 欧美 日韩| 精品一区二区三区视频在线观看免费| 久久精品综合一区二区三区| 国产69精品久久久久777片| 熟妇人妻久久中文字幕3abv| 久久99热这里只有精品18| 性色avwww在线观看| av在线老鸭窝| 91久久精品电影网| 国产黄色小视频在线观看| 特大巨黑吊av在线直播| 小说图片视频综合网站| 97在线视频观看| 在线看三级毛片| 国产精品99久久久久久久久| 日韩欧美一区二区三区在线观看| 可以在线观看的亚洲视频| 日韩欧美在线乱码| 少妇被粗大猛烈的视频| 久久久色成人| 久久久久久久久久成人| 99久久中文字幕三级久久日本| 日本欧美国产在线视频| 搡老熟女国产l中国老女人| 欧美日韩在线观看h| 成人午夜高清在线视频| 欧美一级a爱片免费观看看| 久久久久久九九精品二区国产| 综合色av麻豆| 亚洲图色成人| 久久精品人妻少妇| 欧美zozozo另类| 欧美国产日韩亚洲一区| 在线观看av片永久免费下载| 丝袜美腿在线中文| 午夜精品一区二区三区免费看| 国产爱豆传媒在线观看| 69av精品久久久久久| 精品人妻一区二区三区麻豆 | 男女视频在线观看网站免费| 淫妇啪啪啪对白视频| av在线蜜桃| 国国产精品蜜臀av免费| 欧美另类亚洲清纯唯美| 亚洲第一区二区三区不卡| 亚洲自偷自拍三级| 成人无遮挡网站| 亚洲av电影不卡..在线观看| 99热精品在线国产| 一个人看的www免费观看视频| 婷婷精品国产亚洲av在线| 亚洲自偷自拍三级| 校园人妻丝袜中文字幕| 别揉我奶头~嗯~啊~动态视频| 亚洲不卡免费看| 色综合色国产| 国产伦精品一区二区三区视频9| 一级毛片久久久久久久久女| 久99久视频精品免费| 午夜久久久久精精品| 看免费成人av毛片| 欧美+亚洲+日韩+国产| 亚州av有码| 少妇猛男粗大的猛烈进出视频 | 国产私拍福利视频在线观看| av在线天堂中文字幕| 国产精品一二三区在线看| 亚洲av成人精品一区久久| 国产毛片a区久久久久| 国产熟女欧美一区二区| 精品久久久久久久久亚洲| 欧美日韩乱码在线| 欧美色欧美亚洲另类二区| 青春草视频在线免费观看| 中文亚洲av片在线观看爽| 久久这里只有精品中国| 观看美女的网站| 非洲黑人性xxxx精品又粗又长| a级一级毛片免费在线观看| 国内精品美女久久久久久| 亚洲综合色惰| 美女内射精品一级片tv| 晚上一个人看的免费电影| 特级一级黄色大片| 男人舔女人下体高潮全视频| 51国产日韩欧美| 尾随美女入室| 国产亚洲91精品色在线| 精品午夜福利视频在线观看一区| 国产精品久久久久久久电影| 国产精品女同一区二区软件| 精品一区二区三区av网在线观看| 99国产极品粉嫩在线观看| 卡戴珊不雅视频在线播放| 久久久精品大字幕| 男女下面进入的视频免费午夜| 亚洲最大成人手机在线| 国产精品一区二区三区四区免费观看 | 春色校园在线视频观看| 免费看光身美女| 日韩欧美三级三区| 晚上一个人看的免费电影| 亚洲电影在线观看av| 乱人视频在线观看| 久久久a久久爽久久v久久| 人人妻,人人澡人人爽秒播| 欧美在线一区亚洲| 在线国产一区二区在线| 亚洲av美国av| 成人永久免费在线观看视频| 日韩三级伦理在线观看| 蜜桃亚洲精品一区二区三区| ponron亚洲| 欧美激情在线99| 啦啦啦韩国在线观看视频| 午夜福利高清视频| 午夜a级毛片| 免费av观看视频| 亚洲丝袜综合中文字幕| 99热这里只有精品一区| 大又大粗又爽又黄少妇毛片口| 午夜久久久久精精品| 国产伦一二天堂av在线观看| 蜜臀久久99精品久久宅男| 噜噜噜噜噜久久久久久91| 午夜激情福利司机影院| 看片在线看免费视频| 久久热精品热| 欧美性猛交黑人性爽| 狂野欧美白嫩少妇大欣赏| 看黄色毛片网站| 日韩精品青青久久久久久| or卡值多少钱| 成年免费大片在线观看| 欧美绝顶高潮抽搐喷水| 亚洲乱码一区二区免费版| 最后的刺客免费高清国语| 欧美日本视频| 精品久久国产蜜桃| 又黄又爽又刺激的免费视频.| 村上凉子中文字幕在线| 日韩 亚洲 欧美在线| 国产黄片美女视频| 欧美日韩乱码在线| 看黄色毛片网站| www.色视频.com| 国产日本99.免费观看| 九九在线视频观看精品| 久久综合国产亚洲精品| 真人做人爱边吃奶动态| 亚洲国产欧洲综合997久久,| 亚洲国产精品国产精品| 精华霜和精华液先用哪个| 国产真实乱freesex| 少妇高潮的动态图| 少妇裸体淫交视频免费看高清| 国产在线精品亚洲第一网站| 精品国产三级普通话版| 成人鲁丝片一二三区免费| 亚洲第一区二区三区不卡| 69人妻影院| 美女被艹到高潮喷水动态| 久久精品国产亚洲av香蕉五月| 久久人人爽人人片av| 小说图片视频综合网站| 丝袜美腿在线中文| 亚洲人成网站在线观看播放| 亚洲av成人av| 国产在视频线在精品| 色在线成人网| 麻豆国产av国片精品| 亚洲av五月六月丁香网| 欧美性感艳星| 真人做人爱边吃奶动态| 欧美精品国产亚洲| 欧美高清性xxxxhd video| 久久精品人妻少妇| 一本久久中文字幕| .国产精品久久| 舔av片在线| 亚洲人成网站高清观看| 99热网站在线观看| 极品教师在线视频| 亚洲自拍偷在线| 久久久国产成人免费| 黄色日韩在线| 激情 狠狠 欧美| 99久国产av精品| 亚洲欧美成人精品一区二区| 少妇熟女欧美另类| 亚洲性久久影院| 神马国产精品三级电影在线观看| 久久综合国产亚洲精品| 免费在线观看成人毛片| 成人永久免费在线观看视频| 久久精品国产自在天天线| 精品久久久久久久末码| 精品一区二区三区av网在线观看| 97碰自拍视频| 日本爱情动作片www.在线观看 | 日韩一本色道免费dvd| 欧美性感艳星| 中文字幕免费在线视频6| 国产精品久久久久久久电影| 亚洲熟妇熟女久久| 夜夜夜夜夜久久久久| 亚洲精品一卡2卡三卡4卡5卡| 久久人人爽人人爽人人片va| 国产日本99.免费观看| 网址你懂的国产日韩在线| 色吧在线观看| 内地一区二区视频在线| 男人舔女人下体高潮全视频| 女的被弄到高潮叫床怎么办| 蜜臀久久99精品久久宅男| 麻豆国产av国片精品| 小说图片视频综合网站| 一区二区三区免费毛片| 免费av不卡在线播放| 亚洲av第一区精品v没综合| 午夜日韩欧美国产| 91久久精品国产一区二区三区| 国产又黄又爽又无遮挡在线| 国产私拍福利视频在线观看| 日韩欧美国产在线观看| 日日撸夜夜添| 老师上课跳d突然被开到最大视频| 精华霜和精华液先用哪个| 麻豆乱淫一区二区| 亚洲精品在线观看二区| 免费在线观看成人毛片| 99国产极品粉嫩在线观看| 麻豆成人午夜福利视频| 国产免费一级a男人的天堂| 99riav亚洲国产免费| 色综合色国产| 99久久无色码亚洲精品果冻| 看十八女毛片水多多多| 夜夜爽天天搞| 波野结衣二区三区在线| 嫩草影院入口| 在线观看66精品国产| 日日摸夜夜添夜夜爱| 欧美+日韩+精品| 狂野欧美激情性xxxx在线观看| 免费人成在线观看视频色| 黑人高潮一二区| 级片在线观看| 丰满人妻一区二区三区视频av| 日本三级黄在线观看| 日韩中字成人| 成年av动漫网址| av国产免费在线观看| 亚洲一区高清亚洲精品| 国产 一区精品| 久久99热6这里只有精品| 国产三级中文精品| aaaaa片日本免费| 久久精品人妻少妇| 久久人人爽人人片av| 日韩一本色道免费dvd| 麻豆成人午夜福利视频| 22中文网久久字幕| 国产成人aa在线观看| 国产一级毛片七仙女欲春2| 插阴视频在线观看视频| 日本黄色视频三级网站网址| 亚洲av免费高清在线观看| 久久精品91蜜桃| 一本久久中文字幕| 日本黄大片高清| 久久九九热精品免费| 国产精品久久久久久久电影| 国产高潮美女av| 日韩高清综合在线| 欧美日韩综合久久久久久| 亚洲婷婷狠狠爱综合网| 欧美最新免费一区二区三区| 午夜亚洲福利在线播放| 成人一区二区视频在线观看| 国产一区亚洲一区在线观看| 亚洲av成人精品一区久久| 最好的美女福利视频网| 国产人妻一区二区三区在| 国产女主播在线喷水免费视频网站 | 亚洲,欧美,日韩| 噜噜噜噜噜久久久久久91| 久久久久久久久中文| 欧美性猛交黑人性爽| 亚洲人成网站在线观看播放| av在线天堂中文字幕| 日韩成人伦理影院| 日韩成人av中文字幕在线观看 | 亚洲av第一区精品v没综合| 啦啦啦观看免费观看视频高清| 我的老师免费观看完整版| 变态另类成人亚洲欧美熟女| 亚洲国产欧美人成| 国产高清三级在线| 国产午夜福利久久久久久| 国产精品三级大全| 国产美女午夜福利| 国产探花极品一区二区| 国产亚洲91精品色在线| 国产v大片淫在线免费观看| 欧美一区二区精品小视频在线| 天天躁日日操中文字幕| 在线播放无遮挡| 十八禁网站免费在线| 中文字幕免费在线视频6| 午夜福利高清视频| 高清毛片免费观看视频网站| 免费看光身美女| or卡值多少钱| 黄色欧美视频在线观看| 热99在线观看视频| 久久久久性生活片| av.在线天堂| 国产高清有码在线观看视频| av专区在线播放| 91麻豆精品激情在线观看国产| 干丝袜人妻中文字幕| 精品一区二区三区人妻视频| 色播亚洲综合网| 亚洲成av人片在线播放无| 深夜精品福利| 精品99又大又爽又粗少妇毛片| 亚洲av中文av极速乱| 国产亚洲av嫩草精品影院| 国产黄片美女视频| 18禁在线播放成人免费| 国产av麻豆久久久久久久| 亚洲一级一片aⅴ在线观看| 国产乱人偷精品视频| 久久婷婷人人爽人人干人人爱| 内地一区二区视频在线| av国产免费在线观看| aaaaa片日本免费| 我的老师免费观看完整版| 简卡轻食公司| 国产精品福利在线免费观看| 午夜精品国产一区二区电影 | 精华霜和精华液先用哪个| 免费黄网站久久成人精品| 国产精品av视频在线免费观看| 亚洲国产精品国产精品| 国产亚洲91精品色在线| 亚洲欧美成人精品一区二区| 亚洲欧美日韩卡通动漫| 国产精品久久久久久久电影| 亚洲成人久久爱视频| 亚洲精品一区av在线观看| 蜜桃亚洲精品一区二区三区| 精品一区二区免费观看| 99热精品在线国产| 久久综合国产亚洲精品| 国产精品1区2区在线观看.| 最近手机中文字幕大全| 精品一区二区三区人妻视频| 久久久久性生活片| 日韩精品有码人妻一区| 十八禁国产超污无遮挡网站| a级毛片免费高清观看在线播放| 色5月婷婷丁香| av视频在线观看入口| 在线a可以看的网站| 免费观看的影片在线观看| 寂寞人妻少妇视频99o| 国产麻豆成人av免费视频| 无遮挡黄片免费观看| 精品久久久久久成人av| 国产精品一区二区三区四区久久| 午夜日韩欧美国产| 免费人成视频x8x8入口观看| 不卡一级毛片| 麻豆精品久久久久久蜜桃| eeuss影院久久| 又爽又黄a免费视频| 久久人人爽人人爽人人片va| 尾随美女入室| 久久天躁狠狠躁夜夜2o2o| 国产精品一区二区性色av| 韩国av在线不卡| 黄片wwwwww| 观看免费一级毛片| 狂野欧美激情性xxxx在线观看| 天天一区二区日本电影三级| 午夜免费激情av| 中文字幕av成人在线电影| 国产精品伦人一区二区| 国产精品免费一区二区三区在线| 免费人成在线观看视频色| 欧美另类亚洲清纯唯美| 久久中文看片网| 亚洲av中文字字幕乱码综合| 岛国在线免费视频观看| av天堂中文字幕网| 亚洲高清免费不卡视频| 成年版毛片免费区| 我要搜黄色片| 免费看光身美女| 国产成人a∨麻豆精品| 在线a可以看的网站| 在线观看午夜福利视频| 免费观看在线日韩| 久久国内精品自在自线图片| 黄色配什么色好看| 国产精品女同一区二区软件| 亚洲欧美日韩高清在线视频| 国产精品,欧美在线| 校园春色视频在线观看| 国产av在哪里看| 亚洲精品国产av成人精品 | 欧美一区二区国产精品久久精品| 99精品在免费线老司机午夜| 亚洲av免费在线观看| 日韩欧美国产在线观看| 亚洲欧美成人综合另类久久久 | 中文字幕熟女人妻在线| 天堂网av新在线| 久久中文看片网| 日韩欧美国产在线观看| 欧美bdsm另类| 色视频www国产| av在线观看视频网站免费| 国产麻豆成人av免费视频| 中文字幕av成人在线电影| 美女 人体艺术 gogo| 国产三级中文精品| 精品无人区乱码1区二区| av天堂在线播放| 成人亚洲精品av一区二区| 国产高清视频在线观看网站| 搞女人的毛片| 毛片女人毛片| 精品人妻视频免费看| 最近最新中文字幕大全电影3| a级毛片a级免费在线| 三级经典国产精品| 日韩 亚洲 欧美在线| 一a级毛片在线观看| 免费观看精品视频网站| 两个人视频免费观看高清| 身体一侧抽搐| 精品午夜福利视频在线观看一区| 国产亚洲91精品色在线| 亚洲欧美日韩东京热| 男人和女人高潮做爰伦理| 亚洲欧美日韩无卡精品| 久久久久久久亚洲中文字幕| 我要搜黄色片| 亚洲中文字幕一区二区三区有码在线看| 夜夜夜夜夜久久久久| 国产私拍福利视频在线观看| 尾随美女入室| 春色校园在线视频观看| 亚洲欧美日韩无卡精品| 午夜精品一区二区三区免费看| 一个人免费在线观看电影| 中文字幕av在线有码专区| 亚洲五月天丁香| 97碰自拍视频| 精品人妻一区二区三区麻豆 | 国产探花在线观看一区二区| 久久6这里有精品| 两个人的视频大全免费| 欧美另类亚洲清纯唯美| 久久久久久久午夜电影| 亚洲专区国产一区二区| 久久久久性生活片| 精品乱码久久久久久99久播| 国产免费男女视频| 国产欧美日韩一区二区精品| 搡老岳熟女国产| 精品国内亚洲2022精品成人| 免费人成视频x8x8入口观看| 日韩av不卡免费在线播放| 亚洲图色成人| 听说在线观看完整版免费高清| 国产亚洲精品久久久久久毛片| 美女高潮的动态| 国产成年人精品一区二区| 欧美绝顶高潮抽搐喷水| 最近在线观看免费完整版| 国产不卡一卡二| 真人做人爱边吃奶动态| 一边摸一边抽搐一进一小说| 日本与韩国留学比较| 男女那种视频在线观看| 91在线精品国自产拍蜜月| 一进一出抽搐gif免费好疼| 九九爱精品视频在线观看| 亚洲国产欧美人成| 日本成人三级电影网站| 欧美3d第一页| 亚洲熟妇熟女久久| 亚洲精品一卡2卡三卡4卡5卡| 久久久久性生活片| 日韩三级伦理在线观看| 黄色配什么色好看| 最近的中文字幕免费完整| 亚洲av.av天堂| 国产精品99久久久久久久久| 麻豆成人午夜福利视频| 国产伦精品一区二区三区视频9| 亚洲精华国产精华液的使用体验 | 成人综合一区亚洲| 亚洲aⅴ乱码一区二区在线播放| 在线观看av片永久免费下载| 久久久久精品国产欧美久久久| 免费看美女性在线毛片视频| 亚洲成人久久性| 欧美国产日韩亚洲一区| 偷拍熟女少妇极品色| 国产精品一区二区性色av| 九九爱精品视频在线观看| 我要看日韩黄色一级片| 不卡一级毛片| 亚洲不卡免费看| 偷拍熟女少妇极品色| 12—13女人毛片做爰片一| 直男gayav资源| 在线观看美女被高潮喷水网站| 亚洲成人久久性| 久久精品国产鲁丝片午夜精品| 一级毛片久久久久久久久女| 国产高清视频在线播放一区| 尤物成人国产欧美一区二区三区| 天美传媒精品一区二区| 日韩人妻高清精品专区| 最近最新中文字幕大全电影3| av在线播放精品| 久久欧美精品欧美久久欧美| 国产成人a区在线观看| 夜夜爽天天搞| 久久人人精品亚洲av| 人妻丰满熟妇av一区二区三区| 夜夜爽天天搞| 色在线成人网| 国产激情偷乱视频一区二区| 午夜老司机福利剧场| 日韩中字成人| 欧美日本视频|