• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Lu摻雜AlN的電子結(jié)構(gòu)和光學(xué)性質(zhì)的第一性原理研究

    2023-02-03 10:23:16張瑞亮盧勝尚肖清泉
    關(guān)鍵詞:第一性光電子貴州大學(xué)

    張瑞亮 盧勝尚 肖清泉 謝 泉

    (貴州大學(xué)大數(shù)據(jù)與信息工程學(xué)院新型光電子材料與技術(shù)研究所,貴陽 550025)

    0 Introduction

    With the rapid development of electronic informa?tion technology,the performance requirements of semi?conductor materials are getting higher[1].As a classic Ⅲ?Ⅴ compound semiconductor material,AlN has attracted much attention because of its advantages,such as a wide direct bandgap[2],high electron mobility,high thermal conductivity[3],low thermal expansion coefficient[4],good chemical stability and mechanical strength,and good resistance to high temperature and corrosion.Therefore,AlN can be used as substrate material for ultraviolet LEDs,ultraviolet lasers,detec?tors,and other devices.AlN has great market applica?tion prospects in various optoelectronics devices,because of its good optical and mechanical properties[5].

    Rare earth elements have been widely used in electronics,petrochemical,and other fields.Due to the low melting points of rare earth metals,with a unique electron shell of rare?earth metal atoms,the doping of rare?earth elements can effectively adjust the photo?electric properties of AlN.Doping has been used to change the conductive type of semiconductors and elec?tronic structure,produce new impurity energy levels and different types of carriers,and then change the optical and electrical properties of the material.Sc[6],La,Er[7],Mg[8],Cr[9],Tm[10],Tb,Ce,or Eu[11]doped AlN has been investigated by experimental and theoretical research.Generally,the bandgap of AlN decreases with the increase of rare?earth element doping concen?trations,and the absorption in the visible light region is enhanced,thereby expanding the absorption region of AlN.

    Lu is the hardest and densest metal element in rare earth elements,it can be used as a catalyst for chemical synthesis and the preparation of scintillation crystals.Li et al.[12]discussed the effect of Lu3+addition on the microstructure and optical properties of phos?phor through experiments,the results showed that the Lu?doped samples had higher luminescence intensity.This suggests that Lu doping could improve the optical properties of the crystal.To our knowledge,few theoret?ical data have been reported on the electronic structure and optical properties of Lu?doped AlN.Therefore,the?oretical research about the electronic structure and optical properties of Lu?doped AlN (denoted as Al1-xLuxN,wherexis the atomic fraction of Lu)is nec?essary.In this paper,the effects of Lu doping concen?trations on the bandgap,density of states,and optical properties of AlN are studied by first?principles,which provide a theoretical basis for the preparation of vari?ous AlN?related electronic devices.

    1 Computational method and details

    1.1 Theoretical models

    In this work,AlN is a hexagonal fiber zinc ore structure,the spatial point group isP63mc(No.186),and the lattice constants area=b=0.311 2 nm,c=0.497 9 nm.

    A 2×2×2 AlN supercell consisting of 16 Al atoms and 16 N atoms was constructed.The doping process was to substitute Al atoms with Lu atoms,and the doping concentrations were 0.062 5,0.125,and 0.187 5,respectively.Fig.1 shows the crystal structures of Al1-xLuxN(x=0,0.062 5,0.125,0.187 5)supercells with different Lu doping concentrations after geometry optimization,In Fig.1a,x=0,so it is the actual super?cell of intrinsic AlN.The number of Al or Lu indicates the positions of atoms in the supercell.For example,Al5 represents the position of the fifth Al atom in the supercell,and Lu10 means that a Lu atom occupied the tenth position.When the doping concentration is 0.125,the expression(2,6)means the occupancy of the second and sixth places by Lu atoms.Therefore,when the concentration of Lu doping is 0.125 and 0.187 5,Fig.2 shows the energy after optimization of different Lu doping positions.By comparing the energy of the crystal structure when the doped atoms are in dif?ferent positions,the preferred position of the doped atoms in the crystal structure can be determined.The crystal structure is more stable if its energy is lower.Therefore,the calculations in this work were based on the two structures shown in Fig.1.

    Fig.1 Supercell models of Al1-xLuxN:(a)x=0,(b)x=0.062 5,(c)x=0.125,(d)x=0.187 5

    Fig.2 Lowest energy plots of different doped positions of Al1-xLuxN:(a)x=0.125,(b)x=0.187 5

    1.2 Calculation details

    The calculations used for this work were carried out in the Cambridge Serial Total Energy Package(CASTAT)module of Materials Studio (Accelrys Company,2019 Version)software package,a quantum mechanical program based on density functional theory that calculates from scratch.The BFGS(Broyden?Fletcher?Goldfarb?Shanno)algorithm was used to geo?metrically optimize the crystal geometry model,and then the electronic structure and optical properties of the geometrically optimized structure were calculated.The generalized gradient approximation (GGA)of Perdew?Burke?Ernzerhof(PBE)was selected to deal with the exchange?correlation potential.The base group used by the atom was the plane wave base group,and the method of plane wave ultrasoft pseudopotential was used to deal with the interaction between ions and electrons in the paper.The plane?wave cutoff energy was optimized to be 500 eV,and 8×8×4 K?point grids were selected to sample the Brillouin zone.The calcu?lation parameters were set as follows:the energy con?vergence accuracy was 5×10-7eV per atom,the maxi?mum interaction force was 0.1 GPa,the convergence accuracy of interatomic forces was 0.1 eV·nm-1,the maximum interaction force was 0.05 GPa,and the max?imum displacement was 2×10-4nm.The calculation of energy was performed in the inverted space.The valence electrons involved in the calculations were N:2s22p3,Al:3s23p1,and Lu:4f145s25p65d16s2.

    2 Results and discussion

    2.1 Electronic structure

    The supercell volume and bandgap of Al1-xLuxN with different Lu doping concentrations after geometry optimization were shown in Table 1.Obviously,with the increase of Lu doping concentration,the supercell volume increases,and the bandgap decreases.Since the atomic radius of Lu is larger than that of Al,as Al atoms are substituted by Lu atoms,the supercell volume of AlN increases.Although a larger supercell volume should be obtained with a higher doping concentration,it is difficult to obtain a doping concen?tration higher than 0.187 5 due to the limitation of Lu solid solubility.

    Table 1 Supercell lattice constant and bandgap of Al1-xLuxN

    The top of the valence band and the bottom of the conduction band of intrinsic AlN are located at the same point in the Brillouin zone,as shown in Fig.3,which indicates the intrinsic AlN is a direct bandgap semiconductor,the bandgap value is 3.890 eV,the results of this work do not differ significantly from those of Zou et al[13].The calculated bandgap of the intrinsic AlN is much smaller than the experimental value of 6.2 eV[14],which is consistent with other litera?ture due to the underestimation within GGA[15].The bandgap value calculated by the GGA method is much smaller than the experimental value,and the relevant theoretical calculations show that the bandgap error calculated by the GGA method has a positive correla?tion trend with the bandgap value of the material itself.As a result,the bandgap error for a material calculated using the GGA method will be very small when the band gap is zero.The bandgap error for a material calculated using the GGA method will also be very large when the bandgap is large.For Ⅲ?Ⅴ main group compound semiconductors,the discontinuity of the wave function at CBM and VBM is the main reason for the small bandgap calculated by the GGA method[16].This is a common problem in many articles[13,17?18],but it does not affect our qualitative analysis of AlN.

    Fig.3 Band structures of Al1-xLuxN:(a)x=0,(b)x=0.062 5,(c)x=0.125,(d)x=0.187 5

    The top of the valence band and the bottom of the conduction band of Al1-xLuxN (x≠0)are located at points F and G in the Brillouin zone,respectively,which indicates the Al1-xLuxN(x≠0)is an indirect band?gap semiconductor.As the doping concentration increases,the bottom of the conduction band moves downwards,the band gap width narrows,and the band curve of the doped system becomes denser.This is due to the incorporation of rare earth elements,which cause lattice distortion and introduce new impurity energy levels into the energy band.

    The bandgap is related to the electronic structure,so the electronic structure of Al1-xLuxN(x=0,0.062 5,0.125,0.187 5)was further investigated by calculating the electronic density of states(DOS)as shown in Fig.4.

    Fig.4 Electronic density of states(DOS)of Al1-xLuxN:(a)x=0,(b)x=0.062 5,(c)x=0.125,(d)x=0.187 5

    The total DOS(TDOS)spectrum shows three regions:the lower valence band(LVB)region at-15 to-11 eV,the upper valence band(UVB)region at-6 to 0 eV,and the conduction band(CB)region at 0 to 20 eV.For the intrinsic AlN,the TDOS is dominated by N2s,N2p,and Al3pstates.In the TDOS of Al1-xLuxN(x=0,0.062 5,0.125,0.187 5),LVB is mainly contrib?uted by N2sstates,the UVB is mainly contributed by N2pand Lu4fhybrid orbitals,and the CB is dominated by Al3s,Al3p,and Lu5dstates.In addition,an addition?al peak around-24 eV dominated by Lu5pis observed.With the increase of Lu doping concentration,the con?tributions of N2pstate orbital hybridization to UVB gradually decrease,while the contribution of Lu4fstate orbital hybridization to UVB increases.In the CB part,the bottom of the conduction band moves towards the lower energy.Therefore,the bandgap of AlN decreases with the increase of Lu doping concentration.

    2.2 Optical properties

    The optical properties of AlN are related to the transition of electrons between energy levels,and the probability and intensity of electronic transitions can be conducted by the study of the dielectric function.The dielectric function is expressed as[19]:

    where the imaginary part of the dielectric functionε2(ω)can be obtained by calculating the matrix ele?ments of the wave function in the unoccupied state,as shown below[20]:

    Where C and V are the conduction band and valence band,respectively;kandωare the reciprocal lattice vector and angular frequency,respectively;BZ is the first Brillouin zone;e·MCV(k)is the matrix element of momentum warp;EC(k)andEV(k)are the intrinsic ener?gy level of the conduction band and valence band,respectively.

    The real partε1(ω)can be derived from the imagi?nary partε2(ω)through the Kramers?Kronig relation:

    wherePis the value of principal integration.

    The real and imaginary parts of the dielectric function for Al1-xLuxN are shown in Fig.5.The real part is the static dielectric constant under the electrostatic field.As shown in Fig.5a,the static dielectric constantε1(0)are 4.50,4.86,5.17,and 5.46,respectively,when the energy value is zero andx=0.062 5,0.125,0.187 5.Theε1(0)increases with the increase of Lu doping concentration due to the increase of system energy and volume.

    Fig.5 Dielectric function of Al1-xLuxN:(a)real part,(b)imaginary part

    The imaginary part mainly reflects the optical absorption characteristics of the semiconductor.As shown in Fig.5b,the peaks of the imaginary part are all lower than the intrinsic AlN,but its peaks increase with the increase of Lu doping concentration,and whenx=0,0.062 5,0.125,and 0.187 5,the corresponding peaks are 8.28,7.79,7.93,and 7.95 eV,respectively.In addition,Lu doping makes the imaginary part of the dielectric function for AlN move towards the lower energy direction as a whole.This is mainly due to the incorporation of Lu impurity level,and Lu5d,N2p,and Al3pwork together at the top of the valence band,so the bandgap width of the system decreases with the increase of Lu doping concentration,and the electron transition is more prone to occur.Furthermore,the degree of the red shift is enhanced with the increase of Lu doping concentrations,which corresponds to the decrease in the bandgap of AlN.

    The optical properties such as reflectivityR(ω),absorption coefficientα(ω),energy?loss spectrumL(ω),and photoconductivity were calculated using relations given by earlier workers.Fig.6a shows the reflectivity of Al1-xLuxN(x=0,0.062 5,0.125,0.187 5).Al1-xLuxN shows high reflectivity in the ultraviolet region,and the strength of the reflection peak in the ultraviolet region decreases with the increase of Lu doping concentra?tions and shifts to the lower energy.

    Fig.6 Optical properties of Al1-xLuxN:(a)reflective index R(ω),(b)absorption coefficient α(ω)

    The absorption spectrum is the percentage of time?intensity decay of light waves propagating per unit dis?tance in a semiconductor medium.As shown in Fig.6b,the absorption coefficients of Al1-xLuxN(x=0,0.062 5,0.125,0.187 5)are all at 105cm-1level,indicating that they all have good absorption performance.In the deep ultraviolet region,the peak intensity decreases gradual?ly with the increase of Lu doping concentration.While in the visible and infrared regions,the absorption coef?ficients increase with the increase of Lu doping concen?tration.The illustration on the upper right shows that the absorption edges of AlN, Al0.9375Lu0.0625N,Al0.875Lu0.125N,Al0.8125Lu0.1875N are equal to 2.43,1.98,1.66,and 1.53 eV,respectively,which are consistent with the change of the bandgap.Compared with intrin?sic AlN,Al1-xLuxN(x≠0)has an extra absorption peak at 30 eV.Since the energy level of generated impuri?ties is in the bandgap,the absorption of visible light increases,and the absorption zone broadens.

    The energy loss when the electron passes through the uniform dielectric can be further deduced from the dielectric function.The energy ?lossL(ω)spectra of Al1-xLuxN(x=0,0.062 5,0.125,0.187 5)are shown in Fig.7,and its characteristic peak is related to plasma oscillation[21].The peak values are 17.68,8.94,5.01,and 2.87,respectively.The peaks of Al1-xLuxN(x≠0)are lower than that of intrinsic AlN,indicating that the emissivity of secondary electrons is extremely high after doping.In addition,the peak position exhibits a blue shift with the increase of doping concentration,indicating that Lu doping into AlN enhances the elec?tronic transition of the upper valence band.

    Fig.7 Energy?loss spectra of Al1-xLuxN

    The real and imaginary parts of the photoconduc?tivity of Al1-xLuxN(x=0,0.062 5,0.125,0.187 5)are shown in Fig.8.The real part is observed that photocon?ductivity increases sharply in the low?energy region with the increase of energy,which confirms that there are more free electron transitions in the conduction band.The imaginary part of the photoconductivity of Al1-xLuxN(x=0,0.062 5,0.125,0.187 5)is 0 at the initial position.Lu doping makes the imaginary part of the photoconductivity for AlN move toward the lower energy direction.The minimum value gradually becomes larger,while the maximum value gradually becomes smaller.After the energy is greater than 60 eV,the con?ductivity overlaps and is relatively stable.

    Fig.8 Photoconductivity of Al1-xLuxN:(a)real part,(b)imaginary part

    3 Conclusions

    Detailed first?principles investigations have been done on the electronic structure and optical properties of Al1-xLuxN(x=0,0.062 5,0.125,0.187 5)with differ?ent Lu doping concentrations.The results show that the conduction band moves down and the bandgap becomes narrower with the increase of Lu doping con?centration.Therefore,it is easier for electrons to transi?tion from the valence band to the conduction band,resulting in the redshift of reflectivity,and absorption coefficient.The static dielectric constant increases with the increase of Lu doping concentration,however,the peak intensities of reflectivity,absorption coeffi?cient,energy loss function,and photoconductivity decrease with the increase of Lu doping concentration.Lu doping enhances the absorption coefficient of AlN in the visible and infrared regions,which would make AlN a potential candidate in the photoelectrochemical application.

    Acknowledgments:The work was supported by the Foundation for Sci?tech Activities for the Returned Overseas Chinese Scholars of Guizhou Province,China(Grant No.[2018]09),the High?level Creative Talent Training Program of Guizhou Province,China(Grant No.[2015]4015),and the Construction Project of Intelligent Manufacturing Industry and Education Integration Innovation Platform and Graduate Joint Training Base of Guizhou University,China(Grant No.2020520000?83?01?324061).

    猜你喜歡
    第一性光電子貴州大學(xué)
    先進(jìn)微電子與光電子材料與器件專題引言
    貴州大學(xué) 喀斯特區(qū)耕地地力提升與培育團(tuán)隊(duì) 王小利 課題組
    AuBe5型新相NdMgNi4-xCox的第一性原理研究
    SO2和NO2在γ-Al2O3(110)表面吸附的第一性原理計(jì)算
    林木病理學(xué)實(shí)驗(yàn)課程教學(xué)改革探索——以貴州大學(xué)林學(xué)專業(yè)為例
    貴州大學(xué)學(xué)報(bào)(自然科學(xué)版)征稿簡(jiǎn)則
    W、Bi摻雜及(W、Bi)共摻銳鈦礦TiO2的第一性原理計(jì)算
    缺陷和硫摻雜黑磷的第一性原理計(jì)算
    Franck-Condon因子計(jì)算及甲醛光電子能譜的理論研究
    先進(jìn)顯示與光電子技術(shù)國家重點(diǎn)實(shí)驗(yàn)室
    液晶與顯示(2014年2期)2014-02-28 21:12:59
    我的老师免费观看完整版| 色网站视频免费| 建设人人有责人人尽责人人享有的| a级毛片在线看网站| 国产精品久久久久久精品古装| 自拍偷自拍亚洲精品老妇| 国产日韩欧美视频二区| 欧美亚洲 丝袜 人妻 在线| 精品国产国语对白av| 免费大片黄手机在线观看| 黄色怎么调成土黄色| 国产精品一区二区三区四区免费观看| 国产av国产精品国产| av天堂中文字幕网| 亚洲四区av| 一个人看视频在线观看www免费| 国产精品熟女久久久久浪| 又粗又硬又长又爽又黄的视频| 日韩人妻高清精品专区| 久久av网站| 自线自在国产av| 简卡轻食公司| 丰满乱子伦码专区| 99久久精品热视频| 深夜a级毛片| 黑丝袜美女国产一区| 国产午夜精品一二区理论片| 国产亚洲av片在线观看秒播厂| 久久精品久久久久久久性| 久久国内精品自在自线图片| 老司机影院成人| 精品少妇久久久久久888优播| 在线观看国产h片| 一级毛片久久久久久久久女| 亚洲怡红院男人天堂| 亚洲一区二区三区欧美精品| av天堂中文字幕网| av在线app专区| 麻豆乱淫一区二区| 大陆偷拍与自拍| 久久久国产精品麻豆| 国产成人精品福利久久| 久久久国产精品麻豆| 久久久久久久久久人人人人人人| 成人亚洲精品一区在线观看| 亚洲经典国产精华液单| 亚洲在久久综合| 欧美日本中文国产一区发布| 国产在线免费精品| 一个人看视频在线观看www免费| 欧美97在线视频| 国产日韩欧美亚洲二区| 亚洲成人一二三区av| 热99国产精品久久久久久7| 久久精品久久精品一区二区三区| 91久久精品国产一区二区三区| 十分钟在线观看高清视频www | 日韩熟女老妇一区二区性免费视频| 久久亚洲国产成人精品v| 丝瓜视频免费看黄片| 亚洲精品成人av观看孕妇| 高清不卡的av网站| 九九久久精品国产亚洲av麻豆| 这个男人来自地球电影免费观看 | videossex国产| videossex国产| 五月天丁香电影| 国产在视频线精品| 亚洲婷婷狠狠爱综合网| 五月玫瑰六月丁香| 亚洲一级一片aⅴ在线观看| 日韩中文字幕视频在线看片| 男女国产视频网站| av在线播放精品| 狂野欧美激情性xxxx在线观看| 亚州av有码| 久久久久精品久久久久真实原创| 免费人妻精品一区二区三区视频| 亚洲欧美精品自产自拍| 人妻制服诱惑在线中文字幕| 人妻 亚洲 视频| 国产免费又黄又爽又色| 中文字幕人妻熟人妻熟丝袜美| 丰满饥渴人妻一区二区三| 高清欧美精品videossex| 丰满迷人的少妇在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 最近的中文字幕免费完整| 99热6这里只有精品| 国产黄色视频一区二区在线观看| 亚洲欧美日韩另类电影网站| 久久精品久久久久久久性| 少妇熟女欧美另类| 精品人妻熟女av久视频| 在线免费观看不下载黄p国产| 热99国产精品久久久久久7| 好男人视频免费观看在线| 国产免费视频播放在线视频| 国国产精品蜜臀av免费| 国产成人精品婷婷| 亚洲内射少妇av| 国产一区亚洲一区在线观看| 各种免费的搞黄视频| 黑人高潮一二区| 亚洲欧洲国产日韩| 少妇丰满av| 九九久久精品国产亚洲av麻豆| 最近最新中文字幕免费大全7| 亚洲一级一片aⅴ在线观看| 国产男人的电影天堂91| 菩萨蛮人人尽说江南好唐韦庄| 国产精品不卡视频一区二区| 亚洲第一av免费看| 免费少妇av软件| av专区在线播放| av有码第一页| 在线天堂最新版资源| 三级经典国产精品| 一级,二级,三级黄色视频| 日日啪夜夜撸| av在线观看视频网站免费| 精华霜和精华液先用哪个| 国产伦精品一区二区三区视频9| 色吧在线观看| 观看美女的网站| 亚洲精品久久午夜乱码| 黑人猛操日本美女一级片| 有码 亚洲区| 十八禁网站网址无遮挡 | 伦精品一区二区三区| 午夜免费男女啪啪视频观看| 又黄又爽又刺激的免费视频.| 三上悠亚av全集在线观看 | 国产精品久久久久久久电影| 黄色配什么色好看| 在线播放无遮挡| 久久婷婷青草| 久久精品熟女亚洲av麻豆精品| 国产在线男女| 成人亚洲欧美一区二区av| 2022亚洲国产成人精品| 国产午夜精品久久久久久一区二区三区| 亚洲精品,欧美精品| 草草在线视频免费看| 国产精品三级大全| 亚洲av电影在线观看一区二区三区| 9色porny在线观看| 日韩欧美精品免费久久| 日韩亚洲欧美综合| 欧美xxxx性猛交bbbb| 三级国产精品片| 色视频www国产| 99热这里只有是精品在线观看| 麻豆精品久久久久久蜜桃| 久久久久久久久久久丰满| 一个人免费看片子| 欧美97在线视频| 人人妻人人看人人澡| 欧美高清成人免费视频www| 伊人久久精品亚洲午夜| 高清黄色对白视频在线免费看 | 在线观看三级黄色| 黑人猛操日本美女一级片| 777米奇影视久久| 亚洲精品国产成人久久av| 多毛熟女@视频| 亚洲无线观看免费| www.色视频.com| 免费久久久久久久精品成人欧美视频 | 日本爱情动作片www.在线观看| 免费播放大片免费观看视频在线观看| 欧美bdsm另类| 精品国产一区二区久久| √禁漫天堂资源中文www| 搡老乐熟女国产| 美女xxoo啪啪120秒动态图| 国产在视频线精品| 一级黄片播放器| 久久99热6这里只有精品| 99热这里只有是精品在线观看| 啦啦啦啦在线视频资源| 亚洲欧美中文字幕日韩二区| 免费观看性生交大片5| 啦啦啦中文免费视频观看日本| 亚洲av电影在线观看一区二区三区| 国产一区亚洲一区在线观看| 国产成人av激情在线播放| 法律面前人人平等表现在哪些方面 | 欧美日韩av久久| 在线亚洲精品国产二区图片欧美| 成年av动漫网址| 国产在线观看jvid| 亚洲精品粉嫩美女一区| 国产成人精品久久二区二区91| 91国产中文字幕| 18禁黄网站禁片午夜丰满| 狂野欧美激情性xxxx| 成年女人毛片免费观看观看9 | 又黄又粗又硬又大视频| 下体分泌物呈黄色| 人人妻,人人澡人人爽秒播| 成年av动漫网址| 啦啦啦免费观看视频1| 欧美午夜高清在线| 久久久久精品人妻al黑| 欧美黑人欧美精品刺激| 亚洲中文av在线| 成人亚洲精品一区在线观看| 成年美女黄网站色视频大全免费| 男女边摸边吃奶| 一区在线观看完整版| 日本撒尿小便嘘嘘汇集6| svipshipincom国产片| 国产男女内射视频| 国产精品 欧美亚洲| 9热在线视频观看99| 婷婷成人精品国产| 日韩电影二区| 91av网站免费观看| 久9热在线精品视频| 色综合欧美亚洲国产小说| 9191精品国产免费久久| 性色av一级| 国产xxxxx性猛交| 亚洲精品国产精品久久久不卡| a级毛片在线看网站| 别揉我奶头~嗯~啊~动态视频 | 国产精品一区二区精品视频观看| 亚洲欧美色中文字幕在线| 午夜福利一区二区在线看| 欧美日韩中文字幕国产精品一区二区三区 | 国产一区二区三区综合在线观看| 国产av精品麻豆| 老鸭窝网址在线观看| 欧美一级毛片孕妇| 亚洲色图综合在线观看| 丝袜美足系列| 亚洲五月色婷婷综合| 国产深夜福利视频在线观看| 美女午夜性视频免费| 精品少妇黑人巨大在线播放| 亚洲色图 男人天堂 中文字幕| 亚洲欧洲精品一区二区精品久久久| 一边摸一边抽搐一进一出视频| 91成人精品电影| 19禁男女啪啪无遮挡网站| 亚洲一区二区三区欧美精品| av片东京热男人的天堂| xxxhd国产人妻xxx| 下体分泌物呈黄色| 亚洲av成人不卡在线观看播放网 | a在线观看视频网站| 国产精品秋霞免费鲁丝片| 精品第一国产精品| 国产精品熟女久久久久浪| 12—13女人毛片做爰片一| 亚洲av美国av| 欧美日韩亚洲综合一区二区三区_| 久久天躁狠狠躁夜夜2o2o| 91国产中文字幕| 18禁裸乳无遮挡动漫免费视频| 丰满迷人的少妇在线观看| 国产免费视频播放在线视频| 黑人操中国人逼视频| 国产日韩欧美视频二区| av欧美777| 精品国产乱码久久久久久男人| 老鸭窝网址在线观看| 欧美日韩一级在线毛片| 国产男女内射视频| 亚洲av片天天在线观看| 亚洲专区国产一区二区| 亚洲 国产 在线| 热99久久久久精品小说推荐| 十八禁网站免费在线| 纵有疾风起免费观看全集完整版| 成人国产av品久久久| 久久九九热精品免费| 看免费av毛片| 美女国产高潮福利片在线看| 国产在线观看jvid| 国产精品自产拍在线观看55亚洲 | 后天国语完整版免费观看| 十八禁人妻一区二区| 99久久精品国产亚洲精品| 国产免费视频播放在线视频| 搡老熟女国产l中国老女人| 一二三四在线观看免费中文在| 国产亚洲一区二区精品| 热re99久久精品国产66热6| 亚洲欧美色中文字幕在线| 欧美日韩中文字幕国产精品一区二区三区 | 香蕉丝袜av| 少妇人妻久久综合中文| 久久国产精品人妻蜜桃| 久久久久网色| 无遮挡黄片免费观看| 国产一区二区激情短视频 | 久久 成人 亚洲| 老司机在亚洲福利影院| 国产欧美日韩一区二区三区在线| 午夜免费观看性视频| 国产亚洲欧美在线一区二区| 亚洲国产欧美一区二区综合| 欧美人与性动交α欧美精品济南到| 国产片内射在线| www日本在线高清视频| 久久国产精品男人的天堂亚洲| 老司机影院毛片| 男人操女人黄网站| 国产熟女午夜一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 天天躁日日躁夜夜躁夜夜| 天天躁夜夜躁狠狠躁躁| 国产欧美日韩精品亚洲av| 桃红色精品国产亚洲av| 在线观看一区二区三区激情| 国产91精品成人一区二区三区 | 老熟妇仑乱视频hdxx| 久久久国产欧美日韩av| 国产91精品成人一区二区三区 | 国产av精品麻豆| 亚洲av男天堂| 看免费av毛片| 亚洲专区中文字幕在线| 啦啦啦啦在线视频资源| 欧美日韩成人在线一区二区| 狂野欧美激情性xxxx| 12—13女人毛片做爰片一| 两个人看的免费小视频| 亚洲国产欧美一区二区综合| 亚洲av电影在线进入| 99re6热这里在线精品视频| 国产精品一区二区在线不卡| 久久女婷五月综合色啪小说| 新久久久久国产一级毛片| av免费在线观看网站| av在线播放精品| 国产成人a∨麻豆精品| 免费久久久久久久精品成人欧美视频| 久久这里只有精品19| 一二三四社区在线视频社区8| 亚洲成人国产一区在线观看| 亚洲第一青青草原| 80岁老熟妇乱子伦牲交| 日韩欧美一区二区三区在线观看 | 国产精品 欧美亚洲| 国产97色在线日韩免费| 18在线观看网站| 99精国产麻豆久久婷婷| 国产亚洲欧美在线一区二区| 久久中文字幕一级| 亚洲精品美女久久av网站| 久久亚洲国产成人精品v| 久久久欧美国产精品| 一区福利在线观看| 在线观看一区二区三区激情| 飞空精品影院首页| 老熟妇仑乱视频hdxx| 悠悠久久av| 自线自在国产av| 久久久久久久大尺度免费视频| 一区二区三区激情视频| 久久久精品区二区三区| 12—13女人毛片做爰片一| 飞空精品影院首页| 久久人人97超碰香蕉20202| 丝瓜视频免费看黄片| 亚洲全国av大片| 国产深夜福利视频在线观看| 97在线人人人人妻| 精品亚洲乱码少妇综合久久| 男女午夜视频在线观看| 91成人精品电影| 在线观看人妻少妇| 免费少妇av软件| 国产精品香港三级国产av潘金莲| 美女午夜性视频免费| 欧美午夜高清在线| 久久亚洲国产成人精品v| 亚洲av日韩精品久久久久久密| 美女高潮到喷水免费观看| 一边摸一边抽搐一进一出视频| 欧美中文综合在线视频| 久久久久国产一级毛片高清牌| av片东京热男人的天堂| 一区在线观看完整版| 中文字幕人妻熟女乱码| 视频区图区小说| 老司机午夜十八禁免费视频| 免费观看a级毛片全部| 嫁个100分男人电影在线观看| 制服诱惑二区| 夜夜夜夜夜久久久久| 91麻豆av在线| 亚洲综合色网址| 美女主播在线视频| 亚洲欧美精品自产自拍| 国产成人精品无人区| 又大又爽又粗| 国产精品二区激情视频| 国产精品香港三级国产av潘金莲| 91字幕亚洲| 波多野结衣av一区二区av| 考比视频在线观看| a级片在线免费高清观看视频| www.999成人在线观看| 国产伦理片在线播放av一区| 视频区欧美日本亚洲| 狠狠婷婷综合久久久久久88av| 久久久久久久久久久久大奶| 亚洲人成电影免费在线| 久久久久久亚洲精品国产蜜桃av| 日韩一卡2卡3卡4卡2021年| 亚洲av男天堂| 国产高清videossex| 欧美成人午夜精品| 19禁男女啪啪无遮挡网站| 亚洲精品乱久久久久久| 亚洲欧美清纯卡通| 国产主播在线观看一区二区| 黄片大片在线免费观看| 久久久久久久精品精品| 精品亚洲乱码少妇综合久久| 亚洲黑人精品在线| 日日爽夜夜爽网站| 国产xxxxx性猛交| 国产精品偷伦视频观看了| 国产成人精品久久二区二区免费| av欧美777| 一进一出抽搐动态| 色老头精品视频在线观看| 人人妻人人爽人人添夜夜欢视频| 精品一区二区三区四区五区乱码| 国产精品99久久99久久久不卡| 少妇被粗大的猛进出69影院| 日本vs欧美在线观看视频| 免费一级毛片在线播放高清视频 | 国产精品偷伦视频观看了| 婷婷丁香在线五月| 亚洲精品成人av观看孕妇| 91成年电影在线观看| 国产亚洲午夜精品一区二区久久| 每晚都被弄得嗷嗷叫到高潮| 欧美xxⅹ黑人| 免费在线观看日本一区| 欧美av亚洲av综合av国产av| 国产成人影院久久av| 天天躁日日躁夜夜躁夜夜| 蜜桃在线观看..| 老司机午夜福利在线观看视频 | 91精品伊人久久大香线蕉| 18禁国产床啪视频网站| 欧美黄色淫秽网站| 中文字幕制服av| 老司机影院毛片| 黑人欧美特级aaaaaa片| www.自偷自拍.com| 交换朋友夫妻互换小说| 9色porny在线观看| 亚洲第一av免费看| 成人手机av| 亚洲自偷自拍图片 自拍| 五月开心婷婷网| 国产精品 欧美亚洲| 极品少妇高潮喷水抽搐| 嫁个100分男人电影在线观看| 欧美国产精品va在线观看不卡| a级片在线免费高清观看视频| 夫妻午夜视频| av在线老鸭窝| 国产欧美日韩一区二区精品| 老熟妇乱子伦视频在线观看 | 精品久久久久久电影网| 久久久久久免费高清国产稀缺| 最近中文字幕2019免费版| 50天的宝宝边吃奶边哭怎么回事| 99久久人妻综合| 欧美日韩成人在线一区二区| 亚洲va日本ⅴa欧美va伊人久久 | 一级毛片电影观看| 久久久久久久国产电影| 电影成人av| 美女国产高潮福利片在线看| 国产亚洲精品久久久久5区| 美女福利国产在线| 国产精品国产av在线观看| 日韩中文字幕视频在线看片| 午夜精品国产一区二区电影| 18在线观看网站| 91精品国产国语对白视频| 高清视频免费观看一区二区| 国产亚洲午夜精品一区二区久久| 91字幕亚洲| 亚洲美女黄色视频免费看| 777久久人妻少妇嫩草av网站| 老司机影院毛片| 啦啦啦中文免费视频观看日本| 日韩欧美一区二区三区在线观看 | 欧美日韩av久久| 大陆偷拍与自拍| 在线观看免费午夜福利视频| 久久综合国产亚洲精品| 50天的宝宝边吃奶边哭怎么回事| 看免费av毛片| 99久久综合免费| 精品少妇内射三级| 欧美人与性动交α欧美软件| 国产成人免费观看mmmm| 一进一出抽搐动态| 少妇人妻久久综合中文| 在线观看免费午夜福利视频| 一本大道久久a久久精品| 久久久水蜜桃国产精品网| 亚洲精品国产色婷婷电影| 成人国产一区最新在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 久久av网站| 久久ye,这里只有精品| 久久亚洲精品不卡| 18禁裸乳无遮挡动漫免费视频| 乱人伦中国视频| 两性夫妻黄色片| 欧美成人午夜精品| 亚洲精华国产精华精| 五月天丁香电影| 国产成人精品无人区| 在线十欧美十亚洲十日本专区| 天天添夜夜摸| 人人澡人人妻人| 精品亚洲成a人片在线观看| 麻豆国产av国片精品| 国产亚洲一区二区精品| 午夜福利在线观看吧| 手机成人av网站| 亚洲一码二码三码区别大吗| 在线观看舔阴道视频| 最近中文字幕2019免费版| 精品国产国语对白av| 国产亚洲欧美在线一区二区| 日日夜夜操网爽| 日韩,欧美,国产一区二区三区| 脱女人内裤的视频| 人妻一区二区av| 制服人妻中文乱码| 午夜福利乱码中文字幕| 丰满人妻熟妇乱又伦精品不卡| 午夜福利一区二区在线看| 十分钟在线观看高清视频www| 国产高清视频在线播放一区 | 老司机在亚洲福利影院| 亚洲av欧美aⅴ国产| 亚洲午夜精品一区,二区,三区| 免费观看人在逋| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久久视频综合| 十八禁高潮呻吟视频| 叶爱在线成人免费视频播放| 午夜日韩欧美国产| 女性生殖器流出的白浆| 国产男人的电影天堂91| 国产一区有黄有色的免费视频| 亚洲精品乱久久久久久| 少妇精品久久久久久久| 欧美日韩亚洲国产一区二区在线观看 | 亚洲精品一二三| 国产激情久久老熟女| 两个人免费观看高清视频| 欧美国产精品一级二级三级| 少妇被粗大的猛进出69影院| av一本久久久久| 他把我摸到了高潮在线观看 | 久久热在线av| 美女高潮喷水抽搐中文字幕| 国产人伦9x9x在线观看| 国产91精品成人一区二区三区 | 国产高清国产精品国产三级| 欧美在线黄色| 欧美中文综合在线视频| 精品视频人人做人人爽| 日本猛色少妇xxxxx猛交久久| avwww免费| 精品一区在线观看国产| 热99久久久久精品小说推荐| 欧美国产精品一级二级三级| 国产精品国产av在线观看| 欧美精品av麻豆av| 久久天堂一区二区三区四区| 中文字幕最新亚洲高清| 少妇被粗大的猛进出69影院| 久久综合国产亚洲精品| 亚洲av美国av| 精品第一国产精品| 91精品三级在线观看| 我的亚洲天堂| 五月开心婷婷网| 一本综合久久免费| 亚洲欧美精品自产自拍| 欧美国产精品va在线观看不卡| 亚洲七黄色美女视频| 岛国在线观看网站| 1024视频免费在线观看| 热re99久久精品国产66热6| 中文欧美无线码| 少妇粗大呻吟视频| 久久这里只有精品19| videos熟女内射| 欧美日韩亚洲国产一区二区在线观看 | 国产伦理片在线播放av一区| 国精品久久久久久国模美| 亚洲精品国产精品久久久不卡| 国产成人精品久久二区二区免费| 久久国产精品大桥未久av| 老司机深夜福利视频在线观看 | 夜夜骑夜夜射夜夜干|