• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On-surface synthesis of one-dimensional carbyne-like nanostructures with sp-carbon

    2022-12-28 09:51:38WenzeGao高文澤ChiZhang張弛ZhengZhou周正andWeiXu許維
    Chinese Physics B 2022年12期
    關(guān)鍵詞:周正張弛

    Wenze Gao(高文澤), Chi Zhang(張弛), Zheng Zhou(周正), and Wei Xu(許維)

    Interdisciplinary Materials Research Center,College of Materials Science and Engineering,Tongji University,Shanghai 201804,China

    Keywords: on-surface synthesis,carbyne,scanning tunneling microscopy,atomic force microscopy

    1. Introduction

    The discovery and creation of new carbon allotropes have led to innovations in both chemistry and material science,which have enriched the applications of carbon-based materials and opened doors to new technologies.[1]Over the past decades, the precise control of carbon at the nanoscale has allowed continuous discoveries of low-dimensional carbon allotropes,including zero-dimensional(0D)fullerenes,[2]one-dimensional (1D) carbon nanotubes (CNTs),[3]and twodimensional(2D)graphene.[4]Compared to CNTs,a 1D carbon allotrope built with sp2-hybridized carbons whose length far exceeds the cross-sectional radius,carbyne is an infinite 1D carbon chain composed of sp-hybridized carbon atoms,which has the cross-sectional dimension reduced to a single carbon atom. As one of the most elusive carbon allotropes, carbyne has attracted significant attention since the 1960s.[5–7]In principle, carbyne can be either in a cumulenic form (with consecutive carbon–carbon double bonds) which exhibits metallic behavior,or in a polyynic form(with alternating single and triple bonds)showing semiconducting property(Fig.1),[8–10]and the latter form has been demonstrated to be energetically more favorable.[11]

    As an infinite carbon chain, carbyne has been theoretically predicted to possess lots of intriguing properties, such as room-temperature superconductivity,[12,13]high hydrogen storage capability,[14]and nonlinear optical properties.[15]Moreover, Young’s modulus and the anticipated stiffness of carbyne are greater than most known carbon allotropes, including diamond, graphene, and CNTs.[16]Despite having these advantages, carbyne was much less explored compared to other carbon allotropes (e.g., graphene) due to its high chemical reactivity and extreme instability. Thus, it was postulated to be impossible to synthesize in the laboratory.[17]Due to the difficulties in synthesis and isolation of individual carbyne, chemists also turned to the exploration of polyynes and cumulenes as model compounds (Fig. 1).[10,18,19]In recent years, various feasible synthetic routes for the preparation of carbyne-like nanostructures have been reported,such as bottom-up synthesis,[17,20,21]arc-discharge,[22–24]laser ablation,[25–27]heat-treatment,[28–30]fusion inside carbon nanotubes,[31,32]etc.,which inspired chemists to reexamine the accessibility and stability of carbyne. In 2016, a long linear carbon chain comprising more than 6000 carbon atoms was successfully synthesized using thin double-walled carbon nanotubes as confining nanoreactors,[33]and it is considered to be the longest carbon chain ever reported.

    In the past decade, on-surface synthesis has emerged as an extremely promising approach for atomically precise fabrication of novel nanostructures that can be hardly synthesizedviaconventional solution synthetic chemistry.[34,35]The rapid developments and combination of scanning tunneling microscopy(STM),[36,37]noncontact atomic force microscopy(nc-AFM),[38]and x-ray photoelectron spectroscopy (XPS)have allowed us to design andin situcharacterize novel carbon nanostructures with unprecedented resolution. Thus, elusive low-dimensional carbon allotropes have been successfully fabricated on surfaces, including these built with sp2-hybridized carbons (e.g., graphene nanoribbons[39,40]and biphenylene network[41])and sp-hybridized carbons(e.g.,polyynes[42]and cyclo[n]carbons[43,44]). Herein,we highlight recent works regarding the on-surface synthesis of 1D carbyne-like nanostructures (1D carbon nanostructures containing carbyne fragments),including polyyne compounds,cumulene compounds,and organometallic polyynes (i.e., metalated carbynes). We believe this review would shed light on the precise fabrication and characterization of ultimate single strands of carbyne by on-surface synthesis strategy.

    2. On-surface synthesis of polyynes

    Polyynes have been widely investigated as models for carbyne and have great potential as molecular wires for charge transport[45]owing to their nonlinear optical properties.[15]As the number of carbon atoms increases,long polyynes become inherently unstable because they tend to cross-link with each other in an exothermal reaction.[46]Notably,the development in the field of on-surface synthesis provides a promising strategy for atomically precise fabrication and in-depth investigation of long polyynes under highly controllable conditions.

    Fig. 2. On-surface synthesis of polyynes by atomic manipulations. [(a)–(j)] On-surface synthesis of [(a)–(d)] triyne, [(e)–(h)] hexayne, and [(i) and(j)]octayne on bilayer NaCl on Cu(111). Reproduced with permission from Ref.[42]. Copyright 2018, Springer Nature. [(k)and(l)]Generation of cyclo[18]carbon on bilayer NaCl on Cu(111)based on two kinds of molecular precursors. (m)Formation of a linear polyyne chain via bond cleavage within the cyclic unit of C24O6. [(k)and(m)]Reproduced with permission from Ref.[43]. Copyright 2019, AAAS.(l)Reproduced with permission from Ref.[44]. Copyright 2020,American Chemical Society.

    In 2018, polyyne moieties were fabricated on surface and structurally characterized by scanning probe microscopy(SPM)for the first time by Pavliˇceket al.[42]By a combination of STM and nc-AFM techniques,the molecular precursor was precisely manipulated to induce the skeletal rearrangement at the molecular level, and simultaneously, the geometry of reactants, intermediates, and the final products were monitored with atomic resolution as shown in Figs. 2(a)–2(j). Accordingly,tri-,tetra-,hexa-,and octaynes were generated from the reductive rearrangement of the precursors (i.e., 1,1-dibromo alkenes)on bilayer NaCl supported by Cu(111)at 5 K.Interestingly,the skeleton rearrangement was triggered along with the cleavage of the C–Br bonds of precursors by the atomic manipulation using an STM/AFM tip. The nc-AFM images of the intact precursors,intermediates,and polyynes are shown in Figs.2(b)–2(d)and 2(f)–2(j). Following such a strategy,relatively long polyyne moieties, up to the octayne Ph–(C≡C)8–Ph,have been successfully fabricated with atomic precision.

    More interestingly, cyclic polyynes (cyclo[n]carbons)could also be prepared by this method. In 2019, Kaiseret al.[43]further applied these techniques to synthesize a cyclo[18]carbon allotrope from a cyclocarbon oxide molecule,C24O6(Fig. 2(k)). C24O6molecules were deposited onto Cu(111) precovered with bilayer NaCl islands at 5 K. By atomic manipulation,carbon monoxides were eliminated from C24O6, thus forming cyclo[18]carbon. The nc-AFM image of cyclo[18]carbon showed nine bright protrusions, revealing a polyynic structure with alternating single and triple bonds. Similarly, cyclo[18]carbon was also proved to be accessible by dehalogenation of a bromocyclocarbon precursor,C18Br6,as shown in Fig.2(l),with a much higher yield of cyclo[18]carbon(64%)compared to that in the case using C24O6(13%).[44]Furthermore, a linear polyyne chain could also be produced by breaking the bonds within the cyclic unit from the C24O6molecule(Fig.2(m)). The precision of the synthesis achieved by this approach opens a new window for the onsurface fabrication of carbon-rich materials and atomic-scale devices.

    3. On-surface synthesis of cumulenes

    Compared to polyynes, cumulenes have been less studied because their stability dramatically decreases in the presence of more consecutive double bonds.[10,47]Such instability has been undoubtedly a major obstacle in their synthesis and characterizations. Followed by the strategies in the preparation of long polyyne moieties,[20,21]the synthesis and stabilization of long cumulenes have been successfully achieved through rotaxination[48]and increase of steric bulk of end groups.[49]Additionally,on-surface synthesis also provides a convenient alternative approach for the fabrication of cumulene-containing nanostructures with atomic precision.

    Fig.3. On-surface synthesis of cumulenes. [(a)and(b)]On-surface synthesis of cis-and trans-cumulene compounds by dehalogenative C–C homocoupling reactions of alkenyl gem-dibromides. Reproduced with permission from Ref.[50]. Copyright 2017,Wiley-VCH.[(c)–(f)]Synthesis of different types of cumulene-containing polymers on Au(111). [(c)and(d)]Reproduced with permission from Ref.[51]. Copyright 2020,Springer Nature. [(e)and(f)]Reproduced with permission from Ref.[52]. Copyright 2020,Wiley-VCH.

    Sunet al.[50]firstly designed and reported the on-surface synthesis of cumulene moiety based on a dehalogenative homocoupling reaction of alkenyl gem-dibromides. As illustrated in Fig.3(a),they designed a 4-(2,2-dibromovinyl)-1,1’-biphenyl(bBVBP)molecular precursor functionalized with an alkenyl gem-dibromide group.Upon deposition onto Au(111)surface at room temperature, the bBVBP molecules were activated by the removal of halogen substituents and underwent C–C homocoupling reactions, formingcis- andtranscumulene products. The nc-AFM images showed sharp lines with a homogeneous contrast connecting the two biphenyl groups, which unambiguously demonstrated the formation of three consecutive C–C double bonds(Fig.3(b)).

    Such a C(sp2)–Br2substitution strategy has been widely applied to the on-surface synthesis of cumulene-containing nanostructures ever since this seminal work. Torreet al.[51]reported the synthesis of cumulene-bridged bisanthene polymers (CBBPs) by the dehalogenative homocoupling of 4Br-BiA precursors on Au (111) at 500 K, which were endowed with =CBr2functionalities (Fig. 3(c)). Highresolution STM and nc-AFM images of CBBPs are shown in Fig.3(d). Interestingly,the cumulenic bridges in CBBPs were further fused to pentalene bridges after annealing at 650 K,leading to defectfreeπ-conjugated ladder polymers. Besides, Urgelet al.[52]further extended the strategy to the synthesis of 1D cumulenecontaining polymers (CCPs) composed ofn-membered rings(n= 5, 6, 7) on Au (111) using similar functional groups(Fig. 3(e)). It is worth noting that the highly nonplanar conformation of the dibromomethylenes-functionalized precursors on Au (111) leads to the separated steps in selective debromination and coupling, and consequently, a selective tailto-tail/head-to-head monomer sequence in the polymer (as shown in Fig. 3(f)). The consecutive C–C double bonds are highlighted by blue arrows in the nc-AFM image. Moreover, other similar cumulene-containing nanostructures have also been systematically studied recently.[53–56]The investigations of theseπ-conjugated polymers linked by cumulene bridge open new avenues in the field of on-surface synthesis with prospects for applications in molecular electronics.

    4. The on-surface synthesis of organometallic polyynes

    Organometallic polyyne,a chain composed of alternating sp-hybridized carbon atoms and metal atoms, is a promising candidate for future electronic and optical devices due to its regulable electronic, optical, and magnetic properties by the incorporation of different transition metals.[57–59]Similar to the case of carbyne,the high chemical reactivity and extreme instability have been blocking the synthesis and characterization of organometallic polyynes,which may be enlightened or solved by applying an on-surface synthesis strategy.

    Fig.4. On-surface synthesis of acetylenic Cu-carbyne. [(a)and(b)]Illustration showing the formation of acetylenic Cu-carbyne on Cu(110)through dehydrogenative coupling of ethyne precursors. (c) Large-scale nc-AFM image and the corresponding STM image of acetylenic Cu-carbynes. (d)Equally scaled high-resolution nc-AFM image, STM image, DFT-optimized model, STM simulation and line-scan profile of a single acetylenic Cucarbyne chain on Cu(110). Reproduced with permission from Ref.[60]. Copyright 2016,American Chemical Society.

    In 2016, Sunet al.[60]firstly reported the synthesis of organometallic Cu-polyynes(i.e.,acetylenic Cu-carbynes)by dehydrogenation of ethyne (C2H2) molecules and coupling with copper atoms on Cu (110) as shown in Fig. 4. After deposition of C2H2onto Cu (110) held at 450 K, acetylenic Cu-carbyne chains were efficiently synthesized and extended along the close-packed [1ˉ10] direction of the substrate. The high-resolution nc-AFM images showed the characteristic protrusions of C–C triple bonds between neighboring two Cu atoms, which appeared as bright dots in the STM image, yet were not resolved in the nc-AFM image. These features further confirmed the formation of organometallic polyynes.This synthetic strategy would prompt the synthesis and characterization of other 1D organometallic polyynes with various incorporated metal atoms as well as periodic polyyne moieties.

    Inspired by the above strategy, the organometallic Aupolyynes (i.e., diacetylenic Au-carbynes) were successfully obtained through on-surface debrominative coupling of C4Br4molecule with a cumulene moiety (Br2C=C=C=CBr2) on Au(111).[61]Interestingly,thein-situskeleton rearrangement from a cumulene moiety to a diyne one (Br–C≡C–C≡C–Br)was directly triggered by cleaving two C–Br bonds within a C4Br4viaSTM tip manipulation. Thereafter, the complete debromination of C4Br4molecules was realized by further thermal treatment,with the formation of 1D diacetylenic Aucarbynes as shown in Fig. 5. Note that two discrete characteristic protrusions as indicated by blue arrows in the nc-AFM images corresponded to two adjacent C–C triple bonds.Moreover, the bandgap of a diacetylenic Au-carbyne on Au (111)was experimentally determined to be~2.0 eV by scanning tunneling spectroscopy (STS), indicating a semiconducting characteristic for potential applications in future molecular electronic devices.

    Very recently,a new kind of organometallic polyynes,triacetylenic Ag-carbyne,has been successfully synthesizedviaan unexpected ring-opening reaction of completely debrominated hexabromobenzene (C6Br6) molecules on Ag (111) by Gaoet al.[62]As illustrated in Fig. 6, the whole scenario can be described as follows: a complete debromination of C6Br6molecules occurred at 300 K on Ag (111), resulting in the formation of unstable C6ring intermediates followed by subsequent transformation into the C6polyynic chainsviaa ring-opening process; afterward, the C6polyynic chains polymerized into triacetylenic Ag-carbynes. The nature of the polyynic segment within chains was clearly revealed by the nc-AFM image,showing three discrete characteristic protrusions of C–C triple bonds, as indicated by the yellow arrows. The debromination and ring-opening processes were demonstrated by extensive density functional theory (DFT)calculations. In addition,Yuet al.[63]further investigated the thermal-induced transformation between acetylenic Ag/Cucarbyne and diacetylenic ones. They theoretically predicted that the bandgap of organometallic polyynes would decrease with the increasing number of C–C triple bonds involved.It was also revealed by DFT calculations that the bandgaps would be metal-dependent with the order of Ag-carbyne>Cu-carbyne>Au-carbyne. Moreover,metalated carbyne ribbons with different incorporated metals might also be synthesized by using surface-assisted elimination reactions of methane tetrabromide molecular precursors and their subsequent polymerization. The bandgap of metalated carbyne ribbons would vary with its width based on theoretical calculations. These regulable electronic properties of organometallic polyynes thus provide a promising prospect for next generation semiconducting materials.

    Fig.5. On-surface synthesis of diacetylenic Au-carbyne. (a)Schematic illustration showing the formation of diacetylenic Au-carbyne from C4Br4. (b)STM image showing the formation of Au-carbyne chains on the Au(111)surface by heating the sample pre-covered with C4Br4 molecules to 300 K.(c) Equally scaled high-resolution STM image and the corresponding DFT-optimized model of a single diacetylenic Au-carbyne chain on Au (111).(d)Close-up STM images and the Laplace filtered nc-AFM images of the single chain, double chain, and triple chain, respectively. Reproduced with permission from Ref.[61]. Copyright 2020,American Chemical Society.

    Fig.6. On-surface synthesis of triacetylenic Ag-carbyne. (a)Schematic illustration showing the formation of triacetylenic Ag-carbyne from C6Br6. (b)A large-scale STM image showing the formation of triacetylenic Ag-carbynes on the Ag(111)surface by depositing C6Br6 molecules on the sample held at 300 K.(c)Constant-height nc-AFM image and the corresponding STM image of triacetylenic Ag-carbynes. (d)From top to bottom: an STM image,a simulated STM image,and top-and side-view DFT models of a single Ag-carbyne on Ag(111). Reproduced with permission from Ref.[62].Copyright 2022,American Chemical Society.

    Table 1 Representative carbyne-like nanostructures synthesized via the onsurface synthesis method.

    5. Conclusion and perspectives

    In summary, we have briefly reviewed recent advances in the on-surface synthesis of one-dimensional carbynelike nanostructures with sp-hybridized carbons, including polyynes,cumulenes,and organometallic polyynes(Table 1).On-surface synthesis strategy has exhibited its great potential for the preparation of nanostructures with atomic precision which are not accessible through conventional solution chemistry. Nonetheless, there are still many difficulties as well as challenges ahead. For instance, some precursors are too reactive to survive before the corresponding reactions start on noble metal surfaces, which prevents obtaining such interesting nanostructures. In addition, intrinsic carbyne structures,instead of metalated carbynes,are yet to be synthesized at the atomic scale, which may require a new synthetic approach.Moreover,the on-surface synthesis of novel nanostructures is currently restricted to metal surfaces,which limits its characterization and further application to a certain extent. For all these reasons, design of new precursors, exploration of new synthetic strategies, approach to transferring products from metal surfaces to other substrates,and even direct synthesis on semiconducting substrates deserve to be explored in the near future.

    Acknowledgement

    Project supported by the National Natural Science Foundation of China(Grant Nos.22125203 and 21790351).

    猜你喜歡
    周正張弛
    Floquet spectrum and universal dynamics of a periodically driven two-atom system
    Effect of laser focus in two-color synthesized waveform on generation of soft x-ray high harmonics
    Influence of particle size on the breaking of aluminum particle shells
    A 90?mixed-mode twisted nematic liquid-crystal-on-silicon with an insulating protrusion structure?
    Quench dynamics in 1D model with 3rd-nearest-neighbor hoppings?
    李偉賢、葉子康、周已程、周正男作品
    大觀(2020年9期)2020-01-25 16:24:08
    “種”珍珠真神奇
    秋天
    勻變速直線運動規(guī)律應(yīng)用中的一類典型易錯題
    張弛的褲子撕掉了
    天堂√8在线中文| 又紧又爽又黄一区二区| 久久性视频一级片| 国产精品久久久人人做人人爽| 色播在线永久视频| а√天堂www在线а√下载| 国产99白浆流出| 99久久99久久久精品蜜桃| av片东京热男人的天堂| 午夜福利视频1000在线观看 | 国内毛片毛片毛片毛片毛片| 午夜精品国产一区二区电影| 咕卡用的链子| 亚洲精品国产一区二区精华液| 日韩大码丰满熟妇| videosex国产| 久久精品aⅴ一区二区三区四区| 欧美在线黄色| 亚洲三区欧美一区| 看片在线看免费视频| 亚洲avbb在线观看| 国产极品粉嫩免费观看在线| 中文字幕人妻丝袜一区二区| 一区二区三区激情视频| 亚洲欧美日韩另类电影网站| 成年女人毛片免费观看观看9| 露出奶头的视频| 99精品欧美一区二区三区四区| 99国产精品一区二区三区| 日本一区二区免费在线视频| 久久久久久国产a免费观看| 神马国产精品三级电影在线观看 | 欧美色欧美亚洲另类二区 | 久久久国产精品麻豆| 女同久久另类99精品国产91| 亚洲一卡2卡3卡4卡5卡精品中文| 岛国在线观看网站| 两性夫妻黄色片| 免费看a级黄色片| 黄片播放在线免费| 狠狠狠狠99中文字幕| av中文乱码字幕在线| 99久久精品国产亚洲精品| 在线观看一区二区三区| 最新美女视频免费是黄的| 国产午夜精品久久久久久| 99久久99久久久精品蜜桃| 91国产中文字幕| 国产精品影院久久| 欧美精品啪啪一区二区三区| 欧美最黄视频在线播放免费| 丝袜美足系列| www国产在线视频色| 日本a在线网址| 亚洲成人久久性| 99久久99久久久精品蜜桃| 色av中文字幕| 1024视频免费在线观看| 黄片小视频在线播放| 亚洲中文字幕日韩| 国产成人免费无遮挡视频| 免费不卡黄色视频| 少妇裸体淫交视频免费看高清 | 国产精品免费视频内射| 真人做人爱边吃奶动态| 久久人妻av系列| 黄色片一级片一级黄色片| 黄色 视频免费看| 国产精品永久免费网站| 精品久久久久久久久久免费视频| xxx96com| 精品一区二区三区四区五区乱码| 国产精品 国内视频| 18禁美女被吸乳视频| 国产黄a三级三级三级人| 天天躁狠狠躁夜夜躁狠狠躁| 欧美国产精品va在线观看不卡| 激情在线观看视频在线高清| 精品福利观看| 精品久久久精品久久久| 亚洲国产精品久久男人天堂| 久久九九热精品免费| 国产精品日韩av在线免费观看 | 啪啪无遮挡十八禁网站| 欧美黑人欧美精品刺激| 成人国产一区最新在线观看| 少妇熟女aⅴ在线视频| 亚洲精品国产色婷婷电影| 国产熟女午夜一区二区三区| 免费看美女性在线毛片视频| 国产91精品成人一区二区三区| 欧美+亚洲+日韩+国产| 在线观看免费视频日本深夜| 精品第一国产精品| 成人国语在线视频| 少妇的丰满在线观看| 精品一区二区三区四区五区乱码| 好男人在线观看高清免费视频 | 电影成人av| 97人妻天天添夜夜摸| 亚洲av片天天在线观看| 精品国产乱子伦一区二区三区| 色综合欧美亚洲国产小说| 日本在线视频免费播放| 亚洲人成电影免费在线| 在线观看午夜福利视频| 叶爱在线成人免费视频播放| 嫩草影院精品99| 日本精品一区二区三区蜜桃| 一级a爱片免费观看的视频| 韩国精品一区二区三区| 日韩中文字幕欧美一区二区| 亚洲专区字幕在线| 欧美日本视频| 又黄又粗又硬又大视频| 中文字幕av电影在线播放| 正在播放国产对白刺激| 99久久综合精品五月天人人| 视频在线观看一区二区三区| 久久精品国产亚洲av高清一级| 国产午夜精品久久久久久| 欧美老熟妇乱子伦牲交| 国产av在哪里看| 国产高清视频在线播放一区| 亚洲专区国产一区二区| 国产伦一二天堂av在线观看| 啦啦啦观看免费观看视频高清 | 亚洲精品在线美女| 成人国产综合亚洲| 美国免费a级毛片| www日本在线高清视频| 久久久久久久久免费视频了| 久久人妻av系列| 国产精品永久免费网站| 国产亚洲欧美98| 精品无人区乱码1区二区| 99香蕉大伊视频| 久久久国产成人免费| 色精品久久人妻99蜜桃| 天天添夜夜摸| 亚洲熟妇熟女久久| 天堂动漫精品| 在线永久观看黄色视频| 国产xxxxx性猛交| 亚洲三区欧美一区| 国产熟女xx| 91在线观看av| 亚洲第一电影网av| 69精品国产乱码久久久| 亚洲精品粉嫩美女一区| 久久久久久免费高清国产稀缺| 欧洲精品卡2卡3卡4卡5卡区| 亚洲国产高清在线一区二区三 | 淫妇啪啪啪对白视频| 精品无人区乱码1区二区| or卡值多少钱| 嫩草影视91久久| 亚洲 欧美一区二区三区| 日本在线视频免费播放| 国内精品久久久久精免费| 亚洲专区国产一区二区| 日韩成人在线观看一区二区三区| av中文乱码字幕在线| 精品电影一区二区在线| 国产欧美日韩一区二区三区在线| 国产av在哪里看| 在线视频色国产色| 在线观看免费视频网站a站| 欧美激情 高清一区二区三区| 午夜a级毛片| 国产精品免费一区二区三区在线| 成人免费观看视频高清| 久久精品国产亚洲av高清一级| 夜夜爽天天搞| 黄频高清免费视频| 亚洲欧美一区二区三区黑人| 18禁裸乳无遮挡免费网站照片 | 少妇被粗大的猛进出69影院| 精品国产美女av久久久久小说| 在线免费观看的www视频| 天堂动漫精品| 国产精品日韩av在线免费观看 | 99香蕉大伊视频| 欧美日韩福利视频一区二区| 国产色视频综合| 久久天躁狠狠躁夜夜2o2o| 亚洲国产精品成人综合色| 中文字幕另类日韩欧美亚洲嫩草| 90打野战视频偷拍视频| 狠狠狠狠99中文字幕| 国产一区二区三区在线臀色熟女| 男女之事视频高清在线观看| 亚洲国产欧美一区二区综合| 十八禁人妻一区二区| 99香蕉大伊视频| 久久这里只有精品19| 热99re8久久精品国产| 久久天躁狠狠躁夜夜2o2o| 国产麻豆69| 一级片免费观看大全| 欧美人与性动交α欧美精品济南到| 欧美激情极品国产一区二区三区| 免费在线观看完整版高清| 亚洲成av片中文字幕在线观看| 十八禁网站免费在线| 国产精品久久久久久精品电影 | 精品少妇一区二区三区视频日本电影| 伊人久久大香线蕉亚洲五| 国产精品香港三级国产av潘金莲| 国产一区二区三区在线臀色熟女| 禁无遮挡网站| 熟女少妇亚洲综合色aaa.| 99精品在免费线老司机午夜| 亚洲午夜精品一区,二区,三区| 日韩欧美国产一区二区入口| 日本欧美视频一区| 视频区欧美日本亚洲| 又大又爽又粗| 亚洲成国产人片在线观看| 久久 成人 亚洲| 妹子高潮喷水视频| 久久精品国产亚洲av香蕉五月| 国产成人精品无人区| 亚洲精品国产一区二区精华液| 国产熟女xx| 精品久久久精品久久久| 国产精品亚洲美女久久久| 黄色a级毛片大全视频| 窝窝影院91人妻| 首页视频小说图片口味搜索| aaaaa片日本免费| 老司机福利观看| 国产aⅴ精品一区二区三区波| 91精品国产国语对白视频| 日日摸夜夜添夜夜添小说| 亚洲av片天天在线观看| 日韩国内少妇激情av| ponron亚洲| 国产精品,欧美在线| 19禁男女啪啪无遮挡网站| 男女之事视频高清在线观看| 国产色视频综合| 精品午夜福利视频在线观看一区| 欧美最黄视频在线播放免费| 欧美 亚洲 国产 日韩一| 欧美成人午夜精品| 亚洲国产精品999在线| 国产av精品麻豆| 可以在线观看的亚洲视频| 国产一级毛片七仙女欲春2 | 啦啦啦韩国在线观看视频| 丝袜美足系列| 成人永久免费在线观看视频| 老司机靠b影院| 欧美av亚洲av综合av国产av| 国产精品香港三级国产av潘金莲| 国产黄a三级三级三级人| 亚洲一码二码三码区别大吗| 制服丝袜大香蕉在线| 日韩成人在线观看一区二区三区| 免费高清视频大片| 丝袜人妻中文字幕| 成人亚洲精品av一区二区| 美女国产高潮福利片在线看| 午夜福利高清视频| 国产蜜桃级精品一区二区三区| 91av网站免费观看| 亚洲免费av在线视频| www日本在线高清视频| 免费av毛片视频| 麻豆国产av国片精品| 日韩欧美国产在线观看| 天堂影院成人在线观看| 制服丝袜大香蕉在线| 免费观看人在逋| 黑丝袜美女国产一区| 91成年电影在线观看| 国产一区二区在线av高清观看| АⅤ资源中文在线天堂| 午夜福利,免费看| 午夜福利,免费看| 亚洲激情在线av| 国产精品一区二区三区四区久久 | 涩涩av久久男人的天堂| 99久久久亚洲精品蜜臀av| 夜夜看夜夜爽夜夜摸| 99久久久亚洲精品蜜臀av| 黄色女人牲交| 欧美日韩亚洲综合一区二区三区_| 日韩高清综合在线| 久久久国产成人精品二区| 亚洲在线自拍视频| 777久久人妻少妇嫩草av网站| 天天躁夜夜躁狠狠躁躁| 黄片小视频在线播放| 精品免费久久久久久久清纯| 国产av又大| 午夜久久久久精精品| 免费在线观看视频国产中文字幕亚洲| 国产一级毛片七仙女欲春2 | 999久久久国产精品视频| 黄片小视频在线播放| av视频在线观看入口| 热99re8久久精品国产| 老司机午夜福利在线观看视频| 咕卡用的链子| 纯流量卡能插随身wifi吗| 一级a爱片免费观看的视频| 国产成人精品在线电影| 无人区码免费观看不卡| 级片在线观看| 手机成人av网站| 搡老岳熟女国产| 午夜福利在线观看吧| 欧美中文综合在线视频| 777久久人妻少妇嫩草av网站| 午夜免费成人在线视频| 久久香蕉国产精品| 国产精品久久视频播放| 桃色一区二区三区在线观看| 国产高清videossex| 国产精品电影一区二区三区| 国产精品98久久久久久宅男小说| av中文乱码字幕在线| 在线天堂中文资源库| 大型av网站在线播放| 最新在线观看一区二区三区| 国产熟女xx| 亚洲国产高清在线一区二区三 | 91老司机精品| 亚洲国产欧美网| 色老头精品视频在线观看| 久久香蕉精品热| 欧美一区二区精品小视频在线| 欧美老熟妇乱子伦牲交| 视频区欧美日本亚洲| 一区二区三区精品91| 久久这里只有精品19| 午夜福利成人在线免费观看| 黄片播放在线免费| 日日夜夜操网爽| 色综合婷婷激情| 亚洲久久久国产精品| 视频区欧美日本亚洲| 后天国语完整版免费观看| 黑人欧美特级aaaaaa片| 乱人伦中国视频| 香蕉丝袜av| 欧美中文日本在线观看视频| 黄色a级毛片大全视频| 亚洲va日本ⅴa欧美va伊人久久| 午夜精品国产一区二区电影| 国产精品,欧美在线| 电影成人av| 久久午夜综合久久蜜桃| 老司机在亚洲福利影院| 日本 av在线| 人成视频在线观看免费观看| 后天国语完整版免费观看| 波多野结衣巨乳人妻| 亚洲精品在线观看二区| 欧美日韩亚洲综合一区二区三区_| 国产97色在线日韩免费| 亚洲一区中文字幕在线| 国产精品香港三级国产av潘金莲| 国产精品久久久久久人妻精品电影| 国内久久婷婷六月综合欲色啪| 在线观看66精品国产| 欧美午夜高清在线| 午夜免费激情av| 高清在线国产一区| 麻豆成人av在线观看| 亚洲熟妇熟女久久| 久久香蕉激情| 窝窝影院91人妻| 国产成人av激情在线播放| 国产片内射在线| 欧美成人午夜精品| 欧美黑人欧美精品刺激| 久久香蕉激情| 99国产精品99久久久久| 亚洲欧美日韩无卡精品| 久久人妻熟女aⅴ| 欧美另类亚洲清纯唯美| 国产精品一区二区精品视频观看| 在线观看免费视频网站a站| 午夜福利视频1000在线观看 | 妹子高潮喷水视频| 久久久久久大精品| 国产区一区二久久| 咕卡用的链子| 欧美av亚洲av综合av国产av| 亚洲欧美一区二区三区黑人| 精品久久蜜臀av无| 欧美日韩瑟瑟在线播放| 国产精品香港三级国产av潘金莲| 免费人成视频x8x8入口观看| 无遮挡黄片免费观看| 俄罗斯特黄特色一大片| 国产高清videossex| 久久久久亚洲av毛片大全| 18美女黄网站色大片免费观看| 精品第一国产精品| 午夜影院日韩av| 午夜免费激情av| 麻豆一二三区av精品| 久久人人精品亚洲av| 一边摸一边抽搐一进一小说| 最新美女视频免费是黄的| 色哟哟哟哟哟哟| av视频在线观看入口| 亚洲中文日韩欧美视频| 男女做爰动态图高潮gif福利片 | 精品国内亚洲2022精品成人| 欧美黑人精品巨大| 黄色片一级片一级黄色片| 亚洲熟女毛片儿| 久久人妻熟女aⅴ| 国产亚洲精品综合一区在线观看 | 亚洲在线自拍视频| 国产三级在线视频| 精品国产乱码久久久久久男人| 欧美中文综合在线视频| 国产视频一区二区在线看| 啦啦啦 在线观看视频| 亚洲一区高清亚洲精品| 精品福利观看| 久久精品影院6| 夜夜夜夜夜久久久久| 一级黄色大片毛片| 国产亚洲精品久久久久5区| 精品久久久久久成人av| 国产精品综合久久久久久久免费 | a级毛片在线看网站| 久久影院123| 久久久久久人人人人人| 精品久久久久久久毛片微露脸| 欧美中文日本在线观看视频| 一二三四在线观看免费中文在| 亚洲视频免费观看视频| 好男人在线观看高清免费视频 | 成人18禁在线播放| 国产99白浆流出| 一个人免费在线观看的高清视频| 在线av久久热| 亚洲精品一卡2卡三卡4卡5卡| 欧美黄色片欧美黄色片| 69精品国产乱码久久久| 黑人操中国人逼视频| 亚洲第一av免费看| 99久久国产精品久久久| 搞女人的毛片| 国产精品二区激情视频| 精品一区二区三区四区五区乱码| 丝袜在线中文字幕| 欧美成人性av电影在线观看| 人人澡人人妻人| 亚洲成人精品中文字幕电影| 嫁个100分男人电影在线观看| 午夜日韩欧美国产| 国产主播在线观看一区二区| 麻豆国产av国片精品| 欧美成人免费av一区二区三区| 久久精品国产亚洲av香蕉五月| 中文字幕人妻熟女乱码| 一边摸一边抽搐一进一出视频| 啦啦啦免费观看视频1| 一级,二级,三级黄色视频| 怎么达到女性高潮| 亚洲成人精品中文字幕电影| 日本 欧美在线| 亚洲精品av麻豆狂野| 一a级毛片在线观看| tocl精华| 欧美性长视频在线观看| 国产精品免费一区二区三区在线| 国产国语露脸激情在线看| 欧美国产精品va在线观看不卡| 国产精品久久久人人做人人爽| 桃色一区二区三区在线观看| 天天一区二区日本电影三级 | 黄片大片在线免费观看| 黑人操中国人逼视频| 国产精品免费一区二区三区在线| 97超级碰碰碰精品色视频在线观看| 国产亚洲精品久久久久久毛片| or卡值多少钱| 久久国产精品人妻蜜桃| 丁香欧美五月| 一区在线观看完整版| 激情在线观看视频在线高清| 亚洲精品粉嫩美女一区| 中出人妻视频一区二区| 老熟妇仑乱视频hdxx| av超薄肉色丝袜交足视频| 免费一级毛片在线播放高清视频 | x7x7x7水蜜桃| 国产一级毛片七仙女欲春2 | 免费少妇av软件| 麻豆国产av国片精品| 看片在线看免费视频| 97碰自拍视频| 一级片免费观看大全| 亚洲午夜理论影院| 国产不卡一卡二| 18美女黄网站色大片免费观看| 欧美成人免费av一区二区三区| 国产成人欧美| 91精品三级在线观看| 一区二区三区精品91| 精品卡一卡二卡四卡免费| 国产免费av片在线观看野外av| 99久久国产精品久久久| 久热爱精品视频在线9| av在线天堂中文字幕| 欧美久久黑人一区二区| 亚洲精品在线观看二区| 中国美女看黄片| 91九色精品人成在线观看| 深夜精品福利| 色综合欧美亚洲国产小说| 悠悠久久av| 色播亚洲综合网| 精品高清国产在线一区| 久久精品国产清高在天天线| 国产亚洲欧美98| 亚洲人成网站在线播放欧美日韩| 久久精品影院6| 欧美国产日韩亚洲一区| 亚洲欧美日韩无卡精品| 男人操女人黄网站| 757午夜福利合集在线观看| 在线天堂中文资源库| 精品久久久久久成人av| 18禁观看日本| 日本 欧美在线| 好看av亚洲va欧美ⅴa在| 国产精品一区二区三区四区久久 | 亚洲男人天堂网一区| 久久久久久亚洲精品国产蜜桃av| 韩国精品一区二区三区| 中文字幕精品免费在线观看视频| 午夜福利,免费看| 国产成人啪精品午夜网站| 久久人人97超碰香蕉20202| 这个男人来自地球电影免费观看| 又黄又粗又硬又大视频| 亚洲精品粉嫩美女一区| 亚洲欧洲精品一区二区精品久久久| 99国产极品粉嫩在线观看| 青草久久国产| 美女国产高潮福利片在线看| 午夜福利免费观看在线| 啦啦啦观看免费观看视频高清 | 制服诱惑二区| 色老头精品视频在线观看| 亚洲人成77777在线视频| 最近最新中文字幕大全电影3 | 亚洲天堂国产精品一区在线| 波多野结衣av一区二区av| 黄色片一级片一级黄色片| 日本黄色视频三级网站网址| 啪啪无遮挡十八禁网站| 欧美日韩瑟瑟在线播放| 狠狠狠狠99中文字幕| 亚洲国产欧美网| 欧美日本中文国产一区发布| 国产av一区在线观看免费| 亚洲欧美日韩无卡精品| 精品国产一区二区久久| 不卡一级毛片| 一级,二级,三级黄色视频| 日韩精品中文字幕看吧| 极品教师在线免费播放| 91精品国产国语对白视频| 欧美老熟妇乱子伦牲交| 法律面前人人平等表现在哪些方面| 亚洲国产精品sss在线观看| 国产成人一区二区三区免费视频网站| 亚洲精品国产区一区二| 十八禁人妻一区二区| 黄色成人免费大全| 日本 欧美在线| 亚洲成人免费电影在线观看| 日本a在线网址| 成人永久免费在线观看视频| 国产精品av久久久久免费| 少妇熟女aⅴ在线视频| 最近最新中文字幕大全免费视频| 一本大道久久a久久精品| 免费看美女性在线毛片视频| 看黄色毛片网站| 嫩草影院精品99| 在线国产一区二区在线| 日韩三级视频一区二区三区| 啦啦啦观看免费观看视频高清 | 精品一区二区三区av网在线观看| 亚洲国产看品久久| www.精华液| 色综合亚洲欧美另类图片| 国产日韩一区二区三区精品不卡| 免费av毛片视频| 怎么达到女性高潮| 久久久久久大精品| 免费在线观看视频国产中文字幕亚洲| 亚洲一码二码三码区别大吗| 一二三四在线观看免费中文在| 18禁裸乳无遮挡免费网站照片 | 久久久精品国产亚洲av高清涩受| 国产亚洲精品第一综合不卡| 桃色一区二区三区在线观看| 波多野结衣av一区二区av| 自拍欧美九色日韩亚洲蝌蚪91| 啦啦啦免费观看视频1| 亚洲男人的天堂狠狠|