• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quench dynamics in 1D model with 3rd-nearest-neighbor hoppings?

    2021-03-11 08:33:24ShuaiYue岳帥XiangFaZhou周祥發(fā)andZhengWeiZhou周正威
    Chinese Physics B 2021年2期
    關(guān)鍵詞:周正

    Shuai Yue(岳帥), Xiang-Fa Zhou(周祥發(fā)),?, and Zheng-Wei Zhou(周正威),?

    1Key Laboratory of Quantum Information,Chinese Academy of Sciences,Hefei 230026,China

    2Department of Optics and Optical Engineering,University of Science and Technology of China,Hefei 230026,China

    Keywords: Kibble–Zurek mechanism,Landau–Zener transition,topological defect,topological insulator

    1. Introduction

    Kibble–Zurek mechanism (KZM) describes the nonequilibrium dynamics and the formation of defects in a system when it quenches across the critical point of a continuous phase transition at a finite rate. Around the critical point, the relaxation time of the system increases, and adiabatically traversing this point becomes impossible. Employing adiabatic-impulse approximation, KZM can predict the defect density without solving complicated differential equations. The defect production during the quench follows universal scaling laws determined solely by the universality class of the underlying phase transition, which provides an elegant method to investigate phase transition dynamics. This theory has been widely applied and verified in many studies related to the early universe,[1]classical phase transitions,[2–5]transitions of liquid helium,[2,6,7]quantum phase transitions,[8–11]etc.[12–14]Especially for quantum transitions in a 1D lattice system without symmetry breaking,the defect density is often referred to as the transition probability to excited bands when the system initially occupies the lower energy band.[15–20]

    Topological insulators have been a research hotspot in recent years.[21–25]In the most straightforward cases, they can be described by the standard band theory possessing unique topological properties.[21,22,24–27]Meanwhile, the non-trivial topology of the system can also result in many novel transport properties, which are still under active investigation. Due to their simplicity, 1D topological models are ideal platforms to investigate non-equilibrium dynamics. For instance,the KZM in Kitaev chain and Creutz ladder has been extensively considered where anomaly defect production rates are discussed after sweeping across a topological critical point.[17,28]In addition,the survival probabilities of edge Majorana fermions can even be used to distinguish different topological phases.[19,29,30]However, most of these investigations focus mainly on KZM in a 1D lattice model with only nearest-neighbor hopping.Physically,the presence of long-range hopping yields complex band structures with non-trivial topological properties. The system can exhibit richer dynamical behaviors,which deserve further investigation.

    In this work,we consider a 1D lattice model with the 3rdnearest-neighbor hopping. The system supports topological phases carrying different invariants within different parameter ranges. KZM is explicitly considered in the cases of periodic boundary conditions (PBC) and open boundary conditions(OBC).For PBC,we find that the defect production for an initial bulk states can be well described by the standard KZM scaling law. For OBC, we find the oscillation of the defect production due to the interference of the edge modes and bulk states. In addition,both the bulk states and the edge modes support a path-dependent defect production rate,which violates the universal Kibble–Zurek scaling relation.

    2. The model Hamiltonian

    The model we consider is a modified bosonic Su–Schrieffer–Heeger model with alternative long-range hopping terms. The Hamiltonian reads

    Fig.1. Diagram representation of Hamiltonian(1).

    3. Quench dynamics in periodic boundary conditions

    In the case of periodic boundaries, the system has space translational symmetry (STS). The Hamiltonian can then be block diagonalized in momentum space. To show this,we introduce a 2-component discrete Fourier transformation as

    with the even positive integer N representing the number of lattices. Here the wave vector k is constrained in the first Brillouin zone, and reads kn=4πn/N with n=?N/4,?N/4+1,...,N/4?1. Substituting Eqs.(2)and(3)into Hamiltonian(1)yields

    which can be rewritten as

    Equation(5)indicates that the Hamiltonian is composed of N/2 pairs of decoupled 2-level systems for different kn.Eigen energies of the system can be obtained by solving its characteristic polynomial and reads

    The system supports different topological phases. The boundaries between these phases can be determined by calculating the relevant excitation gaps,which disappears when

    This leads to the phase diagram shown in Fig.2. For simplicity, in the sections below, we set J3=1. For different phases,we introduce the winding number defined as

    with φk=tan?1(By/Bx). Geometrically,W describes the total number of times the vector(Bx,By)travels counter-clockwise around the point (0,0). In our system, the corresponding winding numbers of the three topologically distinct phases denoted by I,II,and III are 1,2,and 0,respectively. According to bulk-boundary correspondence, this winding number is a topological invariant which equals the number of edge states on one end of the chain with open boundaries.

    To illustrate the universal scaling law of KZM across the critical point, here we consider the transition line along with the hopping J1with fixed J0=?1 and J3=1. In this case,Eq.(7)yields

    The energy spectrum is shown in Fig.2(b). Since different wave vector k can share the same Ek(see Eq. (12)), the relevant energy eigenstates are 4-fold degenerate.

    For an initial bulk state in the lower band with fixed k,only the corresponding state in the upper band with the same k couples with it. Therefore,the system can be simplified into a set of decoupled two level systems. Equation(12)is exactly the same as the dispersion relation of Landau–Zener transition(LZT).Thus we can analytically calculate the evolution using LZ formalism[44–48](refer to Appendix A for details). The transition probability to the upper band for the eigenstate with kn=4nπ/N can then be obtained as

    Therefore, if the initial state is the equal-weighted superposition of all eigenstates with negative energies,the defect density is

    Fig.2. (a) Phase diagram of Hamiltonian (1) in J1–J0 plane. I, II, III represent different phases with the winding number 1, 2, and 0,respectively. The orange line is the quench path with fixed J0=?1. The initial and final positions are not shown since they are far away from the critical point. (b)The energy spectrum of Hamiltonian(1)with fixed J0=?1 and J3=1 in PBC.The number of lattice sites is set to be N=200. (c)Dependence of defect density on the quench time τ in PBC for a fixed quench rate J1=5t/τ (?τ ≤t ≤τ). The initial state is the equal-weighted superposition of all bulk states in the lower band. Here the green line is the defect density calculated through Eq.(14),the blue line is the numerical result. These two lines overlap with each other. (d)is the same result of(c)in common logarithmic coordinates. The red line is the KZ scaling ,which has a slope of ?1/2.

    4. Quench dynamics in open boundary conditions

    The system exhibits unusual behaviors in OBC. Due to bulk-boundary correspondence,different phase regions are divided by winding number and the degeneracy of edge states is 2 times of it. Analytical dynamics of the system can no longer be obtained easily due to the absence of STS. There exist complicated couplings between eigenstates. Especially for topological phases discussed here, the quench dynamical of the system also exhibits many new features due to the presence of edge modes. The production rate of the defect density also becomes very different from the usual KZ scaling.To show this,we start with the typical dynamical behavior of edge states.

    4.1. Defect production of edge states

    In OBC,the zero-energy edge states|φe〉are determined by

    Since the odd and even sites are decoupled in or the even sector, depending on which ends it inhabits. In the odd sector,the coefficients clcan be obtained by solving the characteristic equation

    with the solution

    The general two linear independent zero modes can be written as

    with C1and C2arbitrary constants. The existence of these edge modes can be analyzed by examining whether |q±| is larger than 1 or not,which is proved to be consistent with the discussion given by the winding number W. A similar discussion also applies to the even sector with two solutions defined as p±=1/q±. For instance,in the simplified case with J0=?1 and J3=1, we have|q+|>1>|q?|for J1<0 and|q?|>1>|q+|for J1>0,the two edge modes then read

    In Fig.3, we have plotted the defect density of the edge states along with the quench rate vq=5/τ. The initial state is set to be the equal superposition of the two edge modes. Since these modes inhabit different sectors of the chain,they decouple with each other in the adiabatic limit with longer quench time and merge into the bulk states in the upper or lower bands after across the critical point. However,in the case of the fast quench, the defect density D ~0, which confirms the above discussions.

    In the intermediate regime with |J0|<1, the above KZ dynamics can be viewed as the combination of quenching through two successive critical points. The presence of additional edge modes in phase II affects the evolution of the initial edge state. The dynamics is path-dependent and the density of defect shows very different behaviors,as will be discussed in detail in section 4.3. Especially when J0=0, the edge state is decoupled from the dynamics and remains unchanged for arbitrary quench rate vq.

    Fig.3.(a)Energy spectrum of Hamiltonian(1)in OBC with J0=?1,J3=1 and N =200. (b) Dependence of defect density of edge states on quench time in OBC.Here the quench parameter reads J1=5t/τ with ?τ ≤t ≤τ.The initial state is the equal-weighted superposition of two edge states.

    4.2. Oscillation of defect density induced by edge states

    The presence of edge states can result in the oscillation of defect density. To show this,we consider the quench dynamics for J1=5t/τ (?τ ≤t ≤τ)with fixed J0=?1 and J3=1 in OBC.The spectrum of the system is shown in Fig.3(a). We also set the initial state as an equal-weighted superposition of all negative band eigenstates and 2 edge states,

    Here |φm〉 represents the bulk eigenstate of the system with the wave vector km=4mπ/N for 1 ≤m ≤N/2 ?1. The two edge states are also denoted by |φm(?τ)〉 with m=N/2 and N/2+1,respectively.

    The defect density shown in Fig.4 exhibits an oscillation,which is caused by the interference of edge states and bulk states. Though analytical calculation is complicated in OBC,a good approximation to study such quench dynamics can be provided within the KZM paradigm. The evolution of our system quenching through the critical point can be divided into three regions,which are adiabatic,impulse,and adiabatic processes. The state of the system evolves adiabatically far away from the critical point and becomes “frozen” in the impulse region when getting close to the critical point.

    Fig.4. (a)The oscillation of defect density caused by interference between bulk states and edge states. Other parameters are the same as those of Fig.3.The initial state is the equal-weighted superposition of all negative band eigenstates and 2 edge states. (b) is the defect density of (a) in common logarithmic coordinates. The slope of the red line is ?1/2.

    where Emis the corresponding eigen-energy, cm(?τ) is the coefficients of the initial state, and γm(?τ,??t)represents the Berry phase defined by

    According to Eq.(25), we have cm(?τ)=const/=0 for 1 ≤m ≤N/2+1,and cm(?τ)=0 for m>N/2+1. The geometric phase γmis always 0 since〈φm|φm〉=1 and〈φm|˙φm〉is real.

    The evolution between ??t and ?t is considered to be“frozen”due to impulse approximation. Therefore the state of our system is redistributed at time ?t,and then evolves adiabatically again until the time τ. The oscillation period is closely related to the phase difference generated in the adiabatic regions. To illustrate this,we consider the dynamical evolution of the bulk part in Eq.(25). Within the KZM paradigm, the bulk part yields

    Fig.5. The defect density for initial bulk states. The green line is the result(30)obtained form the KZM paradigm with β =32.11. The blue line is the numerical results. Other parameters are the same as those of Fig.3.

    The last term above describes the interference within the upper band for the final wave function. Since the projected edge state|Edge+(τ)〉depends on phase θ,this results in the oscillation of defect density along with the quench time τ.Thus we can easily get the oscillation period T ?4π/5,which is clearly shown in Fig.4.

    4.3. Defect production of quenching across phase regions

    The presence of two non-trivial topological phases in the diagram allows us to explore many unusual dynamical behaviors of the system in the case of OBC. Physically, we can tune the hopping amplitudes along different paths, as shown in Fig.6(a). In these cases, the system sweeps across phase II (W =2) along different lines with two successive critical points or a critical line. The defect density reveals very complicated couplings in OBC, as we will show in detail below.Similar to the last subsection, we set the initial states as the equal-weighted superposition of all bulk states in the negative band and all existing edge states.

    In Figs.6(c)and 6(d),we have plotted the calculated result for the quench line with fixed J0=0 and J3=1. The system sweeps across phase regions I,II,I for J1=5t/τ with?τ ≤t ≤τ,as shown in Fig.6. One can see that in this case,the oscillation in the defect production disappears,and no defect is excited for initial edge modes for all τ. This indicates that the edge states in region I are also decoupled from those bulk states and new edge modes in phase II. Further analysis shows that in this case,the characteristic ratio q=0 is always possible when J0=0,which yields the edge states|φodd〉=|1〉and |φeven〉=|N〉 for arbitrary J1. When J0=0, these two states are decoupled from other lattice sites. Therefore, the initial edge states in region I do not contribute to the defect density.

    For fixed J0=1 and J3=1,our system quenches across the boundary between phase regions I and II, as shown in Fig.6(a). In this case,we have a 1D gapless surface instead of a gapless point around J1~0. In the case of PBC,the defect density D for initial bulk states in the lower band is always 1 even in the adiabatic limit. This can be understood as in the intermediate regime around J1~0, the two bands are completely decoupled. Therefore, after sweep across the critical regime, the roles of the two bands are interchanged, and all the initial bulk states are excited.

    However, for open boundaries, bulk states in the two bands can couple with each other around the gapless point k=kcdescribed by coskc=?J1/2 in the momentum space.This can be shown by considering the explicit form of the edge states. In this case,the solution of characteristic Eq.(18)reads

    When|J1|≥1 within the regime I,only one of|q+|and|q?| has module less than 1, which characterizes the wavefunction of edge mode. At the critical point|J1|=1,we have|q±|=1. The two edge modes in the regime|J1|<1 can then be written as

    Edge modes along the critical line can then be written as the combinations of gapless bulk states

    Fig.6. (a) Different quench paths shown in the phase diagram. (b) The spectrum of Hamiltonian (1) as a function of J1 with N =200,J0=0,and J3=1 in OBC.(c)shows the dependence of defect density on quench time τ in OBC with J1=5t/τ (?τ ≤t ≤τ). The initial state is the equal-weighted superposition of all bulk states in the negative band and 2 edge states. (d)is the dependence of(c)in common logarithmic coordinates, the slope of red line is ?1/2. The yellow line in(c)is the defect density for initial edge states. The conditions of(e)and(f)are the same as(b)and(c)except for fixed J0 =1. (g)The spectrum of Hamiltonian(1)as a function of J0 with N =200,J1=0,and J3=1 in OBC.(h)shows the dependence of defect density on quench time τ in OBC with J0=5t/τ (?τ ≤t ≤τ). It is plotted in common logarithmic coordinates and the slope of red line is ?1/2. The initial state is the equal-weighted superposition of all bulk states in the negative band.

    This indicates that edge states are linked with the different bulk states carrying the characteristic momentum kcwithin the regime 1 ≥J1≥?1. Therefore,any initial edge state becomes completely delocalized when we sweep across the critical line adiabatically. Meanwhile, when the initial state is set to be the superposition of the edge modes and the bulk states in the lower band, the complicated coupling between those eigenstates within the critical regime also results in the unusual oscillation behavior of the defect density for different quench time τ,as shown in Fig.6(f)(see blue line in the panel).

    For fixed J1=0 and J3=1, our system sweeps across phase regions III, II, III, whose winding numbers are 0, 2, 0,respectively.Although the initial state is pure bulk and no edge states are involved, the oscillation of D still exists, as shown in Fig.6(h). This is because that in the intermediate regime around J1=0,the system is driven to be a complicated superposition of different eigenstates. Therefore,the edge modes in phase II are not empty occupied in OBC,which thus results in the oscillation of the defect D for longer quench time τ.

    5. Conclusion and outlook

    To summarize,we have studied the quench dynamics of a 1D topological model with 3rd-nearest-neighbor hopping using both analytical and numerical methods. In PBC,we found that the defect density obeys the universal KZ scaling law when the system sweeps across the critical point. For OBC,the presence of edge modes results in many unusual dynamical features. We showed that the survival probability of the edge states could be much larger for fast quench and vanishes in the adiabatic limit. We also found the oscillation of the defect density due to the interference of edge and bulk states. In addition,the scaling law of defect production depends closely on specific quench paths,which does not follow the usual scaling law predicted by KZM.There are still open problems worthy of further investigations, such as the defect production of quench dynamics with dissipation or in higher dimensional systems, the interference of edge states and bulk states under other conditions,etc. We believe that both the answers to the above questions and the results of the current work should be valuable for understanding the unusual dynamics in the lattice system with non-trivial topology.

    Appendix A: Dispersion relation of Landau–Zener transition

    For a 2-level system with the following Hamiltonian

    LZF provides the solution to dynamical equations of this system under certain conditions. Those conditions are referred to as Landau–Zener approximations, which are summarized as follows:

    1. The perturbation parameter, i.e., diagonal elements H11=F1t and H22=F2t,in the Hamiltonian is a known,linear function of time.

    2. The energy separation of the diabatic states varies linearly with time,namely,H11?H22=(F1?F2)t=2αt.

    Fig.A1. The spectrum of the 2-level system under Landau–Zener approximations. φ1,2 are the diabatic basis,ψ1,2 are eigenstates of the Hamiltonian.

    Figure A1 is the spectrum of the 2-level system. With these approximations, the differential equations of LZT can be solved analytically,yielding LZF as[48]

    where Bfis the final coefficient of the basis vector of the upper band, H12is the coupling in the Hamiltonian matrix, and α is the rate of change of the energy separation. The dispersion relation(A1)in LZT is exactly the same as Eq.(12)and reads

    with kn=4nπ/N.

    Appendix B:KZ scaling of Hamiltonian(1)

    The defect density of a d-dimensional system quenching through an m-dimensional gapless surface is[1,6,8,9,11,49]

    where ν is the critical exponent, z is the dynamic exponent which relates spatial with temporal critical fluctuations. This KZ scaling can be observed in our system with quantum transitions. For the two quench paths shown in Fig.B1(a), their defect densities scale as τ?1/2and τ0,respectively. We calculate the defect densities in PBC numerically in Fig.B1(b),and the results fit KZ scaling quite well.

    Fig.B1. (a) The two quench paths we proposed to verify the scaling law.The left red line takes a fixed J0 =0, and the right one has a fixed J0 =1.They quench through a 0-dimensional transition point,or a one-dimensional gapless surface, respectively. (b) The dependence of defect density on quench time in common logarithmic coordinates in PBC.Other parameters are set to be N =200, J3 =1, and J1 =5t/τ with ?τ ≤t ≤τ for a fixed quench rate. The blue line represents the dependence of the defect density along with the quench rate for J0 =0, and the yellow line is the case with J0=1. In both cases,the initial states are set to be an equal-weighted superposition of all bulk states in the negative band. The slope of the red line is?1/2.

    猜你喜歡
    周正
    Floquet spectrum and universal dynamics of a periodically driven two-atom system
    On-surface synthesis of one-dimensional carbyne-like nanostructures with sp-carbon
    Influence of particle size on the breaking of aluminum particle shells
    基于AVL-FIRE的汽油機(jī)進(jìn)氣歧管仿真優(yōu)化與試驗
    天生一對
    故事會(2021年16期)2021-08-20 00:53:29
    李偉賢、葉子康、周已程、周正男作品
    大觀(2020年9期)2020-01-25 16:24:08
    “周老虎”的口頭禪:把你搞掉
    新傳奇(2017年22期)2017-07-24 15:59:47
    勻變速直線運(yùn)動規(guī)律應(yīng)用中的一類典型易錯題
    爸來到城市里
    萬馬如龍出貴州
    日韩中文字幕欧美一区二区| 天天躁夜夜躁狠狠躁躁| 国产午夜精品久久久久久| 亚洲欧美精品综合一区二区三区| 视频区图区小说| 国产成人啪精品午夜网站| 亚洲午夜精品一区,二区,三区| 超碰成人久久| 黑人欧美特级aaaaaa片| 精品第一国产精品| 日本av手机在线免费观看| 日韩中文字幕视频在线看片| 夜夜骑夜夜射夜夜干| 午夜视频精品福利| 男女床上黄色一级片免费看| 中亚洲国语对白在线视频| 国产97色在线日韩免费| 亚洲成人手机| 999久久久国产精品视频| 亚洲视频免费观看视频| 成在线人永久免费视频| 无人区码免费观看不卡 | 国产又色又爽无遮挡免费看| 精品人妻在线不人妻| 大陆偷拍与自拍| 波多野结衣一区麻豆| 黄色丝袜av网址大全| 丰满迷人的少妇在线观看| 欧美 亚洲 国产 日韩一| 999久久久国产精品视频| 美女高潮喷水抽搐中文字幕| 电影成人av| 国产97色在线日韩免费| 中文字幕人妻丝袜制服| 母亲3免费完整高清在线观看| 亚洲免费av在线视频| 国产亚洲午夜精品一区二区久久| 国产欧美日韩一区二区三| 18禁美女被吸乳视频| 国产成人一区二区三区免费视频网站| 国产1区2区3区精品| 一区二区三区激情视频| 国产精品二区激情视频| 成年人黄色毛片网站| 黄色丝袜av网址大全| 曰老女人黄片| 午夜福利一区二区在线看| 亚洲国产精品一区二区三区在线| 亚洲免费av在线视频| 国产成人精品久久二区二区免费| 黄片小视频在线播放| 日本a在线网址| 18在线观看网站| 熟女少妇亚洲综合色aaa.| 女人爽到高潮嗷嗷叫在线视频| 黄色 视频免费看| 十八禁人妻一区二区| 午夜激情久久久久久久| 成年人黄色毛片网站| 精品国产亚洲在线| 变态另类成人亚洲欧美熟女 | 一区二区三区国产精品乱码| 欧美日韩国产mv在线观看视频| 成年人午夜在线观看视频| av免费在线观看网站| 亚洲三区欧美一区| 国产精品电影一区二区三区 | 99国产精品一区二区蜜桃av | 精品国产一区二区三区四区第35| 极品少妇高潮喷水抽搐| 国产在线一区二区三区精| 97在线人人人人妻| 人妻一区二区av| 亚洲第一青青草原| 亚洲精品粉嫩美女一区| 女人久久www免费人成看片| 久久av网站| 丝袜美腿诱惑在线| 最新的欧美精品一区二区| 国产成人一区二区三区免费视频网站| 亚洲欧洲日产国产| 大片免费播放器 马上看| 777久久人妻少妇嫩草av网站| 免费看a级黄色片| 亚洲视频免费观看视频| 男女下面插进去视频免费观看| 亚洲av日韩在线播放| 亚洲欧美一区二区三区黑人| 波多野结衣一区麻豆| 亚洲第一欧美日韩一区二区三区 | 两性午夜刺激爽爽歪歪视频在线观看 | 精品国产乱子伦一区二区三区| 黑人操中国人逼视频| 黑人巨大精品欧美一区二区mp4| 涩涩av久久男人的天堂| 一区二区av电影网| 久久天躁狠狠躁夜夜2o2o| 99热网站在线观看| 国产精品一区二区在线不卡| 啦啦啦视频在线资源免费观看| 久久精品亚洲熟妇少妇任你| 另类精品久久| 欧美久久黑人一区二区| svipshipincom国产片| 中文字幕色久视频| 2018国产大陆天天弄谢| 久久久国产成人免费| 美女主播在线视频| 女人精品久久久久毛片| 大片电影免费在线观看免费| 亚洲情色 制服丝袜| 丝袜美足系列| 曰老女人黄片| 欧美 日韩 精品 国产| 精品亚洲成a人片在线观看| 欧美黄色片欧美黄色片| 香蕉丝袜av| 亚洲第一青青草原| a在线观看视频网站| 国产精品一区二区在线不卡| 久久久久久久国产电影| 亚洲自偷自拍图片 自拍| 亚洲自偷自拍图片 自拍| 久久久久久久久久久久大奶| 久久久久久久久久久久大奶| 日本一区二区免费在线视频| 欧美精品av麻豆av| 手机成人av网站| 十八禁高潮呻吟视频| 亚洲九九香蕉| 国产欧美亚洲国产| 免费观看av网站的网址| 免费看十八禁软件| 午夜老司机福利片| 欧美国产精品一级二级三级| 一级黄色大片毛片| 岛国毛片在线播放| 中文字幕色久视频| 天堂俺去俺来也www色官网| 亚洲熟妇熟女久久| 亚洲成a人片在线一区二区| 99国产精品一区二区三区| 午夜福利欧美成人| 欧美成狂野欧美在线观看| 日日夜夜操网爽| 日韩欧美国产一区二区入口| 纵有疾风起免费观看全集完整版| 亚洲欧洲精品一区二区精品久久久| 成人特级黄色片久久久久久久 | 别揉我奶头~嗯~啊~动态视频| 91精品国产国语对白视频| 丝瓜视频免费看黄片| 叶爱在线成人免费视频播放| 成人影院久久| 久久精品国产a三级三级三级| 俄罗斯特黄特色一大片| www.熟女人妻精品国产| 纯流量卡能插随身wifi吗| 精品国产乱码久久久久久男人| 国产亚洲午夜精品一区二区久久| 999久久久国产精品视频| 免费观看av网站的网址| 欧美大码av| 日韩免费av在线播放| 极品教师在线免费播放| √禁漫天堂资源中文www| 久久久精品区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 最新美女视频免费是黄的| 老熟妇仑乱视频hdxx| 久久人妻福利社区极品人妻图片| 男女高潮啪啪啪动态图| 每晚都被弄得嗷嗷叫到高潮| 欧美激情高清一区二区三区| 精品第一国产精品| 日韩成人在线观看一区二区三区| 大香蕉久久成人网| 一本久久精品| 国产不卡av网站在线观看| 亚洲专区国产一区二区| 一边摸一边做爽爽视频免费| 久久精品aⅴ一区二区三区四区| 亚洲性夜色夜夜综合| 操出白浆在线播放| 国产精品一区二区在线不卡| 曰老女人黄片| 国产精品久久久av美女十八| 女人久久www免费人成看片| 日韩大码丰满熟妇| 多毛熟女@视频| 色婷婷久久久亚洲欧美| 国产亚洲精品第一综合不卡| 亚洲av电影在线进入| 成人国语在线视频| 中文字幕精品免费在线观看视频| 99国产精品免费福利视频| 国产97色在线日韩免费| 每晚都被弄得嗷嗷叫到高潮| 久久精品国产亚洲av高清一级| 国产aⅴ精品一区二区三区波| 狠狠精品人妻久久久久久综合| 黄频高清免费视频| 精品少妇久久久久久888优播| 丁香六月天网| 波多野结衣一区麻豆| 亚洲va日本ⅴa欧美va伊人久久| 黄片小视频在线播放| 桃花免费在线播放| 美女视频免费永久观看网站| 人成视频在线观看免费观看| 美国免费a级毛片| 久久天堂一区二区三区四区| 91麻豆av在线| 亚洲全国av大片| 亚洲黑人精品在线| 大片免费播放器 马上看| av视频免费观看在线观看| 久久这里只有精品19| 欧美日韩av久久| 国产午夜精品久久久久久| 亚洲精品国产一区二区精华液| 欧美日韩亚洲高清精品| 一级片免费观看大全| 啦啦啦在线免费观看视频4| 精品视频人人做人人爽| 在线观看免费午夜福利视频| 国产精品国产高清国产av | 亚洲五月婷婷丁香| 午夜福利影视在线免费观看| 国产精品.久久久| 色综合欧美亚洲国产小说| 亚洲精品国产区一区二| 亚洲国产欧美一区二区综合| 午夜91福利影院| 久久天堂一区二区三区四区| 久久久久国产一级毛片高清牌| 蜜桃国产av成人99| 亚洲黑人精品在线| 欧美日韩国产mv在线观看视频| 亚洲精品一二三| 首页视频小说图片口味搜索| 亚洲 国产 在线| 久久精品91无色码中文字幕| 不卡av一区二区三区| 99在线人妻在线中文字幕 | 欧美日韩av久久| 国产成人精品在线电影| 中文字幕最新亚洲高清| 国产在线观看jvid| 麻豆av在线久日| 桃花免费在线播放| 色老头精品视频在线观看| 亚洲精品美女久久久久99蜜臀| 一级片'在线观看视频| 亚洲 国产 在线| 国产黄色免费在线视频| 一边摸一边抽搐一进一出视频| 国产午夜精品久久久久久| 国产精品欧美亚洲77777| 日韩制服丝袜自拍偷拍| 国产精品成人在线| 国产精品久久久久久精品电影小说| 欧美日韩中文字幕国产精品一区二区三区 | 色播在线永久视频| a级片在线免费高清观看视频| 成人国产av品久久久| 18在线观看网站| 国产成+人综合+亚洲专区| 亚洲久久久国产精品| 熟女少妇亚洲综合色aaa.| 久久精品国产a三级三级三级| 青草久久国产| 亚洲欧美精品综合一区二区三区| 最近最新中文字幕大全免费视频| 欧美乱码精品一区二区三区| www.999成人在线观看| 一级片'在线观看视频| 丝瓜视频免费看黄片| 国产色视频综合| 不卡av一区二区三区| 女人久久www免费人成看片| 最新美女视频免费是黄的| 精品一区二区三卡| 在线av久久热| 日韩欧美国产一区二区入口| 操出白浆在线播放| 老司机靠b影院| 中亚洲国语对白在线视频| 我要看黄色一级片免费的| 国产一区二区激情短视频| 中文字幕最新亚洲高清| 在线永久观看黄色视频| 欧美另类亚洲清纯唯美| 日韩视频在线欧美| 久久久久国产一级毛片高清牌| 另类亚洲欧美激情| 久久久久国产一级毛片高清牌| 韩国精品一区二区三区| 国产欧美日韩综合在线一区二区| 超碰97精品在线观看| 色精品久久人妻99蜜桃| 777久久人妻少妇嫩草av网站| 中文字幕人妻丝袜制服| 久久精品亚洲精品国产色婷小说| 老司机影院毛片| 久久青草综合色| 午夜福利一区二区在线看| 成年女人毛片免费观看观看9 | 国产不卡一卡二| 老司机午夜十八禁免费视频| 999久久久国产精品视频| 久久性视频一级片| 激情视频va一区二区三区| 亚洲黑人精品在线| 精品福利观看| 亚洲精品粉嫩美女一区| 国产麻豆69| 80岁老熟妇乱子伦牲交| 少妇的丰满在线观看| 亚洲精品在线观看二区| 性少妇av在线| 国产在线一区二区三区精| 美女主播在线视频| 在线亚洲精品国产二区图片欧美| 亚洲色图av天堂| 久久中文字幕一级| 久久精品亚洲精品国产色婷小说| 91av网站免费观看| 一本大道久久a久久精品| 一个人免费在线观看的高清视频| 精品卡一卡二卡四卡免费| 成年人免费黄色播放视频| 91老司机精品| 91精品三级在线观看| 久久国产精品人妻蜜桃| 国产一卡二卡三卡精品| 丰满迷人的少妇在线观看| 热99久久久久精品小说推荐| 久久ye,这里只有精品| 午夜福利乱码中文字幕| 亚洲国产中文字幕在线视频| 午夜福利一区二区在线看| 美女扒开内裤让男人捅视频| 久热这里只有精品99| 精品久久蜜臀av无| 国产真人三级小视频在线观看| 国产精品亚洲av一区麻豆| 国产深夜福利视频在线观看| 99久久精品国产亚洲精品| 欧美+亚洲+日韩+国产| 别揉我奶头~嗯~啊~动态视频| 国产无遮挡羞羞视频在线观看| 久久精品成人免费网站| 亚洲五月色婷婷综合| av超薄肉色丝袜交足视频| a级毛片黄视频| 久久精品国产亚洲av高清一级| 我要看黄色一级片免费的| 久久人妻福利社区极品人妻图片| av不卡在线播放| 亚洲九九香蕉| 久久精品亚洲熟妇少妇任你| cao死你这个sao货| 亚洲精品一卡2卡三卡4卡5卡| 人成视频在线观看免费观看| 岛国在线观看网站| 一级片免费观看大全| 欧美日韩精品网址| 午夜福利在线观看吧| 水蜜桃什么品种好| 亚洲精品自拍成人| 日韩一区二区三区影片| 亚洲色图 男人天堂 中文字幕| 一区二区三区激情视频| 免费观看a级毛片全部| 老汉色∧v一级毛片| 青草久久国产| 亚洲国产成人一精品久久久| 无人区码免费观看不卡 | 99久久99久久久精品蜜桃| 亚洲av电影在线进入| 色播在线永久视频| 国产男女超爽视频在线观看| 国产精品久久久久成人av| 日本a在线网址| 国产亚洲精品第一综合不卡| 老司机午夜福利在线观看视频 | 热99re8久久精品国产| www.自偷自拍.com| 国产精品亚洲av一区麻豆| 国产成人系列免费观看| 国产成人啪精品午夜网站| 久久久精品免费免费高清| av一本久久久久| 国产精品免费一区二区三区在线 | 亚洲午夜理论影院| 久久人妻熟女aⅴ| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜福利视频在线观看免费| 婷婷丁香在线五月| 午夜福利一区二区在线看| 欧美精品av麻豆av| 欧美黑人欧美精品刺激| 99国产精品99久久久久| 香蕉丝袜av| 精品人妻熟女毛片av久久网站| 色尼玛亚洲综合影院| 国产又色又爽无遮挡免费看| 午夜成年电影在线免费观看| 亚洲视频免费观看视频| 一级毛片女人18水好多| 视频区欧美日本亚洲| 午夜91福利影院| 狠狠婷婷综合久久久久久88av| 欧美人与性动交α欧美软件| 久久久久久久久久久久大奶| 天堂俺去俺来也www色官网| 如日韩欧美国产精品一区二区三区| 亚洲成人免费电影在线观看| 欧美日韩一级在线毛片| 亚洲美女黄片视频| 国产亚洲午夜精品一区二区久久| 美女高潮喷水抽搐中文字幕| aaaaa片日本免费| 三上悠亚av全集在线观看| 亚洲人成伊人成综合网2020| 欧美精品高潮呻吟av久久| 国产激情久久老熟女| 久久毛片免费看一区二区三区| 9色porny在线观看| 久久久国产精品麻豆| 美国免费a级毛片| 久久精品国产亚洲av高清一级| 美女国产高潮福利片在线看| 丝袜人妻中文字幕| 欧美 日韩 精品 国产| 一区二区av电影网| 欧美在线黄色| 精品第一国产精品| 久久精品人人爽人人爽视色| 又黄又粗又硬又大视频| 久久免费观看电影| 每晚都被弄得嗷嗷叫到高潮| 女人精品久久久久毛片| 精品人妻在线不人妻| 久久人人爽av亚洲精品天堂| 久久久久久亚洲精品国产蜜桃av| 欧美在线黄色| 国产一区二区 视频在线| 美女高潮到喷水免费观看| 一区二区三区乱码不卡18| 亚洲欧美一区二区三区黑人| 日韩一区二区三区影片| bbb黄色大片| tube8黄色片| 久久久精品94久久精品| 一二三四社区在线视频社区8| 久久国产亚洲av麻豆专区| 日韩视频一区二区在线观看| 9热在线视频观看99| 十八禁人妻一区二区| 中文字幕制服av| 桃花免费在线播放| 国产免费av片在线观看野外av| 人人妻人人添人人爽欧美一区卜| 俄罗斯特黄特色一大片| 国产精品1区2区在线观看. | 两性午夜刺激爽爽歪歪视频在线观看 | 国产真人三级小视频在线观看| 亚洲欧洲精品一区二区精品久久久| www.999成人在线观看| 亚洲av片天天在线观看| 亚洲黑人精品在线| 国产成人欧美| 国产精品亚洲av一区麻豆| 久久精品国产亚洲av香蕉五月 | 三上悠亚av全集在线观看| 日韩大片免费观看网站| 国产免费av片在线观看野外av| 久久青草综合色| 国产有黄有色有爽视频| 黑人巨大精品欧美一区二区mp4| 欧美日韩一级在线毛片| 巨乳人妻的诱惑在线观看| 制服人妻中文乱码| 欧美日韩中文字幕国产精品一区二区三区 | 丁香六月天网| 国产人伦9x9x在线观看| 久久精品人人爽人人爽视色| 手机成人av网站| 国产av又大| 亚洲精品在线观看二区| 成人18禁在线播放| 国产欧美亚洲国产| www日本在线高清视频| 汤姆久久久久久久影院中文字幕| 亚洲 国产 在线| av网站在线播放免费| 深夜精品福利| 亚洲专区字幕在线| 大香蕉久久成人网| 极品少妇高潮喷水抽搐| 亚洲精品国产色婷婷电影| 黄色视频不卡| 欧美国产精品va在线观看不卡| 18在线观看网站| 自线自在国产av| 精品午夜福利视频在线观看一区 | √禁漫天堂资源中文www| 日本黄色日本黄色录像| 在线十欧美十亚洲十日本专区| 91国产中文字幕| 精品亚洲成a人片在线观看| 黄色丝袜av网址大全| 黄色视频不卡| 激情在线观看视频在线高清 | 啦啦啦视频在线资源免费观看| 亚洲精品中文字幕一二三四区 | 最新在线观看一区二区三区| 另类亚洲欧美激情| 亚洲av成人一区二区三| 国产精品 国内视频| 18禁观看日本| 国产亚洲欧美精品永久| 国产午夜精品久久久久久| 女性被躁到高潮视频| 国产欧美日韩一区二区精品| 在线观看一区二区三区激情| 天堂8中文在线网| 国产亚洲精品久久久久5区| 午夜两性在线视频| 女人精品久久久久毛片| 国产精品免费一区二区三区在线 | 亚洲专区国产一区二区| 午夜老司机福利片| 少妇被粗大的猛进出69影院| 热re99久久国产66热| 最近最新免费中文字幕在线| 乱人伦中国视频| 免费av中文字幕在线| 成人亚洲精品一区在线观看| 又紧又爽又黄一区二区| 老司机午夜十八禁免费视频| 1024香蕉在线观看| 日韩免费高清中文字幕av| 91国产中文字幕| 一个人免费看片子| 黄色怎么调成土黄色| 男女免费视频国产| 亚洲国产欧美日韩在线播放| 人妻久久中文字幕网| 亚洲熟妇熟女久久| 精品福利观看| 国产麻豆69| kizo精华| 国产成+人综合+亚洲专区| 久久九九热精品免费| 丁香欧美五月| 国产av国产精品国产| 人成视频在线观看免费观看| 久久人人97超碰香蕉20202| 多毛熟女@视频| 久久国产精品大桥未久av| 午夜两性在线视频| 亚洲精品乱久久久久久| 日本精品一区二区三区蜜桃| 五月天丁香电影| 亚洲人成电影免费在线| 久久精品国产亚洲av香蕉五月 | 99国产精品一区二区蜜桃av | 午夜福利免费观看在线| 国产精品免费视频内射| 日韩一卡2卡3卡4卡2021年| 欧美激情 高清一区二区三区| 中文字幕精品免费在线观看视频| 国产欧美日韩一区二区精品| 一区福利在线观看| 亚洲国产欧美在线一区| 一进一出好大好爽视频| 国产成+人综合+亚洲专区| 丝袜人妻中文字幕| 欧美精品高潮呻吟av久久| 亚洲色图综合在线观看| av网站免费在线观看视频| 乱人伦中国视频| 国产精品一区二区免费欧美| 国产成人精品无人区| 丝瓜视频免费看黄片| 精品第一国产精品| 国产成人精品久久二区二区91| 伊人久久大香线蕉亚洲五| 久久影院123| 免费观看人在逋| 999精品在线视频| 国产亚洲欧美精品永久| 亚洲人成77777在线视频| 久久久久久免费高清国产稀缺| 精品久久蜜臀av无| 性高湖久久久久久久久免费观看| 色婷婷久久久亚洲欧美| 午夜老司机福利片| 深夜精品福利| 亚洲色图av天堂| e午夜精品久久久久久久| 一二三四社区在线视频社区8| 精品福利观看| 女人精品久久久久毛片| 国产一区二区三区综合在线观看| 亚洲欧美精品综合一区二区三区| 成人国产av品久久久| 99精品在免费线老司机午夜| 久久精品91无色码中文字幕| 欧美精品高潮呻吟av久久| 午夜福利视频精品| 成人手机av|