• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Identification of denatured and normal biological tissues based on compressed sensing and refined composite multi-scale fuzzy entropy during high intensity focused ultrasound treatment?

    2021-03-11 08:34:34ShangQuYan顏上取HanZhang張含BeiLiu劉備HaoTang湯昊andShengYouQian錢盛友
    Chinese Physics B 2021年2期
    關(guān)鍵詞:劉備

    Shang-Qu Yan(顏上取), Han Zhang(張含), Bei Liu(劉備), Hao Tang(湯昊), and Sheng-You Qian(錢盛友),?

    1School of Physics and Electronics,Hunan Normal University,Changsha 410081,China

    2College of Mathematics and Physics,Hunan University of Arts and Science,Changde 415000,China

    Keywords: compressed sensing,high intensity focused ultrasound(HIFU)echo signal,multi-scale fuzzy entropy,refined composite multi-scale fuzzy entropy

    1. Introduction

    High intensity focused ultrasound (HIFU) therapy is a non-invasive tumor treatment technology in clinical medicine.[1,2]It focused the ultrasonic energy on the irradiation region,which leads to cancer cell death in the target region without damage to the surrounding normal cell.[3,4]Therefore,it is essential to monitor the effect of HIFU treatment to ensure the safety and efficiency of HIFU treatment. At present,computed tomography(CT),magnetic resonance imaging(MRI),ultrasound images,and ultrasound signals are usually used for HIFU treatment monitoring.[5–8]However,the CT is based on x-ray technology,and the ionizing radiation of x-ray is harmful to the human body. The MRI scan takes a long time and is sensitive to the patient’s body movement, which is easy to produce artifacts. The ultrasound images are converted from the ultrasound signals, and part of the information will be lost during the conversion process, resulting in an inaccurate diagnosis.[9]The ultrasound signals have become the research hotspot field due to their good accuracy,real-time performance,low cost,and strong compatibility.[10]In this paper,the method proposed is directly based on HIFU echo signals and the nonlinear characteristics of HIFU echo signals.

    During HIFU treatment, the HIFU echo signals are polluted by noise because of the experimental environment and operations,so the signals should be denoised before any other processing. In recent years, many researchers have conducted denoising studies on nonlinear time series. Inspired by Donoho,[11]Chen et al.,[12]and Ramdas et al.,[13]the denoising method of HIFU echo signals based on compressed sensing (CS) is proposed. CS can transform the signal from the time domain to the sparse domain and then reconstruct the signal, which can retain the useful information of the signal and remove the noise.[14,15]

    The HIFU echo signal is nonlinear. When biological tissues are denatured,some characteristics of the HIFU echo signal change.Biological tissues exhibit different nonlinear characteristics due to denaturation.In order to extract the nonlinear characteristics of biological tissues, the researchers initially analyzed the sample entropy (SE) but encountered difficulty,because SE involved any two coarse-grained time series whose similar distance exceeds a fixed value for calculation, which may easily lead to instability of SE.[16]Other researchers proposed approximate entropy(AE)for analysis. However,when the data length of the signal is short,AE is lower than the expected value,and the correlation is poor.[17,18]In order to solve these shortcomings,fuzzy entropy(FE)is proposed. FE introduces an exponential function to determine the similarity between two arbitrary time series. However,FE still reflects the complexity and irregularity of the signal on a single scale,and it is difficult to reflect all the characteristics of the signal.[19,20]So a method called multi-scale fuzzy entropy (MFE) is proposed to solve this problem.[21–23]At the same time,with the scale factor increases, the length of the time series becomes shorter, resulting in a sudden change of MFE. In order to alleviate this drawback, inspired by Fadlallah et al.,[24]Wu et al.,[25,26]and Zheng et al.,[27]a new nonlinear analysis algorithm, called refined composite multi-scale fuzzy entropy(RCMFE),is proposed. RCMFE averages MFE to reduce the entropy fluctuation and the generation of uncertain entropy,thereby improving the stability and reliability of MFE.

    In this paper, it is proposed to use CS and RCMFE to identify denatured porcine tissues. Firstly, CS is used to denoise the HIFU echo signal. Then RCMFE is used to analyze the denoised HIFU echo signal to obtain the nonlinear difference between normal and denatured porcine tissues, to better monitor and evaluate HIFU treatment to ensure its safety and effectiveness, and in the clinical direction to provide certain help for the doctor.

    2. Theory

    2.1. Compressed sensing

    In 2006, Donoho proposed the compressed sensing(CS)theory, which suggested that if the signal is sparse or nearly sparse,it can be reconstructed by sampling points much lower than the requirements of the Nyquist sampling theorem.[11]CS theory mainly includes the following three parts:

    1) Sparse representation of signal: when a signal is not sparse in the time domain, the one-dimensional signal XN×1should be converted into a sparse domainΨ,which is K-sparse in the sparse domain Ψ (K ?N). The process is

    where f is the sparse representation of X in the sparse domain;Ψ is the sparse domain;X is the N×1 dimensional signal.

    Discrete cosine transform (DCT) and fast Fourier transform(FFT)are commonly used to obtain the sparse expression of the original signal X in the sparse domain Ψ. In this paper,FFT is used to obtain the sparse expression f.

    2)Compression observation of signal: an appropriate observation matrix Φ is selected for observation,and the observation value y={y1,y2,...,yM}is obtained. The process is

    where Φ is the M×N dimension observation matrix; M is the data length of the original signal after down-sampled; Θ is the perception matrix. Both the observation matrix Φ and the perception matrix Θ need to satisfy the restricted isometry property(RIP).[28]

    Usually,the Gaussian random observation matrix can become the observation matrix Φ. However, in practical engineering applications, although the Gaussian random observation matrix has good uncorrelation, its unstructured nature causes problems that are difficult to implement and increase the computational complexity, which slows down the reconstruction process. Therefore, inspired by the structured principle, a sparse cyclic structured matrix with low complexity is constructed, which is easy to implement and has high uncorrelation.[29]The construction process is as follows:

    Step 1.Firstly, a 1×N dimensional zero-row vector O is constructed,and then a diagonal matrix E of N×N dimensional only containing±1 is constructed,where N is the data length of the original signal.

    Step 2.The K positions of the zero vector O are randomly selected,and 0 is changed to 1(K <N)to obtain a 0–1 sparse vector A,and then the right cyclic displacement of A is M bits to obtain a sparse matrix A1. Where each right cyclic displacement is saved as a row in A1, and the final size of A1is M×N. M is the data length of the original signal after the down-sampled.

    Step 3.The sparse matrix A1is multiplied by the random diagonal matrix E to obtain the observation matrix Φ.

    3) Reconstruction of signal: the observation value y and the reconstruction algorithm are used to obtain the reconstructed signal. In this paper, the reconstruction algorithm used regularized orthogonal matching pursuit(ROMP).Compared with orthogonal matching pursuit(OMP),the advantage of the ROMP algorithm is that K atoms can be selected in each iteration, and the atoms selected each time can be screened again through the regularization principle to remove atoms with lower energy and improve accuracy.[30,31]

    2.2. Multi-scale fuzzy entropy

    The concept of multi-scale is introduced based on fuzzy entropy,and it is used to describe the complexity of time series on different time scales. The calculation method is as follows:

    1)The original time series X ={x1,x2,...,xb,...,xN}is subject to coarse-grained conversion on the original time series to obtain a new sequence

    2) The embedding dimension m is determined, and the sequence is spatially reconstructed

    where μ =(x,r)is a fuzzy membership function in exponential form,r and 2 are the width and gradient of the boundary,respectively.

    5)Am(r)is a sub-function of the fuzzy function,which is defined as

    6) Similarly, the embedding dimension of the model is determined to be m+1,and repeat the steps 1)–step 5)to get Am+1(r).

    7)The multi-scale fuzzy entropy of the time series is defined as follows:

    2.3. Refined composite multi-scale fuzzy entropy

    As the scale factor τ increased,the length of the sequence decreased,and multi-scale entropy calculation of the short sequence may cause sudden changes. Therefore,Wu et al. proposed a new method called RCMSE to improve the accuracy of MSE.[26]In this paper,we introduced the concept of refined composite into MFE,then CMFE and RCMFE are proposed.The CMFE value is calculated by

    CMFE defines the average value of the logarithm in MFE.Compared with MFE, CMFE algorithm has higher estimation accuracy. However,in the process of CMFE calculation,the probability of generating uncertain entropy is relatively greater. Therefore,RCMFE is proposed to solve this problem.The algorithm is as follows:

    2.4. Intra-class distance and inter-class distance

    Inspired by Kira and Rendell, we used intra-class distance and inter-class distance as evaluation indicators.[32]The intra-class distance and the inter-class distance are widely used as indicators for feature selection of image recognition,biological information recognition,and gear wear signal recognition.[33,34]The compactness and separability of tissues status are better when the intra-class distance is smaller, and the inter-class distance is larger.

    The calculation formulas of the intra-class distance and the inter-class distance are as follows:[32]

    where{a(i)|i=1,2,...k}is the sample set for each mode in n-dimensional space, then m1kand m2kare the k-th components of two types of the sample sets.

    3. Experimental methods and results

    3.1. Experimental system

    The HIFU experimental system is shown in Fig.1. Before the experiment, the experiment environment and fresh porcine muscle tissues should be prepared. The 95%ethanol was mixed with povidone at a ratio of 4:1, then the mixture was poured into a water tank and mixed with water at a ratio of 1:20 to remove oxygen,and waited an hour before the experiment to stabilize the mixture.The fresh porcine muscle tissues were fixed on an acoustic rubber plate and immersed in the mixture under the HIFU source(PRO2008,Shenzhen,China).The position change of the HIFU irradiation target region can be controlled by a 3D position system of the computer. At the top of the HIFU transducer,a channel allowed the passage of a hydrophone probe(FOPH2000,Leutenbach,DE).The temperature of porcine tissues was measured by the thermocouple(DT-3891G,Shenzhen,China)to estimate the degree of injury in the HIFU treatment target region. The HIFU echo signals were received by a hydrophone probe,and then they were amplified by a broadband signal amplifier and sent to a digital oscilloscope (MDO3032, Tektronix, USA) for observation and preservation. In this paper,the central frequency of the HIFU echo signal is 1.39 MHz, the second harmonic frequency is 2.78 MHz, and the number of data points is 10000. The 90 groups of HIFU echo signals are obtained from 10 groups of fresh porcine muscle tissues,and it consists of 45 normal status and 45 denatured status. The HIFU echo signals are polluted by noise due to the influence of measuring equipment and environmental factors,so these signals should be denoise first.

    Fig.1. Experimental system.

    3.2. HIFU echo signal denoising based on compressed sensing

    The sparsity of signal is one of the preconditions for using compressed sensing. However, the actual signal is not sparse in the time domain,so it is necessary to use Eq.(1)to convert the non-sparsity signal into the sparse signal. Figure 2(a) is the waveform and spectrum of HIFU echo signal in normal status. It can be seen that the signal waveform is not sparse and cannot be performed with compressed sensing.Therefore,FFT is used to transform the HIFU echo signal from the time domain to the spectrum. The central frequency and the second harmonic can be observed clearly from the spectrum. Although there are other noise frequencies,these amplitudes are small, and the condition of approximate sparsity can be met.Therefore, the spectrum is used as the sparse domain Ψ for compressed sensing. We take 20% of the original signal data for reconstruction. In order to show the superiority of the CS method,the wavelet denoising method and empirical mode decomposition (EMD) denoising method are used for comparison.In the wavelet denoising method,the’sym6’is selected as the wavelet basis for five-layer decomposition, and ‘rigorous SURE’is selected for threshold estimation.

    Fig.2. The waveform and spectrum of HIFU echo signal and its denoising signal. (a)the HIFU echo signal;(b)the CS denoising;(c)the wavelet denoising;(d)the EMD denoising.

    Figures 2(c) and 2(d) show the waveform and spectrum after wavelet denoising and EMD denoising,respectively,and it can be seen that noises still exist in the low-frequency part of these spectrums. Because of these low-frequency noises,their waveforms are different from Fig.2(b). The wavelet denoising effect is depended on the wavelet basis and decomposition layer number. There is an end-point effect in the EMD denoising method, which leads to a poor denoising effect near the center frequency and the second harmonic.

    As shown in Fig.2(b), the spectrum after CS denoising only keeps the main characteristic. Therefore, MFE and RCMFE of the HIFU echo signals after CS denoising are extracted for further research.

    3.3. Simulation analysis of MFE and RCMFE

    This section compares MFE with RCMFE for the white Gaussian noise of the 10000-point data. We selected the embedding dimension m=3, 4, 5, similar tolerance r =0.1×standard deviation of the time series,and delay time as 1. Figure 3 shows the difference between MFE and RCMFE of the simulated signals under various scale factors.

    Fig.3. MFE and RCMFE of white Gaussian noise under various scale factors. (a)m=3;(b)m=4;(c)m=5.

    Figures 3(a)–3(c) are the entropy values of the simulated signals with embedding dimension m = 3,4,5.When the scale factor increases,the entropy fluctuation range increases,and RCMFE reduces the entropy fluctuation relative to MFE,which makes it decline steadily and improves the stability and reliability. Table 1 shows the standard deviation of the three embedding dimensions, and it can be seen from the table that RCMFE has a smaller standard deviation than MFE.

    Table 1. Results of the standard deviation.

    3.4. Selection of appropriate embedding dimension

    To analyze the most appropriate embedding dimension m in the denoised HIFU echo signals, we used 18 groups of denoised HIFU signals (9 groups of denatured status and 9 groups of normal status) to compare the entropy with three embedding dimensions. Figure 4 compares MFE and RCMFE with three embedded dimensions under scale factor 1–20,and the embedded dimensions of each row are the same.As shown in Fig.4,when the embedded dimension m increases,the entropy fluctuation of MFE and RCMFE increases,but RCMFE reduces the fluctuation of entropy, which means that the improvement is effective. When the embedded dimension is 3,the entropy difference between denatured and normal tissues is greater than that of the other two embedding dimensions,and the variance is also smaller than the other two embedding dimensions. Therefore,in the follow-up study,the embedding dimension m takes 3 as the most appropriate embedding dimension.

    3.5. MFE and RCMFE under various scale factor

    In this section, MFE and RCMFE of 90 groups of denoised HIFU echo signals are used for comparison and analysis,including 45 groups of denatured status and 45 groups of normal status.Where the embedding dimension m=3,similar tolerance r=0.1 standard deviation of the HIFU echo signal and delay time is 1. Figure 5 is the MFE and RCMFE of normal and denatured tissues under various scale factors. It can be seen that MFE or RCMFE parameters of normal and denatured tissues are distinguishable to some extent under various scale factors. In Fig.5(b), there are relatively few overlapping points of RCMFE for the two statuses,which proves that RCMFE has a stronger aggregation capacity and nonlinearity than MFE, and it is relatively compact. However, this is not sufficient to fully determine that RCMFE is better than MFE in distinguishing tissues status,so the intra-class distance and the inter-class distance are introduced to demonstrate the superiority of RCMFE.

    Fig.4. MFE and RCMFE with different embedding dimensions. (a)m=3;(b)m=4;(c)m=5.

    Fig.5. MFE and RCMFE of denoised HIFU echo signals from normal and denatured tissues under various scale factors. (a) MFE;(b)RCMFE.

    3.6. The intra-class distance and the inter-class distance of MFE and RCMFE

    Figures 6 and 7 show the intra-class distance and interclass distance of MFE and RCMFE under scale factor 1-20.The intra-class distance and the inter-class distance can reflect compactness and separability. If the intra-class distance is smaller and inter-class distance is larger,it proves that compactness and separability are better. It can be seen from Fig.6 that the intra-class distance of RCMFE is significantly smaller than that of MFE,and the intra-class distance of RCMFE is the smallest under a scale factor of 16. Figure 7 shows a comparison of inter-class distance. It can be seen that the inter-class distance of RCMFE is higher than that of MFE,and the value under a scale factor of 16 is the largest. Therefore, when the scale factor is 16, RCMFE’s intra-class distance is the smallest, and the inter-class distance is the largest, which can distinguish the denatured tissues from normal tissues.

    Fig.6. Intra-class distance between MFE and RCMFE under various scale factors.

    Fig.7. Inter-class distance between MFE and RCMFE under various scale factors.

    4. Conclusion

    A novel method based on CS and RCMFE is proposed to identify the denatured and normal porcine tissues during HIFU treatment in this paper. CS with an improved observation matrix is used to denoise the HIFU echo signal,which can obtain a better denoising effect comparing to wavelet and EMD methods. Considering the weakness of MFE,refined composite is introduced into MFE,and RCMFE is proposed as a characteristic parameter. The influences of embedding dimensions and scale factors on MFE and RCMFE are analyzed. Through the calculation of them for the simulated signals and the denoised HIFU echo signals, the results show that RCMFE overcomes the disadvantage of large fluctuation,and RCMFE has smaller intra-class distance and larger inter-class distance than MFE,which has better compactness and separability in identifying tissues status. In addition, when the embedding dimension is selected as 3,and the scale factor is selected as 16,the optimal identification effect can be obtained during HIFU treatment.The results of this study revealed the differences in RCMFE between normal and denatured porcine tissues during HIFU treatment,which helps doctors to evaluate the treatment effect more accurately.

    猜你喜歡
    劉備
    修德箴言
    Investigation of the interaction between NS-DBD plasma-induced vortexes and separated flow over a swept wing
    讀懂劉備
    海峽姐妹(2020年11期)2021-01-18 06:16:24
    三顧茅廬(中)
    劉備與徐州
    劉備托孤
    快樂語文(2017年12期)2017-05-09 22:07:40
    相面
    意林(2016年24期)2017-01-04 21:58:26
    徐庶以馬試劉備
    劉備的愛
    小說月刊(2014年2期)2014-04-18 14:06:43
    劉備別具特色的用人之道
    軍事歷史(1996年1期)1996-08-20 07:15:32
    精品日产1卡2卡| 在线观看66精品国产| 国产又黄又爽又无遮挡在线| 91麻豆av在线| 亚洲成a人片在线一区二区| 国产淫片久久久久久久久 | 在线观看午夜福利视频| 亚洲av第一区精品v没综合| 丰满乱子伦码专区| 女生性感内裤真人,穿戴方法视频| 亚洲综合色惰| www.色视频.com| 国产蜜桃级精品一区二区三区| 亚洲av五月六月丁香网| 好看av亚洲va欧美ⅴa在| 午夜视频国产福利| 国产伦精品一区二区三区四那| 亚洲在线自拍视频| 久久国产精品人妻蜜桃| 国产aⅴ精品一区二区三区波| 在线播放国产精品三级| 别揉我奶头 嗯啊视频| 亚洲欧美精品综合久久99| 婷婷丁香在线五月| 桃色一区二区三区在线观看| 美女 人体艺术 gogo| 欧美日韩福利视频一区二区| 免费观看的影片在线观看| 国产精华一区二区三区| 一本久久中文字幕| 两个人视频免费观看高清| 男女之事视频高清在线观看| 我要看日韩黄色一级片| 淫秽高清视频在线观看| 成年女人永久免费观看视频| 久久精品影院6| 男女床上黄色一级片免费看| 久久这里只有精品中国| 美女黄网站色视频| 国产成年人精品一区二区| 久久中文看片网| 国产欧美日韩精品亚洲av| 久久人人爽人人爽人人片va | 日韩欧美精品免费久久 | 国产黄片美女视频| 国产亚洲精品av在线| 亚洲三级黄色毛片| 99久久成人亚洲精品观看| 色播亚洲综合网| 亚洲欧美日韩卡通动漫| 成人午夜高清在线视频| 亚洲精品影视一区二区三区av| 99riav亚洲国产免费| 午夜精品在线福利| 高清毛片免费观看视频网站| 毛片女人毛片| 亚洲aⅴ乱码一区二区在线播放| 午夜福利视频1000在线观看| 欧美日韩福利视频一区二区| 亚洲成a人片在线一区二区| 中文字幕免费在线视频6| 亚洲精品乱码久久久v下载方式| 国产大屁股一区二区在线视频| 精品一区二区三区av网在线观看| 午夜精品一区二区三区免费看| 亚洲中文日韩欧美视频| 欧美激情国产日韩精品一区| 亚洲av二区三区四区| 国产一级毛片七仙女欲春2| 精品人妻1区二区| avwww免费| 国产精品一区二区三区四区久久| 亚洲无线在线观看| 一夜夜www| 久久天躁狠狠躁夜夜2o2o| 99riav亚洲国产免费| 亚洲人成伊人成综合网2020| 亚洲欧美激情综合另类| bbb黄色大片| 又爽又黄无遮挡网站| 又爽又黄a免费视频| 怎么达到女性高潮| 色5月婷婷丁香| 国产精品一区二区三区四区免费观看 | 国产精品女同一区二区软件 | 日本 欧美在线| 国产人妻一区二区三区在| 美女 人体艺术 gogo| 亚洲久久久久久中文字幕| 亚洲欧美精品综合久久99| 丰满人妻熟妇乱又伦精品不卡| 国产探花在线观看一区二区| 精品久久久久久久人妻蜜臀av| 亚洲午夜理论影院| 搞女人的毛片| 午夜两性在线视频| 国产高清视频在线播放一区| av天堂在线播放| 一a级毛片在线观看| 男女床上黄色一级片免费看| or卡值多少钱| 男女视频在线观看网站免费| 1024手机看黄色片| 桃色一区二区三区在线观看| 精品99又大又爽又粗少妇毛片 | 亚洲人成网站高清观看| 欧美日本视频| 变态另类成人亚洲欧美熟女| 国产三级在线视频| 亚洲美女视频黄频| 亚洲精品色激情综合| 国产黄a三级三级三级人| 国产黄色小视频在线观看| 性色avwww在线观看| 国产麻豆成人av免费视频| 亚洲不卡免费看| 欧美最黄视频在线播放免费| 日本熟妇午夜| 一级黄色大片毛片| 婷婷精品国产亚洲av在线| avwww免费| 色综合站精品国产| 一区二区三区四区激情视频 | 欧美极品一区二区三区四区| www.熟女人妻精品国产| 人人妻人人看人人澡| 国产黄片美女视频| 神马国产精品三级电影在线观看| avwww免费| 国产亚洲欧美在线一区二区| 精品免费久久久久久久清纯| 欧美在线一区亚洲| 国产美女午夜福利| 精品午夜福利视频在线观看一区| 亚洲男人的天堂狠狠| 午夜视频国产福利| 免费无遮挡裸体视频| 日韩人妻高清精品专区| avwww免费| 淫秽高清视频在线观看| 中亚洲国语对白在线视频| 亚洲人与动物交配视频| 成人亚洲精品av一区二区| 免费在线观看日本一区| 白带黄色成豆腐渣| 两个人的视频大全免费| 美女大奶头视频| 亚洲,欧美精品.| 国产黄色小视频在线观看| 很黄的视频免费| 亚洲av电影不卡..在线观看| 窝窝影院91人妻| av天堂中文字幕网| 精品人妻偷拍中文字幕| 国产蜜桃级精品一区二区三区| 舔av片在线| 美女cb高潮喷水在线观看| 人妻久久中文字幕网| 看片在线看免费视频| 黄色一级大片看看| 两个人的视频大全免费| 草草在线视频免费看| 有码 亚洲区| 99久久无色码亚洲精品果冻| 最近在线观看免费完整版| 亚洲久久久久久中文字幕| 国产精品不卡视频一区二区 | 一区二区三区四区激情视频 | 蜜桃久久精品国产亚洲av| 免费在线观看日本一区| 亚洲av二区三区四区| 97碰自拍视频| 国产精品免费一区二区三区在线| 亚洲欧美日韩卡通动漫| 在线看三级毛片| 久久国产精品人妻蜜桃| 国产伦一二天堂av在线观看| 一区二区三区高清视频在线| 搡女人真爽免费视频火全软件 | 欧美中文日本在线观看视频| 波多野结衣巨乳人妻| 欧美日韩黄片免| 精品国产三级普通话版| 琪琪午夜伦伦电影理论片6080| 一本一本综合久久| 欧美另类亚洲清纯唯美| 午夜免费男女啪啪视频观看 | 国产人妻一区二区三区在| 九色国产91popny在线| 特级一级黄色大片| 国产乱人视频| 亚洲熟妇中文字幕五十中出| 18美女黄网站色大片免费观看| 一卡2卡三卡四卡精品乱码亚洲| 搡老熟女国产l中国老女人| 国内少妇人妻偷人精品xxx网站| 久久中文看片网| 性色avwww在线观看| 校园春色视频在线观看| 欧美激情国产日韩精品一区| 亚洲精品在线观看二区| 国产av不卡久久| www.www免费av| 别揉我奶头 嗯啊视频| 国产精品98久久久久久宅男小说| 少妇被粗大猛烈的视频| 制服丝袜大香蕉在线| 美女 人体艺术 gogo| 国产在线男女| 久久久久久九九精品二区国产| 他把我摸到了高潮在线观看| 日韩高清综合在线| 亚洲男人的天堂狠狠| 99久久九九国产精品国产免费| 色噜噜av男人的天堂激情| 超碰av人人做人人爽久久| 亚洲成a人片在线一区二区| 国产在线男女| 嫩草影视91久久| 亚洲av日韩精品久久久久久密| 给我免费播放毛片高清在线观看| 亚洲久久久久久中文字幕| 又黄又爽又免费观看的视频| 日本五十路高清| 嫩草影院精品99| 亚洲欧美激情综合另类| 国产精品人妻久久久久久| 日韩人妻高清精品专区| 亚洲无线在线观看| bbb黄色大片| 波多野结衣巨乳人妻| 好男人电影高清在线观看| 麻豆国产97在线/欧美| 国产精品嫩草影院av在线观看 | 成年人黄色毛片网站| 国产成人a区在线观看| 国内精品美女久久久久久| www.色视频.com| 桃红色精品国产亚洲av| 色尼玛亚洲综合影院| 欧美激情久久久久久爽电影| 最好的美女福利视频网| 最近视频中文字幕2019在线8| 非洲黑人性xxxx精品又粗又长| 真人做人爱边吃奶动态| 色哟哟哟哟哟哟| 久久精品影院6| 国产成人av教育| 午夜免费男女啪啪视频观看 | 亚洲三级黄色毛片| 男人舔奶头视频| 最近视频中文字幕2019在线8| 美女高潮的动态| 99国产精品一区二区三区| 人人妻,人人澡人人爽秒播| 综合色av麻豆| 免费在线观看亚洲国产| 久久久久久久久久成人| 午夜福利18| 亚洲七黄色美女视频| 亚洲avbb在线观看| av福利片在线观看| 日韩欧美三级三区| 桃红色精品国产亚洲av| 啦啦啦观看免费观看视频高清| 中文亚洲av片在线观看爽| 国产视频一区二区在线看| 国产私拍福利视频在线观看| 毛片女人毛片| 免费在线观看日本一区| 日韩人妻高清精品专区| 午夜福利免费观看在线| 两人在一起打扑克的视频| 欧美日本视频| 18禁黄网站禁片免费观看直播| 91久久精品国产一区二区成人| 如何舔出高潮| 婷婷精品国产亚洲av| 男女床上黄色一级片免费看| 给我免费播放毛片高清在线观看| 免费人成在线观看视频色| 亚洲专区中文字幕在线| 在线观看美女被高潮喷水网站 | 国产精品一区二区三区四区免费观看 | www.www免费av| 精品久久久久久久久久免费视频| 悠悠久久av| 国产精品一及| 欧美性猛交黑人性爽| 一级a爱片免费观看的视频| 此物有八面人人有两片| 亚洲成人久久性| 夜夜看夜夜爽夜夜摸| 国产黄片美女视频| 搡老熟女国产l中国老女人| 国产精品一区二区免费欧美| 成年女人看的毛片在线观看| 九色成人免费人妻av| 精品熟女少妇八av免费久了| 亚洲成av人片在线播放无| 国产真实伦视频高清在线观看 | 啪啪无遮挡十八禁网站| 精品久久久久久成人av| 变态另类成人亚洲欧美熟女| 久久中文看片网| 午夜精品久久久久久毛片777| 国产探花在线观看一区二区| 大型黄色视频在线免费观看| 成年女人永久免费观看视频| 久久99热6这里只有精品| 欧美绝顶高潮抽搐喷水| 欧美bdsm另类| 久久午夜福利片| 亚洲天堂国产精品一区在线| 身体一侧抽搐| 久久精品影院6| 久久久久性生活片| 亚洲无线观看免费| 午夜福利18| 亚洲精品影视一区二区三区av| 九色国产91popny在线| 国产高清视频在线播放一区| 亚洲最大成人av| 男人狂女人下面高潮的视频| 免费无遮挡裸体视频| 丰满人妻一区二区三区视频av| 麻豆国产av国片精品| 亚洲午夜理论影院| 亚洲国产精品999在线| 51午夜福利影视在线观看| 久久伊人香网站| 国内精品美女久久久久久| 国产精品自产拍在线观看55亚洲| 免费看日本二区| 99视频精品全部免费 在线| 亚洲国产欧美人成| 日本黄色片子视频| 免费看光身美女| 丰满的人妻完整版| 真人一进一出gif抽搐免费| 在线观看舔阴道视频| 亚洲片人在线观看| 18禁裸乳无遮挡免费网站照片| 啦啦啦韩国在线观看视频| 日本与韩国留学比较| 国产精华一区二区三区| 少妇的逼水好多| 色在线成人网| 99国产精品一区二区蜜桃av| 日本一本二区三区精品| 好男人电影高清在线观看| 午夜亚洲福利在线播放| 精品99又大又爽又粗少妇毛片 | 亚洲成人久久性| 嫩草影院精品99| 欧洲精品卡2卡3卡4卡5卡区| 色哟哟哟哟哟哟| 免费观看人在逋| 国产 一区 欧美 日韩| 日韩欧美国产一区二区入口| 成人午夜高清在线视频| 国产成人a区在线观看| 亚洲精品在线观看二区| 天天躁日日操中文字幕| 久久久久久久亚洲中文字幕 | 99精品久久久久人妻精品| 国产免费男女视频| 黄色女人牲交| 亚洲人成电影免费在线| 日本熟妇午夜| 日韩欧美三级三区| 日本撒尿小便嘘嘘汇集6| 激情在线观看视频在线高清| 欧美黑人欧美精品刺激| 很黄的视频免费| 人妻制服诱惑在线中文字幕| 日韩欧美三级三区| 午夜激情欧美在线| 日韩精品中文字幕看吧| 美女黄网站色视频| 麻豆成人午夜福利视频| 特级一级黄色大片| 免费电影在线观看免费观看| 很黄的视频免费| 免费av不卡在线播放| 久久精品影院6| 亚洲第一欧美日韩一区二区三区| 麻豆成人av在线观看| 亚洲内射少妇av| 成人亚洲精品av一区二区| 国产极品精品免费视频能看的| 亚洲性夜色夜夜综合| 亚洲avbb在线观看| 国内精品美女久久久久久| 欧美性感艳星| 丰满人妻熟妇乱又伦精品不卡| 欧美+亚洲+日韩+国产| 精品免费久久久久久久清纯| 欧美一级a爱片免费观看看| 日本与韩国留学比较| 成年版毛片免费区| 91麻豆精品激情在线观看国产| 精品一区二区三区视频在线| 亚洲最大成人中文| 欧美精品国产亚洲| x7x7x7水蜜桃| 国产黄片美女视频| 亚洲熟妇中文字幕五十中出| 国产v大片淫在线免费观看| 亚洲 欧美 日韩 在线 免费| 18禁在线播放成人免费| 亚洲天堂国产精品一区在线| 久久久久亚洲av毛片大全| 久久天躁狠狠躁夜夜2o2o| 中文字幕高清在线视频| avwww免费| 午夜激情欧美在线| 一级黄色大片毛片| 我要看日韩黄色一级片| 老女人水多毛片| 人人妻人人澡欧美一区二区| 日本 欧美在线| 在线国产一区二区在线| 久久久成人免费电影| 免费在线观看亚洲国产| 女同久久另类99精品国产91| 18禁在线播放成人免费| 亚洲在线自拍视频| 18禁黄网站禁片免费观看直播| 久久久色成人| 成人高潮视频无遮挡免费网站| 亚洲18禁久久av| 如何舔出高潮| 久久热精品热| 一边摸一边抽搐一进一小说| 亚洲成av人片在线播放无| 国产精品,欧美在线| 国产69精品久久久久777片| 亚洲国产高清在线一区二区三| 最近中文字幕高清免费大全6 | 男人和女人高潮做爰伦理| 久久久久国产精品人妻aⅴ院| 国产一区二区激情短视频| 亚洲男人的天堂狠狠| 人人妻人人澡欧美一区二区| 麻豆国产av国片精品| 网址你懂的国产日韩在线| 国产精品精品国产色婷婷| 观看免费一级毛片| 色在线成人网| 精品欧美国产一区二区三| 国语自产精品视频在线第100页| av在线天堂中文字幕| 亚洲人成网站高清观看| 日韩成人在线观看一区二区三区| 久久九九热精品免费| 伊人久久精品亚洲午夜| 精品久久久久久久久av| 高清在线国产一区| 成人三级黄色视频| 狂野欧美白嫩少妇大欣赏| 成人特级黄色片久久久久久久| 69人妻影院| 色5月婷婷丁香| 久久久久久国产a免费观看| 99久久成人亚洲精品观看| 久久欧美精品欧美久久欧美| 亚洲成av人片免费观看| 亚洲精品亚洲一区二区| 乱人视频在线观看| 精品久久久久久久久久免费视频| 91av网一区二区| 亚洲成a人片在线一区二区| 日韩免费av在线播放| 国产成人影院久久av| 免费无遮挡裸体视频| 欧美性感艳星| 中文字幕高清在线视频| 欧美精品国产亚洲| 蜜桃久久精品国产亚洲av| 国产三级在线视频| 国产人妻一区二区三区在| 亚洲 欧美 日韩 在线 免费| 最近最新免费中文字幕在线| 免费看光身美女| 日本免费a在线| 天堂网av新在线| 国产精品久久久久久精品电影| 人妻久久中文字幕网| 久久国产乱子免费精品| 在线看三级毛片| 人妻夜夜爽99麻豆av| 18美女黄网站色大片免费观看| 婷婷亚洲欧美| 观看美女的网站| 看黄色毛片网站| 床上黄色一级片| av黄色大香蕉| 他把我摸到了高潮在线观看| 亚洲av电影不卡..在线观看| 少妇人妻一区二区三区视频| 午夜激情欧美在线| 久久久久久九九精品二区国产| 俺也久久电影网| 中文亚洲av片在线观看爽| 嫩草影院入口| 免费无遮挡裸体视频| 丝袜美腿在线中文| 少妇熟女aⅴ在线视频| 亚洲最大成人av| 在线播放无遮挡| 亚洲国产欧美人成| 亚洲三级黄色毛片| 在线免费观看的www视频| 又黄又爽又刺激的免费视频.| 他把我摸到了高潮在线观看| 国产精品伦人一区二区| 亚洲真实伦在线观看| 成人性生交大片免费视频hd| 亚洲中文字幕一区二区三区有码在线看| 18美女黄网站色大片免费观看| 黄色配什么色好看| 日韩欧美免费精品| 中文字幕av在线有码专区| 亚洲内射少妇av| 国产精品野战在线观看| 亚州av有码| 国产大屁股一区二区在线视频| av欧美777| 国产成人欧美在线观看| 日韩成人在线观看一区二区三区| 热99re8久久精品国产| 免费在线观看影片大全网站| 在现免费观看毛片| 国产一区二区三区视频了| 免费观看的影片在线观看| 午夜两性在线视频| 国产亚洲精品久久久com| 全区人妻精品视频| 国产成人影院久久av| 亚洲成人免费电影在线观看| 老鸭窝网址在线观看| 国产精品一区二区三区四区免费观看 | 国产日本99.免费观看| 午夜免费成人在线视频| 国产成人av教育| 亚洲av成人不卡在线观看播放网| 午夜激情欧美在线| 亚洲专区中文字幕在线| 少妇人妻精品综合一区二区 | 黄色配什么色好看| 亚洲黑人精品在线| 黄色配什么色好看| 国产乱人伦免费视频| 性色av乱码一区二区三区2| 成人高潮视频无遮挡免费网站| av视频在线观看入口| 欧美日韩瑟瑟在线播放| 日本a在线网址| 欧美激情久久久久久爽电影| 最近中文字幕高清免费大全6 | 丰满人妻熟妇乱又伦精品不卡| 欧美午夜高清在线| 亚洲av成人精品一区久久| 五月玫瑰六月丁香| 欧美一级a爱片免费观看看| 九色成人免费人妻av| 亚洲中文日韩欧美视频| 亚洲狠狠婷婷综合久久图片| 午夜日韩欧美国产| 欧美性感艳星| 国产精品乱码一区二三区的特点| 狠狠狠狠99中文字幕| 成人高潮视频无遮挡免费网站| 女人十人毛片免费观看3o分钟| av福利片在线观看| 亚洲欧美清纯卡通| 亚洲国产高清在线一区二区三| 欧美乱妇无乱码| 精品人妻偷拍中文字幕| 国产日本99.免费观看| 亚洲欧美日韩无卡精品| 成年女人毛片免费观看观看9| 成人三级黄色视频| 亚洲avbb在线观看| 丰满的人妻完整版| 99热这里只有是精品50| 哪里可以看免费的av片| 赤兔流量卡办理| 亚洲av一区综合| 亚洲va日本ⅴa欧美va伊人久久| 精品免费久久久久久久清纯| 国产毛片a区久久久久| 亚洲精品久久国产高清桃花| 国产午夜福利久久久久久| 麻豆成人午夜福利视频| 久久精品人妻少妇| 亚洲一区高清亚洲精品| 3wmmmm亚洲av在线观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲av美国av| 丁香六月欧美| 中文字幕熟女人妻在线| 成人永久免费在线观看视频| 久久久久久久精品吃奶| 一级黄色大片毛片| 成年人黄色毛片网站| 嫩草影视91久久| 性欧美人与动物交配| 搡女人真爽免费视频火全软件 | 国产精品一区二区性色av| 久99久视频精品免费| 人人妻,人人澡人人爽秒播| 久久草成人影院| 香蕉av资源在线|