• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers?

    2021-03-11 08:34:26RunzeLi李潤澤YucaiLi李予才YuSheng盛宇andKaiyouWang王開友
    Chinese Physics B 2021年2期
    關(guān)鍵詞:潤澤

    Runze Li(李潤澤), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王開友),3,4,?

    1State Key Laboratory for Superlattices and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China

    2Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China

    3Beijing Academy of Quantum Information Sciences,Beijing 100193,China

    4Center for Excellence in Topological Quantum Computation,University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: perpendicular magnetic anisotropy,RF magnetron sputtering,ion irradiation,spin orbit torque

    1. Introduction

    Current induced magnetization switching of perpendicular magnetic anisotropy (PMA) materials by spin orbit torque is promising for the next generation magnetoresistive random access memory (MRAM).[1–4]In the heavy metal/ferromagnetic metal(HM/FM)bilayer system,the PMA is sensitive to the HM/FM interface and FM can be switched by the spin current injected from the HM layer.[5–7]The critical switching current density and charge-to-spin conversion efficiency are dependent on the PMA in the HM/FM system.[8,9]PMA of thin films can be affected by various techniques:thermal annealing,ion irradiation,or oxidation.[10–17]In the previous works,these methods all need an additional process after the thin films growth to modify PMA.Therefore,it is essential to develop new effective ways to modify PMA of thin films.

    Magnetron sputtering is a widely used method in thin films growth. Metals are generally deposited by direct current (DC) sputtering. However, for insulating target materials such as oxides and ceramics, there is a charge building up on the surface of the target with DC signal, which hinders the sputtering to proceed. By using a radio frequency(RF)source,the electrostatic charge can be discharged in each cycle, which allows the deposition of quality insulators such as AlOxand MgO. During RF magnetron sputtering, the deposited film is grounded and the target is connected to a RF power (13.56 MHz). The insulator target acts as a conductor for the RF alternating current field but also acts as an isolate for a self-induced DC field. When the target is anode,the deposited film will be irradiated by the positive ions in ignited plasma. Plasma during RF magnetron sputtering is mainly restrained near the target, thus the positive ion density on the target surface is higher than that on the deposited film surface.Even so,the magnetic properties of the deposited film can be affected by this ion irradiation. To our knowledge,few works have taken this effect into consideration.[18,19]

    In this work, we investigate how the magnetic properties could be engineered by the RF magnetron sputtering. We firstly demonstrated that the influence of ion irradiation during RF magnetron sputtering should not be neglected and PMA of the deposited film could be tailored. AlOxis widely used in the spintronic research,[1,2]so we chose AlOxas the insulator target to investigate the RF magnetron sputtering effect. Then we studied the underlying physical mechanisms of the PMA changes by SRIM simulation. Finally, the influences of RF magnetron sputtering on SOT induced magnetization switching were investigated.

    2. Method

    To investigate the influences of RF magnetron sputtering on the deposited magnetic film, we firstly deposited Ta(1)/Pt(4)/Co(0.8)/Ru(2) (the numbers are layer thicknesses in nm)thin films on thermally oxidized silicon substrates using a DC magnetron sputtering system. The AlOxlayer was subsequently deposited on these films in different RF magnetron sputtering time tRF(1–10 min) with RF power PRF=100 W. The base pressure of the sputtering system was less than 5×10?8Torr. The DC sputtering conditions for all the metallic layers were: Ar gas pressure of 0.8 mTorr and DC power of 30 W with the deposition rates between 0.01 nm/s and 0.02 nm/s. The Ar gas pressure of 2 mTorr and RF power of 100 W were used to deposit AlOxlayer with the deposition rate of 0.2 nm/min. Thus we can use the RF magnetron sputtering time tRFto represent the deposited AlOxlayer thickness.The samples were then patterned into Hall bars with the width of 10μm and the length of 50μm by standard photo lithography and Ar+ion milling,as shown in Fig.1(a). The Hall bar structure allows us to probe the ferromagnetic state of the devices by measuring the anomalous Hall effect(AHE).A small current of 100μA was used to detect the ferromagnetic states while minimizing the heating effect.

    Fig.1. (a)Schematic of the studied magnetic multilayer system and the experimental measurements set-up for the Hall bar devices with the definition of x–y–z coordinates. (b) Out-of-plane magnetization hysteresis loops measured by AHE for devices deposited AlOx layer with tRF =0, 1, 2, 3, 10 min, respectively, at fixed PRF =100 W. (c) In-plane magnetization hysteresis loops measured by VSM. (d) Magnetic coercive field HC and anisotropy field HK obtained from(b)and(c)respectively as functions of tRF.

    3. Result and discussion

    Typical magnetic parameters (coercive and anisotropy fields)were deduced from the hysteresis loops to characterize PMA.Figure 1(b)shows the AHE hysteresis loops under the out-of-plane magnetic field. Clear square magnetic hysteresis loops were obtained for all the samples,indicating that all the films exhibit good perpendicular magnetic anisotropy even after RF magnetron sputtering. The same magnitude of the AHE resistance suggests the magnetization of all the samples can be fully reversed by the vertical magnetic field continuously. However,the coercive field HCof the devices decreases from 175 Oe to 95 Oe with increasing tRFfrom 0 to 3 min,which is shown in Fig.1(d). For devices with tRFfurther increasing up to 10 min, the HCis almost unchanged. Similar results in PMA Ta/Pt/Co/Pt and Ta/Pt/Co/Ti structures were also observed(details see supplementary Fig.S1). Anisotropy field HKis defined as the required minimum external magnetic field to fully align the magnetization along the hard axis.For Ta(1)/Pt(4)/Co(0.8)/Ru(2)structure,to obtain the relation between the magnetic anisotropy field HKand the variation of tRF, the magnetic hysteresis loops with the in-plane magnetic field swept between+15000 Oe and ?15000 Oe for different samples were measured via a vibrating-sample magnetometer(VSM)at room temperature. The results are shown in Fig.1(c). Similar with HC,the determined HKdecreases dramatically initially and reduces to the half value of the sample without RF magnetron sputtering,which indicates the reduced PMA with increasing RF magnetron sputtering time. The HKthen keeps almost unchanged with tRFfurther increasing, as shown in Fig.1(d). The almost unchanged HKand HCfor the samples with tRF>3 min suggest that the impacts on the magnetic properties with further RF magnetron sputtering gradually diminish.

    To identify the reason for this phenomenon, several experiments were performed. Firstly,we excluded the oxidation of Co atoms after deposition of the AlOx,x-ray photoelectron spectroscopy(XPS)spectra of the Co layer was measured for the deposited magnetic samples. No obvious difference is observed before and after the deposition of the AlOx(details see supplementary Fig.S2), which indicates that 2 nm thick Ru layer is sufficiently thick to prevent oxidation of the Co atoms.Secondly,we removed the upper AlOxlayer on the samples by the chemical etching technique and the hysteresis loops were subsequently measured again. The influences of the RF magnetron sputtering remained,thus the effect of interfacial stress was ruled out. Finally, the measured hysteresis loops for the structure of Ta/Pt/Co/Ru with different Ru thickness tRuwere shown in supplementary Fig.S3. The magnetic properties almost keep the same between the tRu=6 nm and tRu=2 nm samples,indicating that it is not the thickness of the top layer that modifies the PMA of the deposited film. Considering that these above factors were all excluded and ion irradiation induced PMA weakness has been observed in other works,[11,20]we believe that ion irradiation induced by RF magnetron sputtering is the main reason for the PMA modification in our experiments.

    Fig.2. (a) The magnetic coercive field HC and anisotropy field HK against RF magnetron sputtering power PRF, with tRF = 2 min and tRu =2 nm. (b) HC and HK as functions of Ru layer thickness tRu,with tRF=2 min and PRF=100 W.

    The irradiation energy of Ar+ions in plasma is related to the RF power. We expect a more significant reduction of the HCand HKwhen a higher RF magnetron sputtering power is used. Besides,a thicker Ru layer tRucan screen the irradiation effect more effectively. To verify our predictions, the AlOxlayer was deposited on Ta(1)/Pt(4)/Co(0.8)/Ru(2) magnetic thin films with different power intensities PRF(40–120 W)for 2 min. The DC self-bias potential is 160 V when PRF=40 W and linearly increases to 300 V when PRF=120 W. As presented in Fig.2(a), compared with the sample without AlOxcapping layer, the HCis reduced by 15 Oe and 80 Oe with PRF= 40 W and 120 W, respectively. In Fig.2, the HKwas measured by AHE and the detailed calculation process was shown in supplementary Fig.S4. Figure 2(a) shows that the HKalso decreases with the increasing PRF. When PRF=120 W,the HKreduces to 25%of the initial HKvalue.Then, the AlOxwas deposited with the fixed PRF=100 W and tRF=2 min on Ta(1)/Pt(4)/Co(0.8)/Ru(tRu)thin films with varying Ru layer thickness from 2 nm to 6 nm. As shown in Fig.2(b), with the increase of tRu, the reduction of HCand HKinduced by RF magnetron sputtering decreases,indicating that the Ar+ions irradiation effect is gradually screened by the thicker Ru layer.

    To understand the underlying physical mechanisms of the PMA changes in our experiments, the ion irradiation in the RF magnetron sputtering process was modeled by Monte Carlo simulation programs(SRIM).[21,22]We used the grown Ta(1)/Pt(5)/Co(0.8)/Ru(2)structure for simulation. The damages in the deposited film caused by ion irradiation have two major terms: (I) displacement atoms, the atoms which are knocked off from their original normal lattice positions by an energetic Ar+ion; (II) vacancies, empty lattice sites caused by atoms’displacement.The DC self-bias potential was 300 V when PRF=120 W,thus ion irradiation energy EAr+=300 eV was set in the SRIM simulation. Although the fluence of Ar+ion irradiation on the target is much higher than that on the deposited film, we can estimate the ion fluence at the deposited film FSby the ion fluence at the target FTaccording to their relation. The RF source is a sinusoidal alternating current signal. If we ignore the influence of the transverse electromagnetic wave, FTcan be approximately calculated by the equation FT≈4PRFtRF/πVRFeA, where VRFis the DC selfbias potential, e is the charge of electron, and A is the area of the target. The shape of the plasma acting on the target surface is approximately a sphere, thus FScan be estimated by the equation FS≈(RT/RS)2×FT, where the distance between the plasma and the deposited film RSis 45 cm and the radius of the plasma sphere RTis 5 cm. The deposited AlOxlayer will make the ion irradiation have less influence on the Pt/Co/Ru structure. This can be equivalent to the shorter of the ion irradiation time, so we used a shorter simulation irradiation time compared to the time in the actual experiments.With the Ar+ion irradiation energy EAr+=300 eV and ion fluence FS=5.9×1016ions/cm2, the simulation results are shown in Fig.3. Figure 3(a)shows the distribution of the displacement Ru and Co atoms and figure 3(b)shows the spatial distribution of the vacancies in the Co layer. There are two mechanisms accounting for the PMA modification in our experiments. Firstly,some Ru atoms are driven into the Co layer by the irradiation process and the penetrated Ru atoms can subsequently bombard the Co atoms. As shown in Fig.3(a),although most Co atoms keep stay in the Co layer,part of the Co atoms can be bombarded into the Pt layer. The PMA of Pt/Co/Ru is strongly dependent on the Pt/Co interface quality,thus atoms intermixing at the Pt/Co interface can result in a weaker PMA.[23]Secondly, the magnetic properties of Pt/Co films depend on not only the Pt/Co interface,but also the structure of the Co layer as well. Defects such as interstitial atoms and vacancies in the Co layer will change the magnetic domain structure of the Co layer.[24–26]At the places irradiated,the magnetic domains would be more easily switched by the external magnetic field,which has been confirmed in previous study of the Pt/Co/Pt films.[11]Therefore,the weakened PMA of Pt/Co/Ru multilayers can be explained by the atoms intermixing at the Pt/Co interface and the change of the magnetic domain structure in the Co layer. Considering that the PMA of the Pt/Co based thin films can be affected by RF magnetron sputtering, the SOT induced magnetization switching should be influenced as well.

    Fig.3. The simulated results of SRIM. (a) Displacement Ru and Co atoms distribution after Ar+ ion irradiation with ion irradiation energy EAr+ =300 eV and ion fluence F =5.9×1016 ions/cm2. (b)Vacancy number distribution in Co layer after Ar+ ion irradiation.

    As shown in Fig.4(a), current pulse induced magnetization switching for devices Ta(1)/Pt(4)/Co(0.8)/Ru(2)/AlOx(tRF)was investigated. Every 2 seconds, a pulse current Ipulsewith duration of 15 ms was injected to the devices. RHallwas measured by a low current of 100μA after each pulse to probe the magnetization state. Because of the spin Hall effect(SHE)in the Pt layer,the charge current in the x direction gives rise to a spin current in the out-of-plane direction, with the spin orientation along the y direction. The spin current is absorbed by the adjacent Co layer,resulting in both a damping-like torque τ‖~m×y×m and a field-like torque τ⊥~m×y,where m is the unit vector that denotes the magnetization direction. Neither torque possesses an up-or down-direction preference.But if an external magnetic field is applied collinearly to the current,the symmetry in the response to the SHE torque is broken and the magnetization can be deterministically switched.[4]For our devices,an external magnetic field HX=?300 Oe is applied along the ?x direction, thus positive currents favor a positive magnetization(resulting in a positive Hall resistance),while negative currents favor a negative magnetization.

    Fig.4. (a) Illustration of the spin Hall effect in the Pt layer with an external magnetic field of HX =?300 Oe. (b) Current pulse induced magnetization switching for the devices with tRF=0,1,2,3 min.

    The current induced magnetization switching loops for the devices with tRF=0, 1, 2, 3 min are shown in Fig.4(b).The threshold current intensity Ithdecreases with increasing tRF, which is consistent with the fact that PMA of the thin films is weakened after RF magnetron sputtering. However,the magnitude of the maximum anomalous Hall resistance becomes smaller with tRF≥2 min, which is different from the constant maximum anomalous Hall resistance reversed by the vertical magnetic field. In our experiments, the samples exhibit a multi-domain structure,thus the magnetization reversal process is dominated by magnetic domain propagation.[27,28]Considering there is spatial inhomogeneity, the domain walls would be easily nucleated in the more seriously irradiated area.On the other hand, after RF magnetron sputtering, defects in the Co layer and degradation of the Pt/Co and Co/Ru interfaces can act as pinning centers. When tRF=1 min, the influence of these pinning centers was not strong. The critical switching current density decreased and a full SOT induced magnetization switching could be achieved. For more serious irradiated devices with tRF=2, 3 min, SOT cannot induce a full magnetization switching. The reason might be that the pinning centers hinder parts of the magnetic domains to be switched by SOT,which results in the smaller Hall resistance. We have also investigated the difference in magnetic domains switching process after RF magnetron sputtering by polar magnetooptical Kerr effect(MOKE)measurement technique. The experiment results are shown in Fig.S5 in supplementary materials,which suggests that the magnetic domains in the irradiated area become more easily to be nucleated and reversed,which is in good agreement with the current induced magnetization switching.

    4. Conclusions

    In summary, AlOxwas deposited on Pt/Co/NM type structures by RF magnetron sputtering technique. We found that ion irradiation during RF magnetron sputtering can weaken the PMA of the deposited films. Using a smaller RF magnetron sputtering power and increasing the thickness of the NM layer can reduce the impacts of this ion irradiation.The simulation results of SRIM indicate that the degradation of the Pt/Co interfaces and the increasing defects in the Co layer can account for the PMA weakness. In the SOT induced magnetization switching process, both the Hall resistance and the threshold switching current density decreased after RF magnetron sputtering. Our results will attract the attention of the RF magnetron sputtering and may lead to innovative spintronic applications.

    猜你喜歡
    潤澤
    Ultrafast magneto-optical dynamics in nickel(111)single crystal studied by the integration of ultrafast reflectivity and polarimetry probes
    Oscillation of Dzyaloshinskii–Moriya interaction driven by weak electric fields
    《德音潤澤:董仲舒名言品鑒》出版
    弘揚(yáng)剪紙藝術(shù) 文化潤澤心靈
    商用車后下部防護(hù)碰撞特性分析
    傾心之吻
    逛公園
    An Interesting Class:賈潤澤
    鄭潤澤作品
    書香詩韻 潤澤童心
    輔導(dǎo)員(2017年9期)2017-06-01 12:10:06
    亚洲精品av麻豆狂野| 777久久人妻少妇嫩草av网站| 热re99久久精品国产66热6| 巨乳人妻的诱惑在线观看| 男女床上黄色一级片免费看| 1024视频免费在线观看| svipshipincom国产片| av电影中文网址| 热re99久久精品国产66热6| 少妇被粗大的猛进出69影院| 一级,二级,三级黄色视频| 一本—道久久a久久精品蜜桃钙片| 日本爱情动作片www.在线观看| 侵犯人妻中文字幕一二三四区| av在线老鸭窝| 性高湖久久久久久久久免费观看| 国产麻豆69| 亚洲,一卡二卡三卡| 亚洲欧美日韩另类电影网站| 国产伦理片在线播放av一区| 久久精品亚洲av国产电影网| 日本猛色少妇xxxxx猛交久久| 国产男女内射视频| 侵犯人妻中文字幕一二三四区| 亚洲精品久久成人aⅴ小说| 老司机影院毛片| 日本av免费视频播放| 欧美另类一区| 天堂俺去俺来也www色官网| 久久久精品免费免费高清| 久久精品国产亚洲av高清一级| 精品国产一区二区久久| 亚洲综合精品二区| 精品人妻一区二区三区麻豆| 夫妻性生交免费视频一级片| 国产精品秋霞免费鲁丝片| 亚洲 欧美一区二区三区| 日韩中文字幕欧美一区二区 | 丝袜喷水一区| 香蕉丝袜av| 性少妇av在线| 国产精品嫩草影院av在线观看| 波多野结衣av一区二区av| 成人免费观看视频高清| 制服诱惑二区| 亚洲 欧美一区二区三区| 欧美成人精品欧美一级黄| 人人妻人人爽人人添夜夜欢视频| 这个男人来自地球电影免费观看 | 国产在线视频一区二区| 国产国语露脸激情在线看| 天堂8中文在线网| 国产亚洲一区二区精品| 国产一卡二卡三卡精品 | 免费在线观看视频国产中文字幕亚洲 | 精品少妇久久久久久888优播| 亚洲精品第二区| 另类亚洲欧美激情| 午夜av观看不卡| 午夜免费鲁丝| 亚洲av成人不卡在线观看播放网 | 国产又爽黄色视频| 母亲3免费完整高清在线观看| 又粗又硬又长又爽又黄的视频| 2021少妇久久久久久久久久久| 国产成人系列免费观看| 欧美精品一区二区大全| 天堂8中文在线网| 亚洲精品中文字幕在线视频| 久久精品人人爽人人爽视色| 久久久久视频综合| 欧美人与性动交α欧美软件| 久久精品熟女亚洲av麻豆精品| 国产伦人伦偷精品视频| 国产精品人妻久久久影院| 老司机影院成人| 免费少妇av软件| 亚洲av日韩在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 毛片一级片免费看久久久久| 91成人精品电影| 熟女少妇亚洲综合色aaa.| 啦啦啦 在线观看视频| 成人黄色视频免费在线看| 亚洲av电影在线观看一区二区三区| 777久久人妻少妇嫩草av网站| 美女中出高潮动态图| 亚洲一码二码三码区别大吗| 亚洲国产欧美日韩在线播放| 国产在线免费精品| 各种免费的搞黄视频| 我要看黄色一级片免费的| 丁香六月天网| 亚洲欧美精品自产自拍| 国产人伦9x9x在线观看| 亚洲熟女毛片儿| 99国产精品免费福利视频| 日本色播在线视频| 一区二区三区乱码不卡18| 伊人久久大香线蕉亚洲五| 不卡视频在线观看欧美| 亚洲天堂av无毛| 黄色毛片三级朝国网站| 国产野战对白在线观看| 伊人亚洲综合成人网| 国产精品 欧美亚洲| 国产黄色视频一区二区在线观看| 亚洲精品美女久久久久99蜜臀 | 国产高清国产精品国产三级| 国产精品久久久久久久久免| 99国产综合亚洲精品| 国产精品亚洲av一区麻豆 | 91国产中文字幕| 久久久久久久精品精品| 国产亚洲精品第一综合不卡| 亚洲欧美一区二区三区黑人| 多毛熟女@视频| 九色亚洲精品在线播放| 日韩,欧美,国产一区二区三区| 欧美日韩福利视频一区二区| 毛片一级片免费看久久久久| 午夜免费观看性视频| 一级,二级,三级黄色视频| 在线观看三级黄色| 99久久99久久久精品蜜桃| 99久久人妻综合| 国产高清不卡午夜福利| 国产男女内射视频| 中文字幕精品免费在线观看视频| 丝袜喷水一区| 伊人亚洲综合成人网| 99香蕉大伊视频| xxxhd国产人妻xxx| 涩涩av久久男人的天堂| 最近2019中文字幕mv第一页| 亚洲精品国产一区二区精华液| 欧美日韩精品网址| 女人久久www免费人成看片| e午夜精品久久久久久久| 在线 av 中文字幕| 亚洲在久久综合| 少妇人妻 视频| 免费在线观看视频国产中文字幕亚洲 | www.精华液| 天堂俺去俺来也www色官网| 亚洲中文av在线| 一级毛片 在线播放| 热99国产精品久久久久久7| 午夜福利乱码中文字幕| 最黄视频免费看| 一区二区三区乱码不卡18| 久久精品aⅴ一区二区三区四区| 十八禁人妻一区二区| xxxhd国产人妻xxx| 久久狼人影院| 亚洲一卡2卡3卡4卡5卡精品中文| www日本在线高清视频| 免费看不卡的av| 日本午夜av视频| 女人爽到高潮嗷嗷叫在线视频| 久久国产精品男人的天堂亚洲| 免费高清在线观看视频在线观看| 在线观看免费高清a一片| 一个人免费看片子| 日本av免费视频播放| 久久精品国产综合久久久| 国产免费又黄又爽又色| 青草久久国产| 在现免费观看毛片| 国产一区二区激情短视频 | 欧美日韩一级在线毛片| a 毛片基地| 91精品三级在线观看| 少妇人妻久久综合中文| 青春草国产在线视频| 国产精品.久久久| 国产一区亚洲一区在线观看| 丝袜在线中文字幕| 母亲3免费完整高清在线观看| 综合色丁香网| 国产精品麻豆人妻色哟哟久久| 亚洲av欧美aⅴ国产| 91老司机精品| 精品一区二区三卡| 久久这里只有精品19| 国产精品久久久久久精品电影小说| 午夜免费男女啪啪视频观看| 一区二区av电影网| 国产亚洲一区二区精品| 午夜福利网站1000一区二区三区| 91精品国产国语对白视频| 欧美在线黄色| 成人国产麻豆网| 在现免费观看毛片| 色94色欧美一区二区| 大片电影免费在线观看免费| 自线自在国产av| 男的添女的下面高潮视频| 日本av手机在线免费观看| 日本91视频免费播放| 丝袜人妻中文字幕| 2021少妇久久久久久久久久久| 午夜福利,免费看| 国产精品欧美亚洲77777| 久久久久国产精品人妻一区二区| av有码第一页| 又粗又硬又长又爽又黄的视频| 亚洲国产欧美日韩在线播放| 欧美日韩亚洲综合一区二区三区_| 亚洲精品国产色婷婷电影| 男人舔女人的私密视频| 最新的欧美精品一区二区| 中文字幕高清在线视频| 人妻一区二区av| 七月丁香在线播放| 亚洲国产欧美日韩在线播放| 视频在线观看一区二区三区| 热re99久久国产66热| av视频免费观看在线观看| 欧美日韩福利视频一区二区| 建设人人有责人人尽责人人享有的| 夫妻性生交免费视频一级片| 最近中文字幕高清免费大全6| 丝袜喷水一区| 国产精品秋霞免费鲁丝片| 少妇 在线观看| 午夜福利免费观看在线| 久久ye,这里只有精品| 国产深夜福利视频在线观看| 亚洲熟女精品中文字幕| 秋霞在线观看毛片| 亚洲七黄色美女视频| 色视频在线一区二区三区| 久久国产精品男人的天堂亚洲| 别揉我奶头~嗯~啊~动态视频 | 女人爽到高潮嗷嗷叫在线视频| 亚洲第一青青草原| 国产精品免费大片| 国产精品蜜桃在线观看| 午夜日本视频在线| 国语对白做爰xxxⅹ性视频网站| 1024香蕉在线观看| 女人精品久久久久毛片| 自线自在国产av| 18在线观看网站| 中文字幕精品免费在线观看视频| 色94色欧美一区二区| av天堂久久9| 国产精品麻豆人妻色哟哟久久| 欧美日韩视频精品一区| 秋霞在线观看毛片| 肉色欧美久久久久久久蜜桃| 毛片一级片免费看久久久久| 亚洲精品美女久久av网站| 欧美日韩亚洲国产一区二区在线观看 | 九色亚洲精品在线播放| 午夜福利在线免费观看网站| 青青草视频在线视频观看| 巨乳人妻的诱惑在线观看| 免费在线观看黄色视频的| 侵犯人妻中文字幕一二三四区| 丝袜美腿诱惑在线| 中文字幕av电影在线播放| 精品人妻在线不人妻| 99热网站在线观看| 久久人人97超碰香蕉20202| 这个男人来自地球电影免费观看 | 只有这里有精品99| 水蜜桃什么品种好| 亚洲欧美精品自产自拍| 亚洲欧美清纯卡通| 亚洲人成77777在线视频| 色视频在线一区二区三区| avwww免费| 精品久久久久久电影网| 亚洲国产成人一精品久久久| 汤姆久久久久久久影院中文字幕| 久久精品亚洲熟妇少妇任你| 99国产综合亚洲精品| 亚洲 欧美一区二区三区| 久久毛片免费看一区二区三区| 久久久久视频综合| 在线观看人妻少妇| 99久久精品国产亚洲精品| 婷婷色av中文字幕| 欧美日韩成人在线一区二区| 狂野欧美激情性bbbbbb| 国产成人精品无人区| 大片免费播放器 马上看| 深夜精品福利| 久久久久人妻精品一区果冻| 热99久久久久精品小说推荐| 国产精品欧美亚洲77777| 国产精品麻豆人妻色哟哟久久| 亚洲欧洲国产日韩| 亚洲国产成人一精品久久久| 69精品国产乱码久久久| 久久久久久免费高清国产稀缺| 伊人亚洲综合成人网| 又黄又粗又硬又大视频| 精品国产一区二区三区久久久樱花| 人人妻人人添人人爽欧美一区卜| 一本一本久久a久久精品综合妖精| av网站在线播放免费| 嫩草影视91久久| 欧美日韩视频精品一区| 亚洲精品成人av观看孕妇| 成人亚洲精品一区在线观看| 啦啦啦视频在线资源免费观看| 亚洲精品一二三| 亚洲欧洲日产国产| 精品一区二区三卡| 在线观看三级黄色| 精品一区二区三卡| 十分钟在线观看高清视频www| 晚上一个人看的免费电影| 婷婷色麻豆天堂久久| 超碰成人久久| 欧美xxⅹ黑人| 女性被躁到高潮视频| 99精国产麻豆久久婷婷| 一区二区三区乱码不卡18| 看十八女毛片水多多多| 国产1区2区3区精品| 亚洲在久久综合| 亚洲国产精品一区三区| 亚洲欧美成人精品一区二区| 亚洲一级一片aⅴ在线观看| 国产精品一区二区精品视频观看| 不卡视频在线观看欧美| 午夜福利在线免费观看网站| 久久久久久久久久久免费av| 亚洲av男天堂| 欧美 亚洲 国产 日韩一| 另类亚洲欧美激情| 久久99一区二区三区| 亚洲精品av麻豆狂野| 18禁国产床啪视频网站| 久久这里只有精品19| 久久人人爽人人片av| 看十八女毛片水多多多| 亚洲欧洲精品一区二区精品久久久 | 日韩av免费高清视频| 在线 av 中文字幕| 亚洲精华国产精华液的使用体验| 中文欧美无线码| 好男人视频免费观看在线| 少妇精品久久久久久久| 亚洲精品,欧美精品| 好男人视频免费观看在线| 少妇被粗大的猛进出69影院| 免费在线观看黄色视频的| www日本在线高清视频| 国产成人一区二区在线| 制服诱惑二区| 欧美乱码精品一区二区三区| 国产一卡二卡三卡精品 | 亚洲欧美清纯卡通| 91精品三级在线观看| 亚洲成国产人片在线观看| 水蜜桃什么品种好| kizo精华| 多毛熟女@视频| 亚洲精品久久成人aⅴ小说| 亚洲精品国产一区二区精华液| 国产又爽黄色视频| 亚洲精品国产一区二区精华液| 久久国产精品男人的天堂亚洲| 精品久久蜜臀av无| 亚洲国产看品久久| 一级片'在线观看视频| 在线观看一区二区三区激情| 少妇的丰满在线观看| 波多野结衣av一区二区av| 亚洲一级一片aⅴ在线观看| 午夜福利视频在线观看免费| 少妇的丰满在线观看| 在线观看一区二区三区激情| 国产精品免费大片| 国产一卡二卡三卡精品 | 男人添女人高潮全过程视频| 亚洲精品国产一区二区精华液| 国产精品香港三级国产av潘金莲 | 日韩 亚洲 欧美在线| 国产精品久久久久久人妻精品电影 | 欧美人与善性xxx| 欧美久久黑人一区二区| 国产在线视频一区二区| 丝袜美足系列| 精品国产乱码久久久久久男人| 日韩欧美精品免费久久| 免费观看人在逋| 2021少妇久久久久久久久久久| 大话2 男鬼变身卡| a 毛片基地| 久久天躁狠狠躁夜夜2o2o | a级片在线免费高清观看视频| 国产视频首页在线观看| 深夜精品福利| 午夜福利视频精品| 人体艺术视频欧美日本| 欧美 亚洲 国产 日韩一| 亚洲欧美一区二区三区黑人| 狂野欧美激情性bbbbbb| 欧美精品一区二区免费开放| 久久久久久人妻| 国产精品秋霞免费鲁丝片| 精品人妻一区二区三区麻豆| 啦啦啦在线观看免费高清www| 秋霞伦理黄片| 久久影院123| 十八禁网站网址无遮挡| 王馨瑶露胸无遮挡在线观看| 成年美女黄网站色视频大全免费| 狂野欧美激情性bbbbbb| 国产精品无大码| 久久久精品区二区三区| 日韩精品有码人妻一区| 精品亚洲成a人片在线观看| 操美女的视频在线观看| 午夜影院在线不卡| 精品午夜福利在线看| 日本91视频免费播放| 国产男人的电影天堂91| 国产一卡二卡三卡精品 | 久久久久久久国产电影| 桃花免费在线播放| 巨乳人妻的诱惑在线观看| 国产精品欧美亚洲77777| a级片在线免费高清观看视频| 校园人妻丝袜中文字幕| 色94色欧美一区二区| 无限看片的www在线观看| 制服丝袜香蕉在线| 亚洲欧美精品综合一区二区三区| 男人操女人黄网站| 99re6热这里在线精品视频| 久久热在线av| 性高湖久久久久久久久免费观看| 我要看黄色一级片免费的| 伊人亚洲综合成人网| 国产精品一二三区在线看| 美女主播在线视频| 无遮挡黄片免费观看| 少妇的丰满在线观看| 亚洲精品久久成人aⅴ小说| 在线观看国产h片| 欧美日本中文国产一区发布| 一级毛片我不卡| 午夜福利网站1000一区二区三区| 性色av一级| 成人国产麻豆网| 欧美av亚洲av综合av国产av | 19禁男女啪啪无遮挡网站| 丰满少妇做爰视频| 电影成人av| 国产无遮挡羞羞视频在线观看| 成人国产麻豆网| 亚洲国产毛片av蜜桃av| 国产高清国产精品国产三级| 成人免费观看视频高清| 女性被躁到高潮视频| 汤姆久久久久久久影院中文字幕| 男人舔女人的私密视频| 亚洲av福利一区| 蜜桃在线观看..| 国精品久久久久久国模美| 丝袜美腿诱惑在线| 亚洲精品第二区| 看非洲黑人一级黄片| 一个人免费看片子| 在线观看国产h片| 国产一区二区激情短视频 | 国产成人免费无遮挡视频| 欧美日韩亚洲综合一区二区三区_| 下体分泌物呈黄色| av免费观看日本| 新久久久久国产一级毛片| 午夜久久久在线观看| 人人妻人人爽人人添夜夜欢视频| 咕卡用的链子| 色精品久久人妻99蜜桃| 亚洲国产成人一精品久久久| 亚洲精品乱久久久久久| 少妇被粗大的猛进出69影院| 啦啦啦视频在线资源免费观看| 国产免费现黄频在线看| 午夜福利影视在线免费观看| 日韩av不卡免费在线播放| 国产精品蜜桃在线观看| xxx大片免费视频| 久久天堂一区二区三区四区| 嫩草影院入口| 人成视频在线观看免费观看| 国产精品蜜桃在线观看| 亚洲av福利一区| 一本一本久久a久久精品综合妖精| 精品卡一卡二卡四卡免费| 纵有疾风起免费观看全集完整版| 丝袜在线中文字幕| 可以免费在线观看a视频的电影网站 | 精品一区二区三区四区五区乱码 | 男人添女人高潮全过程视频| 午夜免费鲁丝| 国产免费福利视频在线观看| 亚洲精品成人av观看孕妇| 视频区图区小说| 国产免费又黄又爽又色| 日本av手机在线免费观看| 一级毛片黄色毛片免费观看视频| 麻豆乱淫一区二区| 菩萨蛮人人尽说江南好唐韦庄| 精品一区二区三卡| 久久青草综合色| 亚洲欧美精品自产自拍| 亚洲精品中文字幕在线视频| av又黄又爽大尺度在线免费看| 久久av网站| 女人爽到高潮嗷嗷叫在线视频| 丝袜人妻中文字幕| 高清在线视频一区二区三区| 国产高清国产精品国产三级| 最近中文字幕2019免费版| 亚洲欧美一区二区三区国产| 操出白浆在线播放| 美女午夜性视频免费| 观看美女的网站| 亚洲第一区二区三区不卡| 国产亚洲一区二区精品| 成人国语在线视频| 久久av网站| 夜夜骑夜夜射夜夜干| 国产极品天堂在线| 精品亚洲乱码少妇综合久久| 制服人妻中文乱码| 精品国产露脸久久av麻豆| 亚洲三区欧美一区| 十分钟在线观看高清视频www| 亚洲第一青青草原| 无限看片的www在线观看| 久久精品亚洲av国产电影网| 国产精品麻豆人妻色哟哟久久| 91老司机精品| 男女免费视频国产| 国产一级毛片在线| 又粗又硬又长又爽又黄的视频| 国产成人午夜福利电影在线观看| svipshipincom国产片| 色94色欧美一区二区| 久热爱精品视频在线9| 精品久久久久久电影网| 欧美老熟妇乱子伦牲交| 无限看片的www在线观看| 国产一区二区三区av在线| 免费黄频网站在线观看国产| 国产成人av激情在线播放| 精品免费久久久久久久清纯 | 九草在线视频观看| 亚洲欧美中文字幕日韩二区| 一区二区av电影网| 亚洲成av片中文字幕在线观看| 亚洲精品国产av成人精品| 欧美亚洲 丝袜 人妻 在线| 丁香六月天网| 天美传媒精品一区二区| 男女免费视频国产| 亚洲专区中文字幕在线 | 欧美激情极品国产一区二区三区| 97人妻天天添夜夜摸| 精品一区二区三区四区五区乱码 | 欧美人与善性xxx| 老司机影院成人| 欧美日韩福利视频一区二区| 欧美变态另类bdsm刘玥| 精品久久久精品久久久| 如日韩欧美国产精品一区二区三区| 国产色婷婷99| 美女福利国产在线| 国产极品天堂在线| 国产成人系列免费观看| 日日摸夜夜添夜夜爱| 久久久久久久久久久久大奶| 国产乱人偷精品视频| 久久人人爽av亚洲精品天堂| 久久精品国产亚洲av高清一级| 纯流量卡能插随身wifi吗| 男女高潮啪啪啪动态图| 一级毛片黄色毛片免费观看视频| 国产成人欧美| 欧美国产精品一级二级三级| 精品国产一区二区三区久久久樱花| 妹子高潮喷水视频| 免费久久久久久久精品成人欧美视频| 波野结衣二区三区在线| 亚洲精品在线美女| 久久久国产一区二区| 性高湖久久久久久久久免费观看| 9热在线视频观看99| 日韩制服骚丝袜av| 亚洲成av片中文字幕在线观看| 下体分泌物呈黄色| 操美女的视频在线观看| 不卡视频在线观看欧美| 国产精品免费视频内射| 18禁裸乳无遮挡动漫免费视频| 啦啦啦 在线观看视频| 秋霞在线观看毛片| 亚洲国产欧美在线一区| 国产一区二区激情短视频 | 老司机亚洲免费影院| 视频区图区小说| 一本一本久久a久久精品综合妖精| 一边摸一边抽搐一进一出视频| 午夜老司机福利片| 欧美人与善性xxx|