• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers?

    2021-03-11 08:34:26RunzeLi李潤澤YucaiLi李予才YuSheng盛宇andKaiyouWang王開友
    Chinese Physics B 2021年2期
    關(guān)鍵詞:潤澤

    Runze Li(李潤澤), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王開友),3,4,?

    1State Key Laboratory for Superlattices and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China

    2Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China

    3Beijing Academy of Quantum Information Sciences,Beijing 100193,China

    4Center for Excellence in Topological Quantum Computation,University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: perpendicular magnetic anisotropy,RF magnetron sputtering,ion irradiation,spin orbit torque

    1. Introduction

    Current induced magnetization switching of perpendicular magnetic anisotropy (PMA) materials by spin orbit torque is promising for the next generation magnetoresistive random access memory (MRAM).[1–4]In the heavy metal/ferromagnetic metal(HM/FM)bilayer system,the PMA is sensitive to the HM/FM interface and FM can be switched by the spin current injected from the HM layer.[5–7]The critical switching current density and charge-to-spin conversion efficiency are dependent on the PMA in the HM/FM system.[8,9]PMA of thin films can be affected by various techniques:thermal annealing,ion irradiation,or oxidation.[10–17]In the previous works,these methods all need an additional process after the thin films growth to modify PMA.Therefore,it is essential to develop new effective ways to modify PMA of thin films.

    Magnetron sputtering is a widely used method in thin films growth. Metals are generally deposited by direct current (DC) sputtering. However, for insulating target materials such as oxides and ceramics, there is a charge building up on the surface of the target with DC signal, which hinders the sputtering to proceed. By using a radio frequency(RF)source,the electrostatic charge can be discharged in each cycle, which allows the deposition of quality insulators such as AlOxand MgO. During RF magnetron sputtering, the deposited film is grounded and the target is connected to a RF power (13.56 MHz). The insulator target acts as a conductor for the RF alternating current field but also acts as an isolate for a self-induced DC field. When the target is anode,the deposited film will be irradiated by the positive ions in ignited plasma. Plasma during RF magnetron sputtering is mainly restrained near the target, thus the positive ion density on the target surface is higher than that on the deposited film surface.Even so,the magnetic properties of the deposited film can be affected by this ion irradiation. To our knowledge,few works have taken this effect into consideration.[18,19]

    In this work, we investigate how the magnetic properties could be engineered by the RF magnetron sputtering. We firstly demonstrated that the influence of ion irradiation during RF magnetron sputtering should not be neglected and PMA of the deposited film could be tailored. AlOxis widely used in the spintronic research,[1,2]so we chose AlOxas the insulator target to investigate the RF magnetron sputtering effect. Then we studied the underlying physical mechanisms of the PMA changes by SRIM simulation. Finally, the influences of RF magnetron sputtering on SOT induced magnetization switching were investigated.

    2. Method

    To investigate the influences of RF magnetron sputtering on the deposited magnetic film, we firstly deposited Ta(1)/Pt(4)/Co(0.8)/Ru(2) (the numbers are layer thicknesses in nm)thin films on thermally oxidized silicon substrates using a DC magnetron sputtering system. The AlOxlayer was subsequently deposited on these films in different RF magnetron sputtering time tRF(1–10 min) with RF power PRF=100 W. The base pressure of the sputtering system was less than 5×10?8Torr. The DC sputtering conditions for all the metallic layers were: Ar gas pressure of 0.8 mTorr and DC power of 30 W with the deposition rates between 0.01 nm/s and 0.02 nm/s. The Ar gas pressure of 2 mTorr and RF power of 100 W were used to deposit AlOxlayer with the deposition rate of 0.2 nm/min. Thus we can use the RF magnetron sputtering time tRFto represent the deposited AlOxlayer thickness.The samples were then patterned into Hall bars with the width of 10μm and the length of 50μm by standard photo lithography and Ar+ion milling,as shown in Fig.1(a). The Hall bar structure allows us to probe the ferromagnetic state of the devices by measuring the anomalous Hall effect(AHE).A small current of 100μA was used to detect the ferromagnetic states while minimizing the heating effect.

    Fig.1. (a)Schematic of the studied magnetic multilayer system and the experimental measurements set-up for the Hall bar devices with the definition of x–y–z coordinates. (b) Out-of-plane magnetization hysteresis loops measured by AHE for devices deposited AlOx layer with tRF =0, 1, 2, 3, 10 min, respectively, at fixed PRF =100 W. (c) In-plane magnetization hysteresis loops measured by VSM. (d) Magnetic coercive field HC and anisotropy field HK obtained from(b)and(c)respectively as functions of tRF.

    3. Result and discussion

    Typical magnetic parameters (coercive and anisotropy fields)were deduced from the hysteresis loops to characterize PMA.Figure 1(b)shows the AHE hysteresis loops under the out-of-plane magnetic field. Clear square magnetic hysteresis loops were obtained for all the samples,indicating that all the films exhibit good perpendicular magnetic anisotropy even after RF magnetron sputtering. The same magnitude of the AHE resistance suggests the magnetization of all the samples can be fully reversed by the vertical magnetic field continuously. However,the coercive field HCof the devices decreases from 175 Oe to 95 Oe with increasing tRFfrom 0 to 3 min,which is shown in Fig.1(d). For devices with tRFfurther increasing up to 10 min, the HCis almost unchanged. Similar results in PMA Ta/Pt/Co/Pt and Ta/Pt/Co/Ti structures were also observed(details see supplementary Fig.S1). Anisotropy field HKis defined as the required minimum external magnetic field to fully align the magnetization along the hard axis.For Ta(1)/Pt(4)/Co(0.8)/Ru(2)structure,to obtain the relation between the magnetic anisotropy field HKand the variation of tRF, the magnetic hysteresis loops with the in-plane magnetic field swept between+15000 Oe and ?15000 Oe for different samples were measured via a vibrating-sample magnetometer(VSM)at room temperature. The results are shown in Fig.1(c). Similar with HC,the determined HKdecreases dramatically initially and reduces to the half value of the sample without RF magnetron sputtering,which indicates the reduced PMA with increasing RF magnetron sputtering time. The HKthen keeps almost unchanged with tRFfurther increasing, as shown in Fig.1(d). The almost unchanged HKand HCfor the samples with tRF>3 min suggest that the impacts on the magnetic properties with further RF magnetron sputtering gradually diminish.

    To identify the reason for this phenomenon, several experiments were performed. Firstly,we excluded the oxidation of Co atoms after deposition of the AlOx,x-ray photoelectron spectroscopy(XPS)spectra of the Co layer was measured for the deposited magnetic samples. No obvious difference is observed before and after the deposition of the AlOx(details see supplementary Fig.S2), which indicates that 2 nm thick Ru layer is sufficiently thick to prevent oxidation of the Co atoms.Secondly,we removed the upper AlOxlayer on the samples by the chemical etching technique and the hysteresis loops were subsequently measured again. The influences of the RF magnetron sputtering remained,thus the effect of interfacial stress was ruled out. Finally, the measured hysteresis loops for the structure of Ta/Pt/Co/Ru with different Ru thickness tRuwere shown in supplementary Fig.S3. The magnetic properties almost keep the same between the tRu=6 nm and tRu=2 nm samples,indicating that it is not the thickness of the top layer that modifies the PMA of the deposited film. Considering that these above factors were all excluded and ion irradiation induced PMA weakness has been observed in other works,[11,20]we believe that ion irradiation induced by RF magnetron sputtering is the main reason for the PMA modification in our experiments.

    Fig.2. (a) The magnetic coercive field HC and anisotropy field HK against RF magnetron sputtering power PRF, with tRF = 2 min and tRu =2 nm. (b) HC and HK as functions of Ru layer thickness tRu,with tRF=2 min and PRF=100 W.

    The irradiation energy of Ar+ions in plasma is related to the RF power. We expect a more significant reduction of the HCand HKwhen a higher RF magnetron sputtering power is used. Besides,a thicker Ru layer tRucan screen the irradiation effect more effectively. To verify our predictions, the AlOxlayer was deposited on Ta(1)/Pt(4)/Co(0.8)/Ru(2) magnetic thin films with different power intensities PRF(40–120 W)for 2 min. The DC self-bias potential is 160 V when PRF=40 W and linearly increases to 300 V when PRF=120 W. As presented in Fig.2(a), compared with the sample without AlOxcapping layer, the HCis reduced by 15 Oe and 80 Oe with PRF= 40 W and 120 W, respectively. In Fig.2, the HKwas measured by AHE and the detailed calculation process was shown in supplementary Fig.S4. Figure 2(a) shows that the HKalso decreases with the increasing PRF. When PRF=120 W,the HKreduces to 25%of the initial HKvalue.Then, the AlOxwas deposited with the fixed PRF=100 W and tRF=2 min on Ta(1)/Pt(4)/Co(0.8)/Ru(tRu)thin films with varying Ru layer thickness from 2 nm to 6 nm. As shown in Fig.2(b), with the increase of tRu, the reduction of HCand HKinduced by RF magnetron sputtering decreases,indicating that the Ar+ions irradiation effect is gradually screened by the thicker Ru layer.

    To understand the underlying physical mechanisms of the PMA changes in our experiments, the ion irradiation in the RF magnetron sputtering process was modeled by Monte Carlo simulation programs(SRIM).[21,22]We used the grown Ta(1)/Pt(5)/Co(0.8)/Ru(2)structure for simulation. The damages in the deposited film caused by ion irradiation have two major terms: (I) displacement atoms, the atoms which are knocked off from their original normal lattice positions by an energetic Ar+ion; (II) vacancies, empty lattice sites caused by atoms’displacement.The DC self-bias potential was 300 V when PRF=120 W,thus ion irradiation energy EAr+=300 eV was set in the SRIM simulation. Although the fluence of Ar+ion irradiation on the target is much higher than that on the deposited film, we can estimate the ion fluence at the deposited film FSby the ion fluence at the target FTaccording to their relation. The RF source is a sinusoidal alternating current signal. If we ignore the influence of the transverse electromagnetic wave, FTcan be approximately calculated by the equation FT≈4PRFtRF/πVRFeA, where VRFis the DC selfbias potential, e is the charge of electron, and A is the area of the target. The shape of the plasma acting on the target surface is approximately a sphere, thus FScan be estimated by the equation FS≈(RT/RS)2×FT, where the distance between the plasma and the deposited film RSis 45 cm and the radius of the plasma sphere RTis 5 cm. The deposited AlOxlayer will make the ion irradiation have less influence on the Pt/Co/Ru structure. This can be equivalent to the shorter of the ion irradiation time, so we used a shorter simulation irradiation time compared to the time in the actual experiments.With the Ar+ion irradiation energy EAr+=300 eV and ion fluence FS=5.9×1016ions/cm2, the simulation results are shown in Fig.3. Figure 3(a)shows the distribution of the displacement Ru and Co atoms and figure 3(b)shows the spatial distribution of the vacancies in the Co layer. There are two mechanisms accounting for the PMA modification in our experiments. Firstly,some Ru atoms are driven into the Co layer by the irradiation process and the penetrated Ru atoms can subsequently bombard the Co atoms. As shown in Fig.3(a),although most Co atoms keep stay in the Co layer,part of the Co atoms can be bombarded into the Pt layer. The PMA of Pt/Co/Ru is strongly dependent on the Pt/Co interface quality,thus atoms intermixing at the Pt/Co interface can result in a weaker PMA.[23]Secondly, the magnetic properties of Pt/Co films depend on not only the Pt/Co interface,but also the structure of the Co layer as well. Defects such as interstitial atoms and vacancies in the Co layer will change the magnetic domain structure of the Co layer.[24–26]At the places irradiated,the magnetic domains would be more easily switched by the external magnetic field,which has been confirmed in previous study of the Pt/Co/Pt films.[11]Therefore,the weakened PMA of Pt/Co/Ru multilayers can be explained by the atoms intermixing at the Pt/Co interface and the change of the magnetic domain structure in the Co layer. Considering that the PMA of the Pt/Co based thin films can be affected by RF magnetron sputtering, the SOT induced magnetization switching should be influenced as well.

    Fig.3. The simulated results of SRIM. (a) Displacement Ru and Co atoms distribution after Ar+ ion irradiation with ion irradiation energy EAr+ =300 eV and ion fluence F =5.9×1016 ions/cm2. (b)Vacancy number distribution in Co layer after Ar+ ion irradiation.

    As shown in Fig.4(a), current pulse induced magnetization switching for devices Ta(1)/Pt(4)/Co(0.8)/Ru(2)/AlOx(tRF)was investigated. Every 2 seconds, a pulse current Ipulsewith duration of 15 ms was injected to the devices. RHallwas measured by a low current of 100μA after each pulse to probe the magnetization state. Because of the spin Hall effect(SHE)in the Pt layer,the charge current in the x direction gives rise to a spin current in the out-of-plane direction, with the spin orientation along the y direction. The spin current is absorbed by the adjacent Co layer,resulting in both a damping-like torque τ‖~m×y×m and a field-like torque τ⊥~m×y,where m is the unit vector that denotes the magnetization direction. Neither torque possesses an up-or down-direction preference.But if an external magnetic field is applied collinearly to the current,the symmetry in the response to the SHE torque is broken and the magnetization can be deterministically switched.[4]For our devices,an external magnetic field HX=?300 Oe is applied along the ?x direction, thus positive currents favor a positive magnetization(resulting in a positive Hall resistance),while negative currents favor a negative magnetization.

    Fig.4. (a) Illustration of the spin Hall effect in the Pt layer with an external magnetic field of HX =?300 Oe. (b) Current pulse induced magnetization switching for the devices with tRF=0,1,2,3 min.

    The current induced magnetization switching loops for the devices with tRF=0, 1, 2, 3 min are shown in Fig.4(b).The threshold current intensity Ithdecreases with increasing tRF, which is consistent with the fact that PMA of the thin films is weakened after RF magnetron sputtering. However,the magnitude of the maximum anomalous Hall resistance becomes smaller with tRF≥2 min, which is different from the constant maximum anomalous Hall resistance reversed by the vertical magnetic field. In our experiments, the samples exhibit a multi-domain structure,thus the magnetization reversal process is dominated by magnetic domain propagation.[27,28]Considering there is spatial inhomogeneity, the domain walls would be easily nucleated in the more seriously irradiated area.On the other hand, after RF magnetron sputtering, defects in the Co layer and degradation of the Pt/Co and Co/Ru interfaces can act as pinning centers. When tRF=1 min, the influence of these pinning centers was not strong. The critical switching current density decreased and a full SOT induced magnetization switching could be achieved. For more serious irradiated devices with tRF=2, 3 min, SOT cannot induce a full magnetization switching. The reason might be that the pinning centers hinder parts of the magnetic domains to be switched by SOT,which results in the smaller Hall resistance. We have also investigated the difference in magnetic domains switching process after RF magnetron sputtering by polar magnetooptical Kerr effect(MOKE)measurement technique. The experiment results are shown in Fig.S5 in supplementary materials,which suggests that the magnetic domains in the irradiated area become more easily to be nucleated and reversed,which is in good agreement with the current induced magnetization switching.

    4. Conclusions

    In summary, AlOxwas deposited on Pt/Co/NM type structures by RF magnetron sputtering technique. We found that ion irradiation during RF magnetron sputtering can weaken the PMA of the deposited films. Using a smaller RF magnetron sputtering power and increasing the thickness of the NM layer can reduce the impacts of this ion irradiation.The simulation results of SRIM indicate that the degradation of the Pt/Co interfaces and the increasing defects in the Co layer can account for the PMA weakness. In the SOT induced magnetization switching process, both the Hall resistance and the threshold switching current density decreased after RF magnetron sputtering. Our results will attract the attention of the RF magnetron sputtering and may lead to innovative spintronic applications.

    猜你喜歡
    潤澤
    Ultrafast magneto-optical dynamics in nickel(111)single crystal studied by the integration of ultrafast reflectivity and polarimetry probes
    Oscillation of Dzyaloshinskii–Moriya interaction driven by weak electric fields
    《德音潤澤:董仲舒名言品鑒》出版
    弘揚(yáng)剪紙藝術(shù) 文化潤澤心靈
    商用車后下部防護(hù)碰撞特性分析
    傾心之吻
    逛公園
    An Interesting Class:賈潤澤
    鄭潤澤作品
    書香詩韻 潤澤童心
    輔導(dǎo)員(2017年9期)2017-06-01 12:10:06
    亚洲色图av天堂| 精品国产亚洲在线| 黑人巨大精品欧美一区二区mp4| 国产欧美日韩一区二区精品| 91av网一区二区| 最好的美女福利视频网| 国产精品影院久久| 午夜福利在线在线| 成人国产一区最新在线观看| 国产又色又爽无遮挡免费看| 亚洲av日韩精品久久久久久密| 老鸭窝网址在线观看| 久久亚洲真实| 成人特级av手机在线观看| 观看美女的网站| 国产精品 国内视频| 国产av不卡久久| 巨乳人妻的诱惑在线观看| 一区福利在线观看| 热99在线观看视频| 91麻豆精品激情在线观看国产| 丰满人妻一区二区三区视频av | 精品国产乱子伦一区二区三区| 小蜜桃在线观看免费完整版高清| 免费在线观看日本一区| 欧美日本视频| 亚洲精品一卡2卡三卡4卡5卡| 午夜福利在线观看免费完整高清在 | 一进一出抽搐gif免费好疼| 国产精品久久久久久久电影 | 久久精品综合一区二区三区| 可以在线观看的亚洲视频| 精品久久久久久久久久久久久| www日本在线高清视频| 最好的美女福利视频网| 狠狠狠狠99中文字幕| 亚洲欧美激情综合另类| 又黄又粗又硬又大视频| 无遮挡黄片免费观看| 噜噜噜噜噜久久久久久91| 久99久视频精品免费| 中文字幕久久专区| 好男人电影高清在线观看| 国产一区二区激情短视频| 麻豆成人午夜福利视频| 欧美一级a爱片免费观看看| 成年女人看的毛片在线观看| 深夜精品福利| 别揉我奶头~嗯~啊~动态视频| 高潮久久久久久久久久久不卡| 亚洲精品在线美女| 国产精品一区二区三区四区久久| 男插女下体视频免费在线播放| 久久伊人香网站| 老司机在亚洲福利影院| 最新中文字幕久久久久 | 国产亚洲精品av在线| av中文乱码字幕在线| 综合色av麻豆| www国产在线视频色| 国产精品亚洲美女久久久| 亚洲成人精品中文字幕电影| 免费大片18禁| 蜜桃久久精品国产亚洲av| 免费无遮挡裸体视频| 少妇丰满av| 欧美在线一区亚洲| 亚洲男人的天堂狠狠| 成人高潮视频无遮挡免费网站| 国产一区二区在线观看日韩 | 成人性生交大片免费视频hd| 国产精品野战在线观看| 亚洲乱码一区二区免费版| 国产精品精品国产色婷婷| 免费在线观看成人毛片| 亚洲最大成人中文| 免费av毛片视频| 午夜福利在线观看吧| 天堂影院成人在线观看| 麻豆久久精品国产亚洲av| 免费高清视频大片| 国产日本99.免费观看| 国产精品99久久久久久久久| 色在线成人网| 老鸭窝网址在线观看| 伦理电影免费视频| 身体一侧抽搐| 亚洲狠狠婷婷综合久久图片| 桃色一区二区三区在线观看| 国产精品乱码一区二三区的特点| 国产真人三级小视频在线观看| 亚洲国产精品成人综合色| 国产精品久久电影中文字幕| 久久国产精品影院| 亚洲熟妇熟女久久| 国产亚洲欧美98| 成人精品一区二区免费| 亚洲国产日韩欧美精品在线观看 | 国产高清视频在线观看网站| 在线观看美女被高潮喷水网站 | 免费无遮挡裸体视频| av天堂在线播放| 99精品欧美一区二区三区四区| 国产成人精品无人区| xxxwww97欧美| 丁香六月欧美| 欧美三级亚洲精品| 色综合亚洲欧美另类图片| 成人特级av手机在线观看| 免费观看的影片在线观看| 欧美日韩亚洲国产一区二区在线观看| 99在线视频只有这里精品首页| bbb黄色大片| 日日夜夜操网爽| 男人舔女人的私密视频| 午夜亚洲福利在线播放| 久久热在线av| 波多野结衣高清无吗| 俄罗斯特黄特色一大片| www.熟女人妻精品国产| 亚洲一区二区三区色噜噜| АⅤ资源中文在线天堂| 午夜激情欧美在线| 激情在线观看视频在线高清| 色吧在线观看| 可以在线观看的亚洲视频| 亚洲无线观看免费| 国产精品久久久人人做人人爽| 性色avwww在线观看| 夜夜躁狠狠躁天天躁| 此物有八面人人有两片| 亚洲国产欧美一区二区综合| 久久国产精品人妻蜜桃| 国产精品综合久久久久久久免费| 国产精品自产拍在线观看55亚洲| 久久久久国产一级毛片高清牌| 曰老女人黄片| 床上黄色一级片| 国内精品久久久久久久电影| 在线十欧美十亚洲十日本专区| 久久精品aⅴ一区二区三区四区| 国产亚洲av嫩草精品影院| 麻豆一二三区av精品| 男女午夜视频在线观看| 在线观看午夜福利视频| 黑人操中国人逼视频| 国产一区二区在线观看日韩 | 在线免费观看不下载黄p国产| kizo精华| av免费在线看不卡| 日本黄色片子视频| 亚洲av二区三区四区| 国产精品,欧美在线| 亚洲成人久久爱视频| 中国美白少妇内射xxxbb| 国产一区二区在线观看日韩| 久久国内精品自在自线图片| 好男人在线观看高清免费视频| 又黄又爽又刺激的免费视频.| 午夜福利在线观看免费完整高清在| 日韩强制内射视频| 成年av动漫网址| 寂寞人妻少妇视频99o| 男女国产视频网站| 色尼玛亚洲综合影院| 亚洲第一区二区三区不卡| 日韩强制内射视频| 日本三级黄在线观看| 亚洲第一区二区三区不卡| 九九热线精品视视频播放| 久久草成人影院| 精品国产露脸久久av麻豆 | 最近中文字幕高清免费大全6| 亚洲天堂国产精品一区在线| 边亲边吃奶的免费视频| 久久韩国三级中文字幕| 午夜视频国产福利| 精品久久久久久久久亚洲| 国产亚洲精品久久久com| 精品国内亚洲2022精品成人| 成人三级黄色视频| 最近手机中文字幕大全| 搞女人的毛片| 高清日韩中文字幕在线| 91精品国产九色| 欧美日韩综合久久久久久| 精品久久久久久久久av| 国产久久久一区二区三区| 国产女主播在线喷水免费视频网站 | 狂野欧美激情性xxxx在线观看| 女人被狂操c到高潮| 色网站视频免费| 久久久久久国产a免费观看| 一卡2卡三卡四卡精品乱码亚洲| 夜夜看夜夜爽夜夜摸| 中国国产av一级| 99久久成人亚洲精品观看| 国产乱人视频| 性色avwww在线观看| 亚洲精华国产精华液的使用体验| 高清日韩中文字幕在线| 一级黄片播放器| 国产白丝娇喘喷水9色精品| 日日撸夜夜添| 美女cb高潮喷水在线观看| 一边摸一边抽搐一进一小说| 日韩中字成人| 亚洲av男天堂| 午夜免费激情av| 变态另类丝袜制服| 国产精品人妻久久久久久| 国产黄色小视频在线观看| 日韩 亚洲 欧美在线| 亚洲久久久久久中文字幕| 亚洲国产精品合色在线| 日本五十路高清| 免费黄色在线免费观看| 波多野结衣巨乳人妻| 日韩人妻高清精品专区| 国产亚洲最大av| 国产视频内射| 成人一区二区视频在线观看| 午夜福利网站1000一区二区三区| 久久精品影院6| av专区在线播放| .国产精品久久| av又黄又爽大尺度在线免费看 | 午夜福利视频1000在线观看| 国产亚洲av片在线观看秒播厂 | 18禁动态无遮挡网站| 最近最新中文字幕大全电影3| h日本视频在线播放| 国产 一区精品| 亚洲av熟女| 建设人人有责人人尽责人人享有的 | 在线免费观看的www视频| 六月丁香七月| 国产日韩欧美在线精品| 国内少妇人妻偷人精品xxx网站| 成人三级黄色视频| 国产精品一区二区在线观看99 | 精品久久久噜噜| 国产成人精品久久久久久| www.色视频.com| 最近中文字幕高清免费大全6| 久久久久久久国产电影| 日本熟妇午夜| 久久这里只有精品中国| 国语对白做爰xxxⅹ性视频网站| 国产精品久久电影中文字幕| 亚洲av二区三区四区| 七月丁香在线播放| 国产亚洲精品久久久com| 久久久久久久久久久丰满| 色网站视频免费| 国产一区亚洲一区在线观看| 亚洲欧美中文字幕日韩二区| 亚洲三级黄色毛片| 国产精品电影一区二区三区| 高清毛片免费看| 国产免费男女视频| 人人妻人人澡欧美一区二区| 日韩强制内射视频| 三级国产精品片| 色5月婷婷丁香| 欧美日韩精品成人综合77777| 岛国在线免费视频观看| av线在线观看网站| 国产免费福利视频在线观看| 国产国拍精品亚洲av在线观看| 国内精品宾馆在线| 99久久精品一区二区三区| 日日啪夜夜撸| 日韩强制内射视频| 女的被弄到高潮叫床怎么办| 国产精品一区二区三区四区免费观看| 婷婷六月久久综合丁香| av卡一久久| 亚洲人成网站高清观看| 成人毛片60女人毛片免费| 国内精品美女久久久久久| 一个人看视频在线观看www免费| 国产三级中文精品| 久久久久久国产a免费观看| 亚洲人与动物交配视频| 国产午夜福利久久久久久| 69av精品久久久久久| 国产伦理片在线播放av一区| 一级毛片电影观看 | 日韩欧美 国产精品| 六月丁香七月| 亚洲成色77777| 搡老妇女老女人老熟妇| 91狼人影院| 变态另类丝袜制服| 国产一区有黄有色的免费视频 | 国产一区二区在线av高清观看| 高清在线视频一区二区三区 | 国产精品一二三区在线看| 我的老师免费观看完整版| 亚洲五月天丁香| 高清视频免费观看一区二区 | 久久精品夜色国产| 精品人妻偷拍中文字幕| 中文乱码字字幕精品一区二区三区 | 免费观看在线日韩| 午夜免费激情av| 人人妻人人澡人人爽人人夜夜 | 亚洲最大成人手机在线| 国产av码专区亚洲av| 欧美zozozo另类| 高清视频免费观看一区二区 | 国产亚洲一区二区精品| 欧美日本亚洲视频在线播放| 亚洲欧美一区二区三区国产| 久久久久久九九精品二区国产| 毛片女人毛片| 日本黄色视频三级网站网址| 丰满少妇做爰视频| 高清午夜精品一区二区三区| 欧美成人a在线观看| 少妇熟女aⅴ在线视频| 亚洲最大成人av| 国产激情偷乱视频一区二区| 欧美精品国产亚洲| 国产淫语在线视频| 久久精品影院6| 一级爰片在线观看| 亚洲精品色激情综合| 亚洲国产精品久久男人天堂| 午夜a级毛片| 亚洲av不卡在线观看| 免费看a级黄色片| 国产美女午夜福利| 欧美又色又爽又黄视频| 一级黄片播放器| 亚洲激情五月婷婷啪啪| 韩国av在线不卡| 久久久久久九九精品二区国产| 好男人在线观看高清免费视频| 成年女人看的毛片在线观看| 日本欧美国产在线视频| 国产成人精品久久久久久| 禁无遮挡网站| 免费观看在线日韩| 国产老妇伦熟女老妇高清| 全区人妻精品视频| 男人的好看免费观看在线视频| 成人亚洲欧美一区二区av| 好男人视频免费观看在线| 欧美不卡视频在线免费观看| 欧美成人a在线观看| 99久久九九国产精品国产免费| 免费观看性生交大片5| 亚洲性久久影院| 深爱激情五月婷婷| 日日摸夜夜添夜夜添av毛片| 嫩草影院精品99| 亚洲成av人片在线播放无| 成人特级av手机在线观看| 国产午夜精品一二区理论片| 乱人视频在线观看| 国产 一区 欧美 日韩| www日本黄色视频网| 久热久热在线精品观看| 亚洲欧美日韩无卡精品| 日韩一区二区三区影片| 深夜a级毛片| 一级av片app| 97人妻精品一区二区三区麻豆| 韩国高清视频一区二区三区| 亚洲精品日韩av片在线观看| 蜜桃亚洲精品一区二区三区| 久久久久精品久久久久真实原创| 亚洲精品一区蜜桃| 国产一区亚洲一区在线观看| 联通29元200g的流量卡| 最近最新中文字幕免费大全7| 在线播放国产精品三级| 国产私拍福利视频在线观看| 亚洲在线观看片| 又粗又硬又长又爽又黄的视频| 亚洲av成人精品一区久久| av又黄又爽大尺度在线免费看 | 菩萨蛮人人尽说江南好唐韦庄 | 亚洲精品,欧美精品| 啦啦啦啦在线视频资源| 最新中文字幕久久久久| 国产大屁股一区二区在线视频| 99热网站在线观看| 久久久a久久爽久久v久久| 国产精品人妻久久久影院| 国产免费又黄又爽又色| 色综合站精品国产| 熟妇人妻久久中文字幕3abv| 国产高清有码在线观看视频| 亚洲色图av天堂| 欧美成人一区二区免费高清观看| 欧美三级亚洲精品| 国产麻豆成人av免费视频| 日韩人妻高清精品专区| 免费看av在线观看网站| 国产不卡一卡二| 国产精品久久电影中文字幕| 国产精品国产三级国产av玫瑰| 夜夜爽夜夜爽视频| 噜噜噜噜噜久久久久久91| 麻豆成人av视频| av在线播放精品| 亚洲成色77777| 久久久久九九精品影院| 国产免费一级a男人的天堂| 国产美女午夜福利| 国产精品无大码| 一卡2卡三卡四卡精品乱码亚洲| 久久这里只有精品中国| 亚洲在线自拍视频| 狂野欧美激情性xxxx在线观看| 亚洲,欧美,日韩| 69av精品久久久久久| 三级男女做爰猛烈吃奶摸视频| 春色校园在线视频观看| 91久久精品电影网| 人妻系列 视频| 日韩欧美精品v在线| 99久国产av精品| 婷婷六月久久综合丁香| 国产色婷婷99| 欧美性感艳星| 黄色一级大片看看| 男插女下体视频免费在线播放| 永久免费av网站大全| 一级黄片播放器| 哪个播放器可以免费观看大片| 亚洲国产精品久久男人天堂| 中文精品一卡2卡3卡4更新| 久久这里有精品视频免费| 欧美性猛交╳xxx乱大交人| 特级一级黄色大片| 一边摸一边抽搐一进一小说| 国产精品综合久久久久久久免费| 麻豆精品久久久久久蜜桃| 亚洲自拍偷在线| 亚洲国产成人一精品久久久| 亚洲精品乱久久久久久| 麻豆一二三区av精品| 免费观看人在逋| 国产白丝娇喘喷水9色精品| 丰满少妇做爰视频| 永久网站在线| 非洲黑人性xxxx精品又粗又长| 久久99热6这里只有精品| 少妇人妻一区二区三区视频| 欧美另类亚洲清纯唯美| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日本一二三区视频观看| 午夜日本视频在线| 99热这里只有精品一区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 成人性生交大片免费视频hd| av播播在线观看一区| 中文字幕制服av| 久久久久久久久大av| 国产免费又黄又爽又色| 一级毛片久久久久久久久女| 成人亚洲欧美一区二区av| 成人av在线播放网站| 国产亚洲5aaaaa淫片| 女的被弄到高潮叫床怎么办| 国产欧美另类精品又又久久亚洲欧美| 亚洲欧美成人精品一区二区| 嫩草影院入口| av在线蜜桃| 99热全是精品| 九九久久精品国产亚洲av麻豆| 久久久久久久亚洲中文字幕| 综合色av麻豆| 色综合色国产| 1024手机看黄色片| 成人三级黄色视频| 日本一本二区三区精品| 偷拍熟女少妇极品色| .国产精品久久| 亚洲欧美中文字幕日韩二区| 日本色播在线视频| 老女人水多毛片| 亚洲国产欧美人成| 黄色一级大片看看| 国产片特级美女逼逼视频| 国产午夜精品久久久久久一区二区三区| 色尼玛亚洲综合影院| 长腿黑丝高跟| 久久久久久久久久成人| 日本一二三区视频观看| 欧美日本亚洲视频在线播放| 中文在线观看免费www的网站| 亚洲内射少妇av| 国产精品乱码一区二三区的特点| 国产亚洲精品久久久com| 只有这里有精品99| 午夜久久久久精精品| 91久久精品国产一区二区三区| 白带黄色成豆腐渣| 99在线视频只有这里精品首页| 国产真实伦视频高清在线观看| 久久精品国产鲁丝片午夜精品| 97在线视频观看| 久久鲁丝午夜福利片| 最近手机中文字幕大全| 欧美日本亚洲视频在线播放| 国产亚洲av片在线观看秒播厂 | videossex国产| 久久精品人妻少妇| 99热这里只有精品一区| 国国产精品蜜臀av免费| 亚洲经典国产精华液单| 久99久视频精品免费| 久久精品久久久久久噜噜老黄 | 免费观看人在逋| 亚洲中文字幕日韩| 久久久久性生活片| 国产私拍福利视频在线观看| av在线亚洲专区| 亚洲综合精品二区| 国产亚洲5aaaaa淫片| 午夜久久久久精精品| 嫩草影院精品99| 国产老妇女一区| 国产精品国产三级国产专区5o | 国产又色又爽无遮挡免| av卡一久久| 亚洲激情五月婷婷啪啪| 亚洲精品一区蜜桃| 乱人视频在线观看| 亚洲国产高清在线一区二区三| 美女高潮的动态| 亚洲精品色激情综合| 久久精品国产亚洲av涩爱| 国产精品嫩草影院av在线观看| 免费观看a级毛片全部| 欧美97在线视频| 一夜夜www| 午夜福利网站1000一区二区三区| 欧美另类亚洲清纯唯美| 成人特级av手机在线观看| av福利片在线观看| 国产精品一二三区在线看| 日韩欧美三级三区| 欧美+日韩+精品| 精品欧美国产一区二区三| 五月伊人婷婷丁香| 99久久精品一区二区三区| 亚洲精品影视一区二区三区av| 精品人妻偷拍中文字幕| 高清在线视频一区二区三区 | a级一级毛片免费在线观看| 69av精品久久久久久| 日韩一本色道免费dvd| 内地一区二区视频在线| 噜噜噜噜噜久久久久久91| 亚洲中文字幕日韩| 久久草成人影院| 国产黄a三级三级三级人| 亚洲经典国产精华液单| 三级国产精品片| 亚洲精品色激情综合| 久久久久国产网址| 国产精品久久久久久精品电影小说 | 麻豆精品久久久久久蜜桃| 免费不卡的大黄色大毛片视频在线观看 | 中文亚洲av片在线观看爽| 女人被狂操c到高潮| 国产成年人精品一区二区| www.av在线官网国产| 亚洲人与动物交配视频| 国产精品一及| 日本熟妇午夜| 最近2019中文字幕mv第一页| 国产精品一及| 日韩,欧美,国产一区二区三区 | 少妇丰满av| 国产又色又爽无遮挡免| 99久久精品国产国产毛片| 日本与韩国留学比较| 中文字幕久久专区| 亚洲婷婷狠狠爱综合网| 村上凉子中文字幕在线| 免费人成在线观看视频色| 好男人视频免费观看在线| 黄片无遮挡物在线观看| 国产日韩欧美在线精品| 91精品伊人久久大香线蕉| 只有这里有精品99| 大又大粗又爽又黄少妇毛片口| 欧美成人a在线观看| 欧美日本亚洲视频在线播放| 青春草视频在线免费观看| 18禁在线无遮挡免费观看视频| 村上凉子中文字幕在线| 日韩一区二区视频免费看| 最后的刺客免费高清国语| 国产精品无大码| 免费一级毛片在线播放高清视频| 丰满少妇做爰视频| 精华霜和精华液先用哪个| 午夜视频国产福利| 最后的刺客免费高清国语| 亚洲精品成人久久久久久| 精品久久久久久久人妻蜜臀av| 亚洲欧美清纯卡通| 男女下面进入的视频免费午夜| 小蜜桃在线观看免费完整版高清| 丰满少妇做爰视频| eeuss影院久久| 欧美日本视频|