• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Investigation of the interaction between NS-DBD plasma-induced vortexes and separated flow over a swept wing

    2023-03-09 05:45:32BeiLIU劉備HuaLIANG梁華andBoruiZHENG鄭博睿
    Plasma Science and Technology 2023年1期
    關(guān)鍵詞:劉備

    Bei LIU(劉備),Hua LIANG(梁華) and Borui ZHENG(鄭博睿)

    1 Science and Technology on Plasma Dynamics Laboratory,Air Force Engineering University,Xi’an 710038,People’s Republic of China

    2 The Green Aerotechnics research Institute of Chongqing Jiaotong University,Chongqing 401120,People’s Republic of China

    Abstract The effect of nanosecond pulsed dielectric barrier discharge(NS-DBD)plasma flow separation control is closely related to the actuation frequency,because it involves the interaction between plasma-induced vortexes and separated flow.In order to study the mechanism of NS-DBD plasma flow separation control over a swept wing,especially the influence of the actuation frequency,at first,experimental studies of the actuation frequencies at 100 Hz are conducted to validate the numerical simulation method.Then,numerical studies of different actuation frequencies which are 50 Hz,100 Hz,160 Hz,200 Hz,500 Hz,and 1000 Hz,respectively are conducted.The interaction between the plasma-induced vortexes and the separated flow is analyzed.Results show that there is a range of the actuation frequency which includes the frequency(160 Hz)calculated by the average aerodynamic chord length to make the control effect good,but when the actuation frequencies are too low(50 Hz)or too high(1000 Hz),the control effect will get worse.The former is because plasmainduced vortexes disappear in a period within an actuation cycle;the latter is because plasma-induced vortexes cannot develop completely,resulting in a weak vortex intensity.

    Keywords:plasma-induced vortex,flow separation control,NS-DBD,LES

    1.Introduction

    Nanosecond pulsed dielectric barrier discharge(NS-DBD)and alternative current dielectric barrier discharge(ACDBD)are two main plasma flow separation control methods.Because of the higher actuation frequency and intensity of NS-DBD in contrast with AC-DBD,the control effect of NS-DBD is better than that of AC-DBD[1,2].Studies show that when the flow Mach number is 0.4,AC-DBD almost has no control effect[3]while even though the flow Mach number reaches 0.74,NS-DBD also has a good control effect on flow separation[4].NS-DBD is even used to control the strong shock wave ahead of a circular cylinder in which the flow Mach number is 5[5].

    The mechanism of AC-DBD plasma actuation for flow control is momentum effects due to ionic wind created by the discharge,which can accelerate the flow in the boundary layer.Therefore,the ability of the flow to resist adverse pressure gradient becomes stronger.Experimental studies show that the ionic wind can only reach to several meters per second(less than 10 m s?1)discharging in quiescent air[6],so the control effect of AC-DBD is limited.Whereas,the mechanism of NS-DBD plasma actuation for flow control is transient heat effects which induce shock waves and starting vortexes that interact with the separated flow[7,8],resulting in the flow separation being controlled.Experimental studies show that the induced flow velocity of NS-DBD is less than 1 m s?1[9].

    For both AC-DBD and NS-DBD,the effects on flow separation control are closely related to the actuation frequency.Audieret alstudied a post-stall flow over NACA0012 airfoil by AC-DBD experimentally[10].Results show that the higher the actuation frequency,the better the control effect,and the closer to the control effect of steady actuation.Abdollahzadehet alvalidated the conclusion by a numerical study which is also about the flow separation control of NACA0012 airfoil by AC-DBD[11].Sidorenkoet alstudied the control effect of NS-DBD on an airfoil by experimental method.Results show that the optimum actuation frequency depends on the angle of attack and flow velocity[12].Niuet alconducted an experimental study on flow separation control of a flying wing by NS-DBD when theRenumber is 2.61×106and Mach number is 0.2.Results show that the actuation frequency of 100 Hz is better than those of 200 and 300 Hz[13].

    Obviously,for the flow separation control of NS-DBD,it is not the case that the higher the actuation frequency,the better the control effect.The actuation frequency is generally dimensionless as follows:

    wherefis the actuation frequency,U∞is the flow velocity,cis the reference length.It is believed that the control effect is best whenF+=1in 2D cases for NS-DBD and the reference length is the chord length of the airfoil[14].But for 3D cases such as a swept wing,how to take the reference length is a problem,especially for the wing with a large root-tip ratio.In order to investigate the interaction between NS-DBD plasma-induced vortexes and separated flow over a swept wing,a numerical study with high precision is essential because more flow field details can be obtained than an experimental study.But most of the numerical studies are conducted over an airfoil,few are over a swept wing due to large computation consumption.

    There is an optimum actuation frequency for NS-DBD plasma flow control,but the control mechanism is still not clear,especially for a swept wing(there is no definite reference length).The mechanism of NS-DBD plasma flow control is mainly about the interaction between plasma-induced vortexes and separated flow,but the interaction process is also not clear.In this study,in order to investigate the interaction mechanism,large eddy simulation(LES)method is adopted to simulate the flow over a swept wing.Owning to the higher accuracy than Reynolds Averaged Navier–Stokes and less computation than direct numerical simulation(DNS),LES method has been extensively used in the flow simulation with large separation[15–17].Although the computation of delayed detached eddy simulation(DDES)is less than LES,considering more turbulence dissipation which could affect the investigation of the vortex interaction,the DDES method is not adopted.

    The rest of this article is organized as follows:section 2 is the experimental study of plasma flow separation control;section 3 validates the LES method according to the experimental data;section 4 shows the numerical study of plasma flow separation control;section 5 is for conclusions.

    2.Experimental study

    The experimental model is made of aluminum alloy and the surface is very smooth,see figure 1(a).The plane size is shown in figure 1(b).The sweep angle is 20 degree and the lengths of wing root,wing tip,leading edge,and tailing edge are 0.903 m,0.15 m,1.15 m,and 1.104 m,respectively.The length of average aerodynamic chord length is 0.527 m.The relative thickness from the wing root section to the wing tip section varies uniformly from 6.8% to 5.6%.The five cross sections which are at 0%,25%,50%,75%,100% spanwise positions respectively are shown in figure 1(c).

    The experiment is conducted in a low-speed acoustic wind tunnel in which there is a 139.0512.5 m3××silencing section to reduce the noise and the turbulence.The section size of the wind tunnel test part is21.5 m2,×and the maximum test wind speed is 110 m s?1(0.32 Mach).The wind speed required for the experiment is 0.25 Mach.The model in the wing with and without plasma actuation is shown in figure 2.Anode and cathode materials are attached to the leading edge of the wing which has been proved to be the best position[18](see figure 2(b)).A cross section of the installed wing with plasma actuation is shown in figure 2(c).The thicknesses of the anode and cathode are both 0.1 mm and the thickness of the electrolyte is 0.18 mm.The lengths of the anode and cathode are 3 mm and 5 mm,respectively and the distance between them is 0 mm.

    In the experiment,high voltage pulses are generated by a nanosecond pulse generator(HVP-20),the applied voltage and the discharge current are measured by a voltage probe(Tektronix P6015A)and a current probe(Tektronix TCP312+TCPA300),respectively and the signals are recorded on an oscilloscope(Tektronix DPO4104).A single pulse waveform which is used in this experiment is shown in figure 3.The applied voltage is 8 kV and the full width half maximum is 300 ns.The experimental velocity is 85 m s?1(0.25 Mach),the pressure is 1 atm,the temperature is 290 K and the turbulent intensity at the wing tunnel inlet is 0.16%.The Reynold number is calculated based on unit length(1 m).According to the principle that the optimal actuation frequency meetsF+=1,if taking the wing root length as the reference length,it will be 94 Hz;if taking the wing tip length,it will be 567 Hz;if taking the average aerodynamic chord length,it will be 161 Hz.The higher the actuation frequency,the larger the energy,the easier it is to break through the plasma actuator,resulting in leakage.Because the whole experimental system is very expensive and the experimental model is mental,for the sake of safety,only the actuation frequency of 100 Hz is conducted.(When taking the wing root length as the reference length,the optimal actuation frequency is 94 Hz.)In addition,this problem is mainly investigated by numerical simulation,the small amount of experimental data is used to validate the numerical method.The energy of the single pulse in figure 3 is 79.08 mJ and it is calculated by the following formula:

    The length of the actuator is 1.15 m,so the energy per unit length of the pulse is 0.688 mJ cm?1which is within the scope given by Takashimaet al[8].If the actuation frequency is 100 Hz,the output power will be 7.908 W;if the actuation frequency is 1000 Hz,the output power will be 79.08 W.

    The experimental results are shown in figure 4.When the actuation voltage is 8 kV and the actuation frequency is 100 Hz,the maximum lift coefficient with the plasma actuation is 18.1% larger than that without the plasma actuation,and the stall angle of attack was delayed by 4°–5°.It indicates that NSDBD has a good effect on control flow separation.

    3.LES method validation

    Spatial resolution,temporal resolution and sub-grid model are the three critical factors that must be considered in the usage of LES[19].For the spatial resolution,as the computational mesh is successively refined,increasingly fine-scale turbulent structures are resolved,the computation eventually transitions to a DNS.For the temporal resolution,the time-step size needs to be able to describe the important physical phenomena.Obviously,smaller time steps are more desirable from an accuracy point of view,but also increase the resources required for the simulation.For the sub-grid model,the finest-scale fluid structures are not resolved in LES but equivalent by the sub-grid model and different subgrid models have different schemes and different accuracy.In the simulation,central difference scheme is adopted and SIMPLEC method is used for pressure–velocity coupling.The time step can be dimensionless as follows:

    U∞is the flow velocity(85 m s?1),cis the reference length(0.15 m,wing tip length),tΔ is set as a constant of 0.00001 s in the base flow simulation,so dtis 0.0057.Sorensenet al[20]studied the influence of time steps on calculation.Results show that dt=0.01 is enough.In order to validate the grid and the sub-gird model,two sets of grids and two sub-grid models are selected.The total number of the coarse grid is 24 million and the fine grid is 68 million.They both meety-plus less than 1.Two sub-grid models are WMLES and WALE.WALE is a wall-solved model which has a high precision but with the increase ofRenumber,the computation increases rapidly.WMLES is a wall-modelling model which can greatly reduce the computation in the highRenumber condition.The angle of attack in the calculation is 18°.The contrast of aerodynamic force coefficients between the experiment and the simulation is shown in table 1(Clis the lift coefficient,Cdis the drag coefficient,ΔCland ΔCdare the contrast of the lift coefficient and the drag coefficient between the calculation and the experiment,respectively).The simulation with fine grid and WALE model agrees best with the experiment.

    Table 1.Contrast of aerodynamic force coefficients between the experiment and the simulation when the angle of attack is 18°.

    Figure 5 shows the vortex structures of the four simulation conditions when the time is at 0.6 s.It is obvious that the finer the grid is,the finer scale vortex structures can be caught and WALE model can catch finer scale vertex structures than WMLES model when the grid is same.So,the fine gird and WALE model are selected to conduct the numerical studies.

    Figure 1.Experimental model(a),plane size(b),and five cross sections(c).

    Figure 2.Experimental model without plasma actuator(a),with plasma actuator(b),a cross section of the model with plasma actuator(c).

    Figure 3.Voltage and current waveform of a single pulse.

    Figure 4.Contrast of experimental results between with and without plasma actuation when the actuation frequency is 100 Hz and the actuation voltage is 8 kV(Ma=0.25, Re=5.74×106),lift coefficient(a),drag coefficient(b).

    Figure 5.Vortex structures of the four simulation conditions when flow time is at 0.6 s(Q=10 000),fine gird+WALE(a),coarse grid+WALE(b),fine grid +WMLES(c),coarse gird +WMLES(d).

    Figure 6.Contrast of aerodynamic force coefficients between the calculation and the experiment without the plasma actuation,lift coefficient(a),drag coefficient(b).

    Figure 7.The determination process of x and y in formula(4).

    Figure 8.The spatial distribution of the heat source on the leading edge.

    Figure 9.Aerodynamic coefficients under different actuation frequencies when the angle of attack is 18°,lift coefficient of 50 Hz(a),drag coefficient of 50 Hz(b),lift coefficient of 100 Hz(c),drag coefficient of 100 Hz(d),lift coefficient of 160 Hz(e),drag coefficient of 160 Hz(f),lift coefficient of 200 Hz(g),drag coefficient of 200 Hz(h),lift coefficient of 500 Hz(i),drag coefficient of 500 Hz(j),lift coefficient of 1000 Hz(k),drag coefficient of 1000 Hz(l).

    Figure 10.Contrast of aerodynamic force coefficients between the calculation and the experiment with the plasma actuation(f =100 Hz),lift coefficient(a),drag coefficient(b).

    The scheme of ‘Fine grid+WALE’ is adopted to simulate other angles of attack states which are 14°,16°,20°,and 22°.The contrast of aerodynamic force coefficients between the calculation and the experiment without the plasma actuation is shown in figure 6.Results are in good agreement between the calculation and the experiment.

    4.Numerical study

    In the numerical study,the effect of NS-DBD plasma actuation on the flow is equivalent to a heat source model which can be depicted as follows[21]:

    S(W m?3)is the maximum value of the heat source which is 5×1012in this simulation according to[21].a(m)andb(m)characterize the range of the heat source region in thexandydirections,respectively.In this simulation,ais 0.0015 m,bis 0.0005 m according to[21]andh(t)is a step function with a value of 0 or 1,which is used to control the actuation frequency.The determination process ofxandyin formula(4)is shown in figure 7.

    Assuming a point N in the flow,so there is only one planeCperpendicular to the leading-edge AB of the wing and passing through the point N.Assuming that the intersection of planeCand AB is point M,if a point in the flow is on the planeC,the heat source must be calculated according to the coordinate system with point M as the origin.There must be a point O on the planeCand the wing surface closest to the point N,so the distance of NO isyand the distance of MO isxin formula(3).The spatial distribution of the heat source on the leading-edge is shown in figure 8.The action time of the heat source in each actuation cycle is 300 ns(half maximum width of the voltage waveform in figure 3).If the actuation frequency is 100 Hz,the actuation cycle is 0.01 s,so for most of the time in a cycle,there is no heat source.In order to save computation,the variable time step method which can change from 10 to 1000 ns is adopted.

    In order to study the influent of the actuation frequency on flow separation control,six different actuation frequencies which are 50 Hz,100 Hz,160 Hz,200 Hz,500 Hz,and 1000 Hz are selected.Among these,when the actuation frequency is 160 Hz and taking the average aerodynamic chord length of the wing as the reference length,F+equals 1.In the numerical simulation,the energy of each discharge cycle is same,so the energy with an actuation frequency of 500 Hz is 10 times that with an actuation frequency of 50 Hz.

    Aerodynamic coefficients under different actuation frequencies when the angle of attack is 18° are shown in figure 9.The value indicated by dotted line is time-averaged.When the plasma heat source begins to act,the lift coefficient will decrease sharply and the drag coefficient will decrease sharply owing to the high-temperature and high-pressure region on the leading-edge.When the actuation frequency is from 100 to 200 Hz(comparing with the base condition,the lift increase is 10.55%(100 Hz),11.39%(160 Hz),11.36%(200 Hz),respectively),a good effect on lift increasing can be obtained and when the actuation frequency is 500 Hz(the lift increasing is 8.96%),the control effect is also not bad.But when the actuation frequencies are 50 Hz(the lift increasing is 4.27%)and 1000 Hz(the lift increasing is 3.01%),it gets worse.Therefore,it is not that the higher the actuation frequency,the greater the energy,and the better the control effect.The fluctuation of aerodynamic coefficients gets smaller when the actuation frequency gets higher.This suggests that the higher the energy,the stronger the influence of plasma actuation on the flow.

    The contrast of aerodynamic force coefficients between the calculation(14°,16°,18°,20°,22°)and the experiment with the plasma actuation frequency of 100 Hz is shown in figure 10.Because the plasma heat model is different from the actual discharge,the aerodynamic coefficients,especially the lift coefficient,have some differences from the experimental results,but the change tendency is consistent.The contrast of aerodynamic force coefficients between the experiment and the calculation when the plasma actuation frequency is 100 Hz and the angle of attack is 18° is shown in table 2.

    Figure 11 shows the evolution of plasma-induced vortex structures when the actuation frequency is 100 Hz and the angle of attack is 18°,which are phase-averaged over the cycles in figure 9(c).The plasma-induced vortexes roll the high-speed fluid outside the boundary layer into the boundary layer so that the flow is reattached and the lift is increased.As the plasma-induced vortex moves downstream,the intensity of the induced vortex first increases and then decreases,and when it is at the 3T/4,the induced vortex intensity is already very low and when it is at the 4T/4,the induced vortex disappears above the wing.

    Figure 12 shows the condition when the actuation frequency is 200 Hz and the plasma-induced vortex structures are phase-averaged over the cycles in figure 9(g).Because the condition in which the actuation frequency is 160 Hz is similar,it is not shown.During the whole period of actuation,the plasma-induced vortex structures are always above the wing,so it always has an effect on lift increasing.

    Table 2.Contrast of aerodynamic force coefficients between the experiment and the simulation when the plasma actuation frequency is 100 Hz and the angle of attack is 18°.

    Figures 13 and 14 show the condition when the actuation frequency is 500 Hz and 1000 Hz,respectively,and the plasma-induced vortex structures are phase-averaged over the cycles in figures 9(i)and(k),respectively.Obviously,on one hand,the plasma-induced vortex structures are not fully developed during an actuation period,especially for the condition of 1000 Hz.This is the main reason why the control effect gets worse.On the other hand,the vortex structures above the wing become more regular own to the higher frequency and larger energy of plasma actuation,especially for the condition of 1000 Hz.This is the main reason why the fluctuation of aerodynamic coefficients gets smaller.

    Figure 15 shows the condition when the actuation frequency is 50 Hz and the plasma-induced vortex structures are phase-averaged over the cycles in figure 9(a).When they are at 2T/4,3T/4,and 4T/4,the plasma-induced vortex structures disappear above the wing and have no effect on lift increasing.This is the main reason why the control effect gets worse.

    Figure 11.Evolution of plasma-induced vortex structures when the actuation frequency is 100 Hz and the angle of attack is 18°(Q=10 000),1T/4(a),2T/4(b),3T/4(c),4T/4(d).

    Figure 12.Evolution of plasma-induced vortex structures when the actuation frequency is 200 Hz and the angle of attack is 18°(Q=10 000),1T/4(a),2T/4(b),3T/4(c),4T/4(d).

    Figure 13.Evolution of plasma-induced vortex structures when the actuation frequency is 500 Hz and the angle of attack is 18°(Q=10 000),1T/4(a),2T/4(b),3T/4(c),4T/4(d).

    Figure 14.Evolution of plasma-induced vortex structures when the actuation frequency is 1000 Hz and the angle of attack is 18°(Q=10 000),1T/4(a),2T/4(b),3T/4(c),4T/4(d).

    Figure 15.Evolution of plasma-induced vortex structures when the actuation frequency is 50 Hz and the angle of attack is 18°(Q=10 000),1T/4(a),2T/4(b),3T/4(c),4T/4(d).

    5.Conclusions

    In this work,numerical studies on plasma separation control of a swept wing with different actuation frequencies which are 50 Hz,100 Hz,160 Hz,200 Hz,500 Hz,and 1000 Hz,respectively are conducted,and experiment studies in which the actuation voltage is 8 kV and the actuation frequency is 100 Hz are conducted to validate the numerical method.Some conclusions can be drawn as follows:

    (1)The mechanism of NS-DBD plasma flow separation control is mainly through the interaction between the plasma-induced vortexes which are closely related to the actuation frequency and the separated flow.If the actuation frequency is too low,the plasma-induced vortexes will disappear in a period within an actuation cycle;if the actuation frequency is too high,the plasmainduced vortex cannot develop completely,resulting in a weak vortex intensity.

    (2)The higher the actuation frequency,the stronger the influence of plasma actuation on the flow,the more regular the vortex structures above the wing and the smaller the fluctuation of aerodynamic coefficients.

    (3)For the flow separation control over an airfoil,there is an optimal actuation frequency which meetsF+=1to make the control effect best.For the flow separation control over a swept wing,there is a range of the actuation frequency which includes the frequency calculated by the average aerodynamic chord length to make the control effect good.

    Acknowledgments

    This research was supported by the National Science and Technology Major Project(No.J2019-II-0014-0035),Academician Workstation Foundation of the Green Aerotechnics Research Institute of Chonging Jiaotong University(No.GATRI2020C06003).

    猜你喜歡
    劉備
    修德箴言
    讀懂劉備
    海峽姐妹(2020年11期)2021-01-18 06:16:24
    三顧茅廬(中)
    劉備與徐州
    劉備為何不在赤壁大戰(zhàn)前取荊州
    劉備托孤
    快樂語文(2017年12期)2017-05-09 22:07:40
    相面
    意林(2016年24期)2017-01-04 21:58:26
    徐庶以馬試劉備
    劉備的愛
    小說月刊(2014年2期)2014-04-18 14:06:43
    劉備別具特色的用人之道
    軍事歷史(1996年1期)1996-08-20 07:15:32
    videossex国产| 人体艺术视频欧美日本| 欧美成人免费av一区二区三区| 一区二区三区四区激情视频| 3wmmmm亚洲av在线观看| 精品酒店卫生间| 国产高清三级在线| 精品欧美国产一区二区三| 国产精品爽爽va在线观看网站| 国产黄片视频在线免费观看| 五月伊人婷婷丁香| 美女脱内裤让男人舔精品视频| 国产色婷婷99| 干丝袜人妻中文字幕| 少妇猛男粗大的猛烈进出视频 | 国内精品宾馆在线| 久久久久久国产a免费观看| 自拍偷自拍亚洲精品老妇| 久久久久久久久久成人| 尤物成人国产欧美一区二区三区| av女优亚洲男人天堂| 国产视频首页在线观看| 久久精品国产自在天天线| 国产av码专区亚洲av| 成人午夜精彩视频在线观看| 亚洲精品456在线播放app| 久久久国产成人精品二区| 国产精品一二三区在线看| 日韩 亚洲 欧美在线| 老司机影院成人| 日日摸夜夜添夜夜爱| 我要搜黄色片| 国产高清视频在线观看网站| 国内揄拍国产精品人妻在线| 麻豆久久精品国产亚洲av| 97超碰精品成人国产| 日韩欧美国产在线观看| 免费黄网站久久成人精品| a级毛色黄片| 午夜精品国产一区二区电影 | 国产一级毛片在线| 精品一区二区三区视频在线| 国产免费视频播放在线视频 | 色噜噜av男人的天堂激情| 国产极品天堂在线| 中文亚洲av片在线观看爽| 欧美日韩综合久久久久久| 黄色配什么色好看| 国产亚洲av片在线观看秒播厂 | 午夜福利在线观看免费完整高清在| 99久国产av精品| 欧美xxxx黑人xx丫x性爽| 一边亲一边摸免费视频| 亚洲自偷自拍三级| eeuss影院久久| 亚洲国产精品专区欧美| 久久精品影院6| 美女xxoo啪啪120秒动态图| av免费在线看不卡| 成人国产麻豆网| 久久欧美精品欧美久久欧美| 22中文网久久字幕| 边亲边吃奶的免费视频| 欧美潮喷喷水| 午夜精品一区二区三区免费看| 久久久久久久久中文| 国产精品野战在线观看| 秋霞伦理黄片| 久久久欧美国产精品| 少妇熟女aⅴ在线视频| 免费观看在线日韩| 白带黄色成豆腐渣| 看黄色毛片网站| 国产 一区 欧美 日韩| 韩国高清视频一区二区三区| 最后的刺客免费高清国语| 18禁裸乳无遮挡免费网站照片| 国产片特级美女逼逼视频| 日韩欧美精品免费久久| 久久韩国三级中文字幕| 狠狠狠狠99中文字幕| 久久午夜福利片| 女人十人毛片免费观看3o分钟| 久久久久久久午夜电影| 久久久精品欧美日韩精品| 国产黄片视频在线免费观看| 午夜精品在线福利| 午夜免费激情av| 国产一级毛片在线| 内地一区二区视频在线| 直男gayav资源| 国产成人精品一,二区| 国产在线男女| 一个人看视频在线观看www免费| 欧美日本视频| 国产精品99久久久久久久久| 少妇高潮的动态图| 99视频精品全部免费 在线| 高清午夜精品一区二区三区| 日韩高清综合在线| 久久久精品94久久精品| 99久久中文字幕三级久久日本| 亚洲av.av天堂| 深夜a级毛片| 欧美bdsm另类| 亚洲综合色惰| 国产真实伦视频高清在线观看| 国内精品美女久久久久久| 三级经典国产精品| 91狼人影院| 亚洲在线观看片| 女的被弄到高潮叫床怎么办| 人妻系列 视频| 国产亚洲精品久久久com| 久久6这里有精品| 91精品伊人久久大香线蕉| 偷拍熟女少妇极品色| 丰满乱子伦码专区| 亚洲自偷自拍三级| 免费av毛片视频| 看非洲黑人一级黄片| 村上凉子中文字幕在线| 亚洲精品亚洲一区二区| 久久久久久九九精品二区国产| 亚洲中文字幕一区二区三区有码在线看| 人人妻人人澡人人爽人人夜夜 | 久久久色成人| 听说在线观看完整版免费高清| 久久精品人妻少妇| ponron亚洲| 永久网站在线| 色网站视频免费| 天天一区二区日本电影三级| 精品久久久久久久人妻蜜臀av| 国产高清三级在线| 美女被艹到高潮喷水动态| 国产成人午夜福利电影在线观看| 国产精品电影一区二区三区| 一级爰片在线观看| 久久久久久久久久久丰满| 国产久久久一区二区三区| videos熟女内射| 亚洲av不卡在线观看| 欧美成人午夜免费资源| 亚洲不卡免费看| 亚洲av中文av极速乱| 国产高清不卡午夜福利| 国产女主播在线喷水免费视频网站 | 久久国产乱子免费精品| 中文欧美无线码| 日韩一本色道免费dvd| 又粗又爽又猛毛片免费看| 男的添女的下面高潮视频| 三级国产精品欧美在线观看| 男人舔奶头视频| 1000部很黄的大片| 蜜臀久久99精品久久宅男| 国产精品av视频在线免费观看| 有码 亚洲区| 一边亲一边摸免费视频| 九九热线精品视视频播放| 成人漫画全彩无遮挡| 欧美成人a在线观看| 亚洲va在线va天堂va国产| 日韩一区二区三区影片| 久久精品国产亚洲av天美| 国产 一区 欧美 日韩| 久久久久免费精品人妻一区二区| 国产精品.久久久| 全区人妻精品视频| 91av网一区二区| 最新中文字幕久久久久| 看非洲黑人一级黄片| 久久精品夜夜夜夜夜久久蜜豆| 日本wwww免费看| 丰满人妻一区二区三区视频av| 亚洲综合色惰| 欧美精品国产亚洲| 中国国产av一级| 最近中文字幕高清免费大全6| 亚洲va在线va天堂va国产| 国产精品熟女久久久久浪| 人妻少妇偷人精品九色| 成人鲁丝片一二三区免费| 嘟嘟电影网在线观看| 中文字幕免费在线视频6| 国产免费又黄又爽又色| 97超碰精品成人国产| 欧美+日韩+精品| 亚洲经典国产精华液单| av天堂中文字幕网| 夫妻性生交免费视频一级片| 日本免费在线观看一区| 91久久精品电影网| 又粗又爽又猛毛片免费看| 亚洲美女视频黄频| 国产精品精品国产色婷婷| 一边摸一边抽搐一进一小说| 久久久久性生活片| 国产高清三级在线| 国产伦一二天堂av在线观看| av.在线天堂| av免费观看日本| 99在线人妻在线中文字幕| 色噜噜av男人的天堂激情| 国产成人免费观看mmmm| 高清av免费在线| 国产精品爽爽va在线观看网站| 一夜夜www| 免费搜索国产男女视频| 性色avwww在线观看| 毛片女人毛片| 热99re8久久精品国产| 午夜福利成人在线免费观看| 亚洲精品乱码久久久v下载方式| 免费观看精品视频网站| 亚洲在线自拍视频| 尾随美女入室| 国产成人午夜福利电影在线观看| 伦精品一区二区三区| 特级一级黄色大片| 女人久久www免费人成看片 | 一级毛片电影观看 | 少妇被粗大猛烈的视频| 日本午夜av视频| 黑人高潮一二区| 午夜亚洲福利在线播放| 日本一二三区视频观看| 国产视频内射| 精品人妻一区二区三区麻豆| 精品久久久久久久人妻蜜臀av| 国产精品一区二区三区四区免费观看| 日本-黄色视频高清免费观看| 久久久午夜欧美精品| 久久久久久久久大av| 久久精品综合一区二区三区| av在线播放精品| 99久国产av精品国产电影| 中文字幕亚洲精品专区| 中文字幕久久专区| 国产老妇女一区| 免费无遮挡裸体视频| 寂寞人妻少妇视频99o| 亚洲欧美日韩无卡精品| 国产精品人妻久久久影院| 一夜夜www| 精品人妻熟女av久视频| 国产精品久久电影中文字幕| 国产精品电影一区二区三区| 大话2 男鬼变身卡| 男人舔女人下体高潮全视频| 看非洲黑人一级黄片| 综合色av麻豆| 麻豆成人午夜福利视频| 亚洲av电影不卡..在线观看| 秋霞伦理黄片| 寂寞人妻少妇视频99o| 国产一区二区在线观看日韩| 久久综合国产亚洲精品| 日韩亚洲欧美综合| 免费看日本二区| 亚洲av成人精品一区久久| 久久久久免费精品人妻一区二区| 精品一区二区三区人妻视频| 欧美bdsm另类| 成人漫画全彩无遮挡| 麻豆乱淫一区二区| 啦啦啦韩国在线观看视频| 成人亚洲欧美一区二区av| 哪个播放器可以免费观看大片| 国产精品精品国产色婷婷| 欧美色视频一区免费| 亚洲美女搞黄在线观看| 欧美+日韩+精品| 天天躁夜夜躁狠狠久久av| 一级毛片电影观看 | 久久久国产成人精品二区| 国产在线男女| 男女啪啪激烈高潮av片| 美女国产视频在线观看| 久久综合国产亚洲精品| 非洲黑人性xxxx精品又粗又长| 亚洲在线自拍视频| 亚洲色图av天堂| 亚洲精品久久久久久婷婷小说 | 久久精品久久精品一区二区三区| 亚洲av电影不卡..在线观看| 国产黄片美女视频| 亚州av有码| 美女cb高潮喷水在线观看| 亚洲不卡免费看| 亚洲av二区三区四区| 少妇被粗大猛烈的视频| 国产免费视频播放在线视频 | 非洲黑人性xxxx精品又粗又长| 亚洲av中文字字幕乱码综合| 纵有疾风起免费观看全集完整版 | 一个人看的www免费观看视频| av国产免费在线观看| 国产精品日韩av在线免费观看| 精品欧美国产一区二区三| 99久久成人亚洲精品观看| 精品酒店卫生间| 免费看a级黄色片| 精品久久国产蜜桃| 毛片女人毛片| av线在线观看网站| 人人妻人人澡人人爽人人夜夜 | 久久久精品大字幕| 国产高清不卡午夜福利| 久久久久精品久久久久真实原创| 淫秽高清视频在线观看| 午夜福利在线观看吧| 久久久国产成人精品二区| 国产精品不卡视频一区二区| 午夜福利在线在线| 国国产精品蜜臀av免费| 国产精品一二三区在线看| 黄色一级大片看看| 日韩欧美精品v在线| 丰满乱子伦码专区| 特大巨黑吊av在线直播| 国产探花极品一区二区| 亚洲精品日韩av片在线观看| 我要看日韩黄色一级片| 男人狂女人下面高潮的视频| 久久久久免费精品人妻一区二区| 国产 一区精品| 亚洲熟妇中文字幕五十中出| 最近手机中文字幕大全| 国产亚洲av片在线观看秒播厂 | 人妻系列 视频| 两性午夜刺激爽爽歪歪视频在线观看| 午夜a级毛片| 久久99热6这里只有精品| 亚洲国产成人一精品久久久| 国语自产精品视频在线第100页| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 狂野欧美白嫩少妇大欣赏| 亚洲精华国产精华液的使用体验| 精品人妻视频免费看| 亚洲国产精品成人综合色| 中文在线观看免费www的网站| 亚洲国产高清在线一区二区三| 日韩三级伦理在线观看| 99在线视频只有这里精品首页| 亚洲人成网站高清观看| 亚洲av日韩在线播放| 天堂√8在线中文| 日本一二三区视频观看| 午夜精品一区二区三区免费看| 国产成人精品久久久久久| 国产黄a三级三级三级人| 麻豆成人午夜福利视频| 秋霞伦理黄片| 美女大奶头视频| 亚洲av熟女| 又爽又黄a免费视频| 亚洲av日韩在线播放| 九色成人免费人妻av| 久久草成人影院| 欧美日韩综合久久久久久| 亚洲国产欧美在线一区| 成人av在线播放网站| 波多野结衣巨乳人妻| 日韩精品有码人妻一区| 春色校园在线视频观看| 亚洲精华国产精华液的使用体验| av在线观看视频网站免费| 欧美性感艳星| 韩国高清视频一区二区三区| 久久鲁丝午夜福利片| 我的女老师完整版在线观看| 综合色丁香网| 亚洲美女搞黄在线观看| 国语自产精品视频在线第100页| av免费在线看不卡| 国产片特级美女逼逼视频| 国产成人午夜福利电影在线观看| 亚洲精品,欧美精品| 亚洲欧美日韩卡通动漫| 国产av一区在线观看免费| 夜夜看夜夜爽夜夜摸| av又黄又爽大尺度在线免费看 | 国产69精品久久久久777片| 99视频精品全部免费 在线| 国产一区亚洲一区在线观看| 韩国av在线不卡| 搞女人的毛片| 免费av毛片视频| 少妇人妻精品综合一区二区| 伦理电影大哥的女人| 国产成人精品婷婷| 欧美3d第一页| 久久久久久久久久久免费av| 成年女人永久免费观看视频| 一卡2卡三卡四卡精品乱码亚洲| 成年女人看的毛片在线观看| 国产黄色小视频在线观看| 联通29元200g的流量卡| 看非洲黑人一级黄片| 免费在线观看成人毛片| 欧美三级亚洲精品| 69人妻影院| 免费观看精品视频网站| 日本五十路高清| 色播亚洲综合网| 真实男女啪啪啪动态图| 久久久亚洲精品成人影院| 免费大片18禁| 老师上课跳d突然被开到最大视频| 国产三级中文精品| 国产一区二区亚洲精品在线观看| 久久99热6这里只有精品| 免费无遮挡裸体视频| 日韩三级伦理在线观看| 极品教师在线视频| 国产免费福利视频在线观看| 美女xxoo啪啪120秒动态图| 免费观看精品视频网站| 久久精品久久久久久噜噜老黄 | 久久久久国产网址| 色哟哟·www| 在线播放国产精品三级| 久久精品人妻少妇| 性插视频无遮挡在线免费观看| 国产 一区 欧美 日韩| 国产av在哪里看| 好男人视频免费观看在线| 久久这里有精品视频免费| 日本午夜av视频| 午夜福利视频1000在线观看| 人人妻人人看人人澡| 3wmmmm亚洲av在线观看| 日本一二三区视频观看| 欧美激情国产日韩精品一区| 国产一区亚洲一区在线观看| 欧美丝袜亚洲另类| 久久鲁丝午夜福利片| 长腿黑丝高跟| 女的被弄到高潮叫床怎么办| 精品熟女少妇av免费看| 亚洲av电影在线观看一区二区三区 | 男女啪啪激烈高潮av片| 美女xxoo啪啪120秒动态图| 久久精品国产亚洲av天美| 精品一区二区三区人妻视频| 国产亚洲最大av| videossex国产| 国产高清三级在线| 自拍偷自拍亚洲精品老妇| 亚洲高清免费不卡视频| 国产精品野战在线观看| 亚洲国产精品专区欧美| 最近的中文字幕免费完整| 欧美不卡视频在线免费观看| 亚洲自偷自拍三级| a级毛色黄片| 一级黄色大片毛片| 丰满乱子伦码专区| 高清毛片免费看| 少妇熟女欧美另类| 国产又色又爽无遮挡免| 久久欧美精品欧美久久欧美| 国产免费视频播放在线视频 | 午夜精品国产一区二区电影 | 岛国在线免费视频观看| 青春草视频在线免费观看| 村上凉子中文字幕在线| 一本一本综合久久| 人妻制服诱惑在线中文字幕| 有码 亚洲区| 国产91av在线免费观看| 精品一区二区三区人妻视频| 99久久无色码亚洲精品果冻| 小蜜桃在线观看免费完整版高清| 国产精品av视频在线免费观看| 三级国产精品片| 大话2 男鬼变身卡| 国产精品久久久久久av不卡| kizo精华| 又粗又硬又长又爽又黄的视频| 直男gayav资源| 婷婷色综合大香蕉| 日本黄色片子视频| 日韩欧美 国产精品| av国产久精品久网站免费入址| 国产又色又爽无遮挡免| 国产私拍福利视频在线观看| 又爽又黄无遮挡网站| 22中文网久久字幕| 1024手机看黄色片| 一个人看的www免费观看视频| 国产高清国产精品国产三级 | 超碰97精品在线观看| 精品熟女少妇av免费看| 国产高清有码在线观看视频| 少妇的逼水好多| 久久久久久伊人网av| 麻豆av噜噜一区二区三区| av.在线天堂| 两个人视频免费观看高清| 麻豆一二三区av精品| 亚洲av成人精品一二三区| 久久人人爽人人片av| 国产精品一区二区在线观看99 | 久久热精品热| 午夜老司机福利剧场| 精品少妇黑人巨大在线播放 | 老师上课跳d突然被开到最大视频| av在线观看视频网站免费| 午夜精品在线福利| 在线观看66精品国产| 一区二区三区四区激情视频| 麻豆成人av视频| 长腿黑丝高跟| 亚洲天堂国产精品一区在线| 亚洲av男天堂| 亚洲人成网站高清观看| 黑人高潮一二区| 老师上课跳d突然被开到最大视频| 久久精品久久久久久噜噜老黄 | 麻豆久久精品国产亚洲av| videossex国产| 亚洲国产精品合色在线| 日本爱情动作片www.在线观看| 国产激情偷乱视频一区二区| av又黄又爽大尺度在线免费看 | 伦精品一区二区三区| 国产一区二区亚洲精品在线观看| 色尼玛亚洲综合影院| 精品人妻视频免费看| 国产美女午夜福利| 日本-黄色视频高清免费观看| 久久精品久久精品一区二区三区| 午夜免费男女啪啪视频观看| 国产欧美另类精品又又久久亚洲欧美| 亚洲人成网站在线播| 久久99蜜桃精品久久| 国产亚洲精品久久久com| 午夜福利在线观看免费完整高清在| 一区二区三区乱码不卡18| 身体一侧抽搐| 日韩一区二区三区影片| 哪个播放器可以免费观看大片| 欧美高清性xxxxhd video| 亚洲国产精品专区欧美| 一级爰片在线观看| 免费不卡的大黄色大毛片视频在线观看 | av在线天堂中文字幕| 一级毛片aaaaaa免费看小| 长腿黑丝高跟| 又爽又黄a免费视频| 免费电影在线观看免费观看| 九九爱精品视频在线观看| 黄片wwwwww| 99在线视频只有这里精品首页| 中文亚洲av片在线观看爽| 卡戴珊不雅视频在线播放| 国产毛片a区久久久久| 嫩草影院新地址| 伊人久久精品亚洲午夜| 午夜福利在线观看吧| 精品一区二区三区人妻视频| 乱系列少妇在线播放| 又粗又爽又猛毛片免费看| 99热这里只有是精品在线观看| 亚洲乱码一区二区免费版| 内地一区二区视频在线| 我的女老师完整版在线观看| 大又大粗又爽又黄少妇毛片口| 久久久久久大精品| 内射极品少妇av片p| 日韩欧美精品免费久久| av.在线天堂| 精品人妻熟女av久视频| 免费看a级黄色片| 国产精品伦人一区二区| 欧美bdsm另类| 午夜久久久久精精品| 久久久成人免费电影| 国产精品永久免费网站| 免费不卡的大黄色大毛片视频在线观看 | 在线免费十八禁| 午夜福利在线在线| 免费看日本二区| 亚洲欧洲国产日韩| videos熟女内射| 国产成人精品婷婷| 亚洲精华国产精华液的使用体验| 嫩草影院新地址| 青青草视频在线视频观看| 搞女人的毛片| 久久99热这里只频精品6学生 | 美女大奶头视频| 成人亚洲精品av一区二区| 免费观看在线日韩| 亚洲最大成人手机在线| 日韩欧美 国产精品| 国产成人aa在线观看| 亚洲乱码一区二区免费版| 成年av动漫网址| 亚洲怡红院男人天堂| 久久久国产成人精品二区| 22中文网久久字幕| 久久草成人影院| 色噜噜av男人的天堂激情| 免费看日本二区| 亚洲欧美日韩无卡精品| 国产精品永久免费网站| АⅤ资源中文在线天堂| 国产精品不卡视频一区二区| 亚洲国产精品成人综合色| 日本黄色视频三级网站网址| 国产精品一区www在线观看|