• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy

    2022-12-28 09:55:28ZhaojunLiu劉昭君LianQingZhu祝連慶XianTongZheng鄭顯通YuanLiu柳淵LiDanLu鹿利單andDongLiangZhang張東亮
    Chinese Physics B 2022年12期
    關(guān)鍵詞:昭君

    Zhaojun Liu(劉昭君) Lian-Qing Zhu(祝連慶) Xian-Tong Zheng(鄭顯通) Yuan Liu(柳淵)Li-Dan Lu(鹿利單) and Dong-Liang Zhang(張東亮)

    1The School of Opto-Electronic Engineering,Changchun University of Science and Technology,Changchun 130022,China

    2Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument,Beijing Information Science&Technology University,Beijing 100192,China

    Keywords: InAs/GaSb type-II superlattice,molecular beam epitaxy,interface,mid-wave infrared

    1. Introduction

    Infrared (IR) detection technology is widely applied in biochemical gas detection, missile seekers, infrared imaging,night vision, and aerospace fields.[1–4]The third-generation infrared detectors based on narrow-bandgap semiconductors,including HgCdTe(MCT),quantum well infrared photodetectors(QWIP)and type-II superlattices(T2SL),have the characteristics of multi-color detection and high pixels,etc.[5]Compared with MCT, T2SL IR detectors have excellent material uniformity and lower band-to-band (BTB) tunneling current, which is due to the larger electron effective mass.[6,7]Both III–V growth and processing technology appear mature,and fabrication costs are low compared to QWIP.[8,9]Since 2000, InAs/GaSb T2SL photodetectors have made a significant breakthrough due to their intrinsic advantages, including structural stability[10–12]and a broad wavelength spectrum ranging from the mid-wave infrared(MWIR)to the very longwave infrared (VLWIR) regime.[13–15]The adjustable band alignment and the spatial separation of electrons and holes in the T2SL can reduce the Auger recombination rate by eliminating non-radiative pathways between valence bands[16–18]and enabling high operating temperature(HOT)device operation.

    There are neither common anions nor cations between InAs and GaSb. Together with the growth of the superlattice, In–Sb or Ga–As bonds may be formed at the interfaces(IFs).[19,20]To get enough quantum efficiency, the absorption thickness should be thick enough,leading to several thousands of interfaces between InAs and GaSb.[21]The interface structure features determine the carrier transport properties of the superlattice.[22]In addition,there is a 0.75%lattice mismatch between GaSb and InAs. InSb has been proved to be effective at compensating the tensile strain of InAs. However,the unoptimized InSb interface will cause microscopic defects and degrade the material quality. The quality and thickness of the InSb interface play a vital role in the achievement of high-quality growth and the strain balance of superlattices.[23]Liuet al.[24]reported a migration-enhanced epitaxy (MEE)method for the growth of the InSb layer of long wavelength InAs/GaSb T2SLs. Liet al.[25]introduced an MEE strategy for tuning strain by optimizing the InSb interface in the very long wavelength range.

    In this paper, we systematically optimized the crystal quality for the MWIR range by varying the thickness of the InSb interface to form the “InSb-like” interface directly. In detail, we report the optical and morphological properties of InAs/GaSb T2SLs for the mid-wavelength infrared band. Xray diffraction (XRD), high-resolution cross-sectional transmission electron microscopy(HRTEM),and atomic force microscopy(AFM)were used to characterize the material quality.To reveal how the InSb interface and the operating temperature influence the optical properties,photoluminescence(PL)measurements were performed.

    2. Simulation and experiment procedure

    We investigated the band engineering of the T2SL structures using thek· pmodel[26]and designed an InAs(8 ML)/GaSb (6 ML) structure. The simulation results show that the bandgap of the proposed T2SL structure is 0.258 eV,and the center wavelength is 4.81 μm, which is in the midwavelength infrared spectral range.

    Fig.1. Band simulation results of the InAs(8 ML)/GaSb(6 ML)T2SL structure.

    The samples were grown on n-type doped GaSb (100)substrates and a 500 nm GaSb buffer layer using a multichamber 3-inch wafer ultrahigh vacuum MBE system (Komponenten Octoplus 400). Firstly,the GaSb substrates were deoxidized at 520?C for 10 min, followed by a 500 nm GaSb buffer layer grown at 460?C with a V/III beam equivalent pressure (BEP) flux ratio value of 5.5. During the epitaxial growth, reflection high-energy electron diffraction (RHEED)was used forin-situmonitoring. When the 1×3 reconstruction pattern appears, the oxide layer has been removed. The growth temperature of the T2SLs structure was 380?C,which was consistent with the GaSb(2×5)→(1×3)reconstructed transition temperature,and the growth rates of InAs and GaSb were 1 ?A/s. The BEP of Sb is 2.96×10?6mbar,and the V/III BEP flux ratio value is 4 during the GaSb growth. The BEP of As is 5.74×10?6mbar,and the V/III BEP flux ratio value is 8 during the InAs growth.

    The insertion of InSb between the GaSb and InAs layers of the T2SL structure has proved beneficial for strain compensation and interface quality improvement.[27]As shown in Fig. 2(a), different thicknesses (0.3 ML, 0.5 ML, 0.7 ML) of the InSb interface layer are inserted in 120 periods of InAs(8 ML)/GaSb(6 ML)T2SLs,denoted as sample A,B,and C,respectively.

    The shutter sequence for the T2SL’s growth is shown in Fig.2(b). The GaSb epitaxial layers are soaked by Sb for 6 s,followed by an artificially added InSb interface layer. After InAs epitaxy, 6 s As soaking helps to prevent As from escaping from the surface and thus diffusing the surface atoms fully. The following InSb-like interfacial layers play a significant role in preventing the formation of a GaAs-like interface that adversely affects photoluminescence performance.

    Fig.2. (a)A schematic diagram of the InAs/GaSb T2SLs multilayer heterostructure. (b)The shutter sequence for the T2SL’s growth.

    3. Results and discussion

    3.1. The effect of the InSb interface layer on the quality and morphology

    Figure 3(a) shows the high-resolution XRD curve of the 2θ–ωscan at the GaSb (004) reflection for sample A. The sharp and distinct satellite peaks reveal excellent crystal quality. Figure 3(b)shows the XRD curves for the T2SLs with the InSb layer changing from 0.3 ML,0.5 ML,and 0.7 ML.The 0-th order peaks of the structure are on the left of the GaSb substrate peak,indicating that the T2SL’s structure is in compressive strain. The angle differences between the GaSb substrate and T2SL’s structure are 0.24?, 0.13?, and 0.05?as the thickness of the InSb layer decreases. The InSb interface can effectively compensate for the compressive strain between the InAs layer and GaSb substrate to realize the structure’s strain balance control. The FWHMs of the 0-th order peaks measured in ? mode are 33–39 arcsec,indicating the high crystal quality.

    Fig.3. (a)The XRD curve of the 2θ–ω scan around the GaSb(004)reflection for sample A.(b)The XRD close-ups around the substrate and the 0-th satellite of the three samples.

    Fig.4. The morphology of a 5μm×5μm scan area using AFM for(a)sample C,(b)sample B,and(c)sample A,and a 50μm×50μm scan area for(d)sample C,(e)sample B,and(f)sample A.

    The AFM morphologies are obtained on the surface of the GaSb layer. The AFM images of the three samples are shown in Fig.4, and all the samples showed minor RMS roughness.As shown in Figs. 4(a)–4(c), the samples have clear atomic steps with widths that are about 1μm. The V group elements that are more sensitive to temperature cannot diffuse well at low temperatures,leading to the discontinuous step edge. The bright spots of the uppermost GaSb layer in Fig. 4 are a frequently encountered difficulty in superlattice growth. There is no noticeable effect on crystal quality,verified by the XRD analysis in Fig.3. With the decrease in the InSb thickness,the number of bright spots is reduced,and the height decreases,indicating that the bright spots may also be related to the strain.

    3.2. TEM investigations

    HRTEM and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) were used to characterize the interface at the atomic scale. The spherical aberration electron microscope samples were prepared by focused ion beam (FIB) cutting. InAs and GaSb layers are distinguishable in Fig. 5(a), and the interfaces are smooth without any microscopic defects and dislocations.The superlattice structure of alternating growth of InAs and GaSb along the growth direction is consistent with the multilayer stack,as shown in Fig.2(a).

    The color images in Fig.5(b)can intuitively observe the anion–cation dumbbells of GaSb and InAs. In and Sb atoms are visually brighter and bigger,related to their higher atomic number. The atomic integrated intensity analysis is performed on a row of atoms along the[100]growth direction,as shown in Fig.5(b). We can distinguish the InAs,GaSb,and interface layer in that the strength of the atomic column is proportional to the atomic number.[8,28]The interfacial region between the InAs and GaSb layers can be identified by the transition of the atomic integral intensity. The atomic integrated intensities of anions and cations are almost equal in the interfacial region,indicating that the InSb interface is formed, which is consistent with the shutter sequence.

    Figure 5(c) shows the energy dispersive spectroscopy(EDS) mapping of sample A. In together with As and Ga together with Sb are distributed in the InAs and GaSb layers,respectively,and we can observe clear spatial separation. The ratio of group V to group III is almost 1:1 in Fig.5(d),and an apparent intensity flipping of the atomic columns can be observed in the adjacent layers. The element distribution profile of Sb atoms is comparatively wider than that of Ga atoms,indicating it is Sb-rich in the interfacial region. This also proves that the shutter sequence is effective.

    Fig. 5. (a) A HRTEM image of the InAs/GaSb multilayer structure of sample A. (b) A HAADF-STEM micrograph taken from sample A. The inset linear intensity profile along a selected row shows the InAs,GaSb,and interface layers. (c)EDS mapping of sample A.(d)Elemental integral intensity in the growth direction.

    3.3. Characterization of optical properties

    Figure 6(a) displays the PL spectra at 77 K for different thicknesses of the InSb interface layer. With the thickness of the InSb interface increasing, the wavelength of SL shows a redshift, and the bandgap decreases. The PL FWHM and maximum peak positions of the three samples are shown in Figs. 6(c) and 6(d). The FWHM of the PL is only 18 meV,17 meV, and 16.5 meV. The peak wavelengths are 4.78 μm(259 meV),5.02μm(247 meV),and 5.49μm(226 meV)for sample A,B,and C,respectively.The roughness and steepness of the interface affect the crystal quality,and the PL spectrum also reflects the excellent growth of the interface.

    It can be seen from Fig. 6(b) that the intensity of the luminescence peaks gradually decreases with increasing temperature. According to the Fermi–Dirac distribution law,the energy distribution of the conduction electrons becomes more concentrated when the temperature drops. When photoexcitation occurs at low temperatures, excited carriers are more densely distributed in the narrow high-energy state.The luminescence peak intensity shows more intense and sharper peaks due to the concentrated photons that are produced when carriers return back to lower energy levels.[29]The luminescence peaks’ redshift corresponds to the narrow bandgap energy,consistent with the empirical relationship between bandgap energy and the photon wavelength. The linearquadratic relation proposed by Varshni can explain:[30,31]

    whereEg(0) is the bandgap at zero temperature, andαandβare the intrinsic constants of the materials. Here,Eg(0)~0.26 eV and the Debye temperatureβ ~400 K, whileα ~0.277 meV describes the effect of electron–phonon interaction on the energy band. The atomic vibration amplitude increases when the temperature rises,and the electron vibration interaction significantly affectsEg(T). From 77 K up to 150 K, the position of the response peaks shifts 0.15μm,and the intensity is reduced by 59%. The PL results proved that the InAs/GaSb T2SLs obey temperature-dependence properties.

    Fig. 6. (a) Normalized PL spectra at 77 K, (c) the PL FWHM and (d) the PL peak positions for different thicknesses of the InSb interface layer.(b)Variable temperature PL spectra of sample A at 77 K,100 K,and 150 K.

    4. Conclusion

    We have optimized the strain-balanced InAs/GaSb T2SLs of the MWIR range by designing InSb interface layers systematically. The 120 periods of InAs (8 ML)/GaSb (6 ML)T2SLs with different thicknesses of the InSb interfaces have been grown at 380?C using MBE.The HRXRD and AFM results display excellent crystal quality and smooth morphology.The surface “bright spots” appear to be more apparent as the InSb interface thickness increases. From the HRTEM results,we can distinguish the clear interface of InAs, GaSb, and the interface layers. Using PL testing,the experiment wavelength is close to the simulated wavelength using thek·pmodel. The PL measurements also indicate that the InSb interface and the operating temperature can influence the optical properties. In conclusion,the design involving insertion of the InSb interface layer can effectively optimize the growth quality of epitaxial materials,and provides a new idea for focal plane growth.Further device-processing technology and device-level performance will be developed and demonstrated.

    Acknowledgments

    Project supported by the Beijing Scholars Program(Grant No.74A2111113),the Research Project of Beijing Education Committee(Grant No.KM202111232019),the National Natural Science Foundation of China(Grant No.62105039),and the Research Project of Beijing Information Science&Technology University(Grant No.2022XJJ07).

    猜你喜歡
    昭君
    昭君出塞
    昭君思鄉(xiāng)
    黃河之聲(2022年3期)2022-06-21 06:27:10
    昭君
    黃河之聲(2021年6期)2021-06-18 13:57:14
    以君為寄青衫濕
    ——宋代詠昭君詩的承續(xù)與衍變
    中文信息(2021年11期)2021-03-27 14:52:16
    昭君出嫁
    昭君
    草原歌聲(2020年2期)2020-09-25 08:38:04
    千載琵芭語,不解昭君怨
    學生天地(2020年3期)2020-08-25 09:04:08
    談當代民族唱法如何演唱傳統(tǒng)粵曲——以《昭君出塞》為例
    樂府新聲(2019年2期)2019-11-29 07:34:24
    昭君別院
    中國三峽(2016年5期)2017-01-15 13:58:51
    昭君今若在,定驚故里殊 三峽庫區(qū)興山縣移民搬遷側(cè)記
    中國三峽(2016年5期)2017-01-15 13:58:50
    一个人免费在线观看电影 | 男人舔女人的私密视频| 亚洲成av人片在线播放无| 日本一本二区三区精品| 色综合欧美亚洲国产小说| 在线观看午夜福利视频| 淫秽高清视频在线观看| 午夜福利欧美成人| 国内精品美女久久久久久| 欧美激情久久久久久爽电影| 国产探花在线观看一区二区| 亚洲欧洲精品一区二区精品久久久| 久久久久性生活片| 亚洲欧美激情综合另类| 欧美极品一区二区三区四区| 亚洲精品456在线播放app | 黄片大片在线免费观看| 极品教师在线免费播放| 99在线人妻在线中文字幕| 99久久精品热视频| av欧美777| www日本黄色视频网| 国产男靠女视频免费网站| 成人av一区二区三区在线看| 精品久久久久久久人妻蜜臀av| 国产精品野战在线观看| 久久久久久久久免费视频了| 一级毛片高清免费大全| 日韩欧美在线二视频| bbb黄色大片| 免费搜索国产男女视频| 舔av片在线| 亚洲精品粉嫩美女一区| 色吧在线观看| 激情在线观看视频在线高清| 淫秽高清视频在线观看| 精品久久久久久久末码| 后天国语完整版免费观看| 亚洲第一欧美日韩一区二区三区| xxx96com| 国内精品久久久久精免费| 韩国av一区二区三区四区| 99热精品在线国产| 国产综合懂色| 制服人妻中文乱码| 久久性视频一级片| 久久久久久久精品吃奶| 免费电影在线观看免费观看| 亚洲片人在线观看| 欧美黑人欧美精品刺激| 90打野战视频偷拍视频| 国产成人福利小说| 免费高清视频大片| 男女床上黄色一级片免费看| 床上黄色一级片| 国产成人福利小说| 中文字幕熟女人妻在线| 成人特级av手机在线观看| 九色成人免费人妻av| 老汉色av国产亚洲站长工具| 欧美性猛交黑人性爽| 听说在线观看完整版免费高清| 少妇裸体淫交视频免费看高清| 99国产精品一区二区蜜桃av| 69av精品久久久久久| 亚洲七黄色美女视频| 叶爱在线成人免费视频播放| av视频在线观看入口| 国产极品精品免费视频能看的| 亚洲avbb在线观看| 一卡2卡三卡四卡精品乱码亚洲| 欧美一级毛片孕妇| e午夜精品久久久久久久| 成人鲁丝片一二三区免费| 精品日产1卡2卡| 亚洲av电影不卡..在线观看| 国产高清videossex| 老司机午夜福利在线观看视频| 午夜福利成人在线免费观看| 99久久综合精品五月天人人| 天堂影院成人在线观看| 制服人妻中文乱码| 最新美女视频免费是黄的| 亚洲欧洲精品一区二区精品久久久| 国产aⅴ精品一区二区三区波| 国产激情偷乱视频一区二区| 亚洲国产日韩欧美精品在线观看 | 首页视频小说图片口味搜索| 婷婷丁香在线五月| 最近最新中文字幕大全电影3| 免费观看精品视频网站| 小蜜桃在线观看免费完整版高清| 两性午夜刺激爽爽歪歪视频在线观看| 老熟妇乱子伦视频在线观看| 国产精品一区二区三区四区免费观看 | 日本成人三级电影网站| 午夜两性在线视频| 三级国产精品欧美在线观看 | 黄频高清免费视频| 俄罗斯特黄特色一大片| 免费看美女性在线毛片视频| 一个人免费在线观看电影 | 免费观看精品视频网站| 精品国内亚洲2022精品成人| 国产欧美日韩精品一区二区| 看黄色毛片网站| 欧美高清成人免费视频www| 国产黄片美女视频| 曰老女人黄片| 欧美日韩瑟瑟在线播放| 国产午夜精品论理片| 国产熟女xx| 国产亚洲精品一区二区www| 欧美日韩精品网址| 亚洲av日韩精品久久久久久密| 国产真人三级小视频在线观看| 最新中文字幕久久久久 | 嫩草影院精品99| 麻豆国产97在线/欧美| 俄罗斯特黄特色一大片| 国产一区二区在线av高清观看| 90打野战视频偷拍视频| 搡老妇女老女人老熟妇| 黄频高清免费视频| 又大又爽又粗| 久久天躁狠狠躁夜夜2o2o| 久久久久国内视频| 欧美日韩一级在线毛片| 亚洲人成伊人成综合网2020| 中出人妻视频一区二区| 久久伊人香网站| 真实男女啪啪啪动态图| 久久久久久久久免费视频了| 国产在线精品亚洲第一网站| 高潮久久久久久久久久久不卡| 亚洲av片天天在线观看| 国产精品乱码一区二三区的特点| 国产激情欧美一区二区| 久久国产精品人妻蜜桃| 午夜福利视频1000在线观看| 99在线视频只有这里精品首页| 亚洲欧美激情综合另类| 亚洲一区高清亚洲精品| 成人18禁在线播放| 一级毛片高清免费大全| 亚洲专区字幕在线| 熟女电影av网| 亚洲精品一区av在线观看| 久久婷婷人人爽人人干人人爱| 国产亚洲欧美在线一区二区| 欧美成人性av电影在线观看| 久久亚洲真实| 99在线视频只有这里精品首页| 成人三级做爰电影| av黄色大香蕉| 亚洲 欧美一区二区三区| 久久久久国产精品人妻aⅴ院| 三级国产精品欧美在线观看 | 一级作爱视频免费观看| 精品无人区乱码1区二区| 成熟少妇高潮喷水视频| 一本精品99久久精品77| 免费在线观看日本一区| 国产熟女xx| 麻豆成人av在线观看| 亚洲精品一区av在线观看| 特级一级黄色大片| 超碰成人久久| 九九在线视频观看精品| 国产三级在线视频| 国产成年人精品一区二区| 一个人免费在线观看电影 | 欧美绝顶高潮抽搐喷水| 国产亚洲精品久久久久久毛片| 日本与韩国留学比较| 在线永久观看黄色视频| 久久精品综合一区二区三区| 国产精品久久久久久人妻精品电影| 在线观看日韩欧美| 成年女人毛片免费观看观看9| 国产成人av激情在线播放| 在线观看舔阴道视频| 亚洲中文字幕一区二区三区有码在线看 | 啦啦啦免费观看视频1| 亚洲精品国产精品久久久不卡| 色精品久久人妻99蜜桃| 久9热在线精品视频| 色综合欧美亚洲国产小说| 国产激情欧美一区二区| 免费无遮挡裸体视频| 久久精品91蜜桃| 国产精品香港三级国产av潘金莲| АⅤ资源中文在线天堂| 成人无遮挡网站| 男人和女人高潮做爰伦理| 亚洲欧美精品综合久久99| 久久久久久久久中文| 999久久久精品免费观看国产| 人人妻,人人澡人人爽秒播| 午夜免费观看网址| 久久中文字幕人妻熟女| 亚洲成av人片免费观看| 久久草成人影院| 国产激情偷乱视频一区二区| 757午夜福利合集在线观看| 两个人的视频大全免费| 国内揄拍国产精品人妻在线| 我要搜黄色片| 午夜激情福利司机影院| 啦啦啦观看免费观看视频高清| 欧美乱码精品一区二区三区| 在线观看免费视频日本深夜| 麻豆久久精品国产亚洲av| 搡老岳熟女国产| 国产黄a三级三级三级人| a级毛片在线看网站| 操出白浆在线播放| 伦理电影免费视频| 亚洲一区二区三区不卡视频| 国产亚洲精品久久久久久毛片| 色综合亚洲欧美另类图片| 天堂√8在线中文| 精品免费久久久久久久清纯| 狂野欧美白嫩少妇大欣赏| 成人18禁在线播放| 亚洲专区字幕在线| 12—13女人毛片做爰片一| 在线视频色国产色| 久久久水蜜桃国产精品网| 老鸭窝网址在线观看| xxxwww97欧美| 成人一区二区视频在线观看| 熟妇人妻久久中文字幕3abv| 99久久久亚洲精品蜜臀av| 久久99热这里只有精品18| 日本a在线网址| 免费在线观看亚洲国产| 国产av麻豆久久久久久久| 日韩中文字幕欧美一区二区| 啦啦啦免费观看视频1| 国产精品av久久久久免费| 国产成人av教育| 国产av麻豆久久久久久久| 国产一级毛片七仙女欲春2| 日韩欧美三级三区| 国产精品 国内视频| 狂野欧美激情性xxxx| 亚洲国产欧美网| 欧美一区二区精品小视频在线| 亚洲精品美女久久久久99蜜臀| 久久九九热精品免费| 看免费av毛片| 夜夜看夜夜爽夜夜摸| 亚洲电影在线观看av| 99久久99久久久精品蜜桃| 成熟少妇高潮喷水视频| 日日干狠狠操夜夜爽| 欧美午夜高清在线| 身体一侧抽搐| 欧美绝顶高潮抽搐喷水| 三级国产精品欧美在线观看 | 又爽又黄无遮挡网站| 免费一级毛片在线播放高清视频| 99久久久亚洲精品蜜臀av| 深夜精品福利| 国产亚洲精品久久久com| 九色国产91popny在线| 日本成人三级电影网站| 久久久成人免费电影| 免费搜索国产男女视频| 婷婷丁香在线五月| 两性午夜刺激爽爽歪歪视频在线观看| 日本与韩国留学比较| 嫩草影院精品99| 欧美3d第一页| 免费在线观看视频国产中文字幕亚洲| 2021天堂中文幕一二区在线观| 俄罗斯特黄特色一大片| e午夜精品久久久久久久| 好看av亚洲va欧美ⅴa在| 亚洲精品一区av在线观看| 国产精品av久久久久免费| 老司机午夜福利在线观看视频| 国产亚洲精品一区二区www| 午夜福利在线在线| 舔av片在线| 中出人妻视频一区二区| 日本熟妇午夜| 亚洲片人在线观看| 欧美xxxx黑人xx丫x性爽| 一本精品99久久精品77| av福利片在线观看| 久久精品国产清高在天天线| 日韩高清综合在线| 欧美大码av| 精品国产超薄肉色丝袜足j| 国产黄a三级三级三级人| 好男人在线观看高清免费视频| 午夜精品一区二区三区免费看| 亚洲国产高清在线一区二区三| 精品乱码久久久久久99久播| 别揉我奶头~嗯~啊~动态视频| 国产激情偷乱视频一区二区| 久久久久久九九精品二区国产| 亚洲av免费在线观看| 欧美日韩福利视频一区二区| 99久久精品一区二区三区| 久久久久久人人人人人| 一二三四社区在线视频社区8| 别揉我奶头~嗯~啊~动态视频| 一级毛片高清免费大全| 男人舔奶头视频| 露出奶头的视频| 久久久久国产一级毛片高清牌| 成人高潮视频无遮挡免费网站| 美女大奶头视频| 香蕉丝袜av| 91麻豆av在线| 欧美日韩精品网址| 色综合亚洲欧美另类图片| 99在线视频只有这里精品首页| 一区二区三区国产精品乱码| 人人妻人人澡欧美一区二区| 欧美日韩乱码在线| 91麻豆av在线| 亚洲人成网站在线播放欧美日韩| 日本精品一区二区三区蜜桃| 国产成人aa在线观看| 欧美乱色亚洲激情| 国产精品香港三级国产av潘金莲| 一边摸一边抽搐一进一小说| 在线播放国产精品三级| 久久香蕉精品热| 国产三级黄色录像| 桃色一区二区三区在线观看| 久久久久国产精品人妻aⅴ院| 亚洲av免费在线观看| 欧美成人一区二区免费高清观看 | 国产一区在线观看成人免费| 国产精品久久视频播放| 精品一区二区三区av网在线观看| 日韩精品青青久久久久久| 18禁美女被吸乳视频| 国内久久婷婷六月综合欲色啪| 日韩欧美 国产精品| 听说在线观看完整版免费高清| 一卡2卡三卡四卡精品乱码亚洲| 精品不卡国产一区二区三区| 国产在线精品亚洲第一网站| 12—13女人毛片做爰片一| 女生性感内裤真人,穿戴方法视频| 久9热在线精品视频| 好看av亚洲va欧美ⅴa在| 啦啦啦免费观看视频1| 99riav亚洲国产免费| 亚洲 欧美一区二区三区| 精品久久久久久,| 欧美xxxx黑人xx丫x性爽| 精品久久久久久久人妻蜜臀av| 国产成人系列免费观看| 国产精品久久久久久人妻精品电影| 亚洲在线自拍视频| 亚洲精品一区av在线观看| 色精品久久人妻99蜜桃| 亚洲在线观看片| 99国产极品粉嫩在线观看| 欧美一区二区国产精品久久精品| 亚洲欧美精品综合久久99| 亚洲成人免费电影在线观看| АⅤ资源中文在线天堂| 亚洲人成伊人成综合网2020| 国产乱人伦免费视频| 麻豆国产97在线/欧美| e午夜精品久久久久久久| 欧美激情久久久久久爽电影| 亚洲国产欧洲综合997久久,| 国产69精品久久久久777片 | 国产成人精品久久二区二区91| www.熟女人妻精品国产| 亚洲一区二区三区色噜噜| 综合色av麻豆| svipshipincom国产片| 久久香蕉精品热| 亚洲片人在线观看| 麻豆国产av国片精品| 中文在线观看免费www的网站| 欧美日韩精品网址| 波多野结衣高清作品| 欧美中文日本在线观看视频| 亚洲av五月六月丁香网| 亚洲av美国av| av片东京热男人的天堂| 三级男女做爰猛烈吃奶摸视频| 国产一区二区激情短视频| 精品日产1卡2卡| 老汉色∧v一级毛片| 观看美女的网站| 九色国产91popny在线| 色在线成人网| 国产亚洲精品久久久com| 一本综合久久免费| 久久久成人免费电影| aaaaa片日本免费| 在线观看免费视频日本深夜| 中文字幕熟女人妻在线| www.熟女人妻精品国产| ponron亚洲| 天天躁日日操中文字幕| 国产1区2区3区精品| 国产精品香港三级国产av潘金莲| 久久久色成人| 岛国在线观看网站| 成年女人永久免费观看视频| 丰满人妻熟妇乱又伦精品不卡| 亚洲 国产 在线| 黄片大片在线免费观看| 亚洲自偷自拍图片 自拍| АⅤ资源中文在线天堂| 日韩欧美在线二视频| 伊人久久大香线蕉亚洲五| 色精品久久人妻99蜜桃| 亚洲av成人一区二区三| 久久中文看片网| 97超级碰碰碰精品色视频在线观看| 熟女电影av网| 午夜亚洲福利在线播放| 成人欧美大片| 婷婷六月久久综合丁香| 免费在线观看亚洲国产| 国产亚洲精品久久久久久毛片| 十八禁人妻一区二区| 国产在线精品亚洲第一网站| 日韩成人在线观看一区二区三区| 久久久色成人| 国产精品99久久99久久久不卡| 嫩草影院精品99| 两个人看的免费小视频| 成人三级黄色视频| 国产成人aa在线观看| 日本成人三级电影网站| 俄罗斯特黄特色一大片| 精品久久久久久久久久免费视频| 在线观看一区二区三区| 三级毛片av免费| 夜夜看夜夜爽夜夜摸| 亚洲欧美日韩卡通动漫| 欧美日韩国产亚洲二区| 十八禁网站免费在线| 午夜福利成人在线免费观看| ponron亚洲| 18禁裸乳无遮挡免费网站照片| 亚洲av片天天在线观看| 国产精品一区二区三区四区久久| 熟女少妇亚洲综合色aaa.| 日韩精品青青久久久久久| a在线观看视频网站| 成人高潮视频无遮挡免费网站| 琪琪午夜伦伦电影理论片6080| av黄色大香蕉| 亚洲成人中文字幕在线播放| 午夜激情欧美在线| 亚洲中文字幕日韩| 国产精品久久久久久人妻精品电影| 91九色精品人成在线观看| 在线免费观看的www视频| 老司机福利观看| 国产爱豆传媒在线观看| 久久精品91无色码中文字幕| 国产精品亚洲美女久久久| 成年女人永久免费观看视频| 真实男女啪啪啪动态图| 国产真人三级小视频在线观看| 18禁黄网站禁片午夜丰满| 亚洲精品在线美女| 亚洲七黄色美女视频| 中文资源天堂在线| 国产成年人精品一区二区| 日本在线视频免费播放| 18禁黄网站禁片免费观看直播| 午夜精品久久久久久毛片777| 又紧又爽又黄一区二区| 日本a在线网址| 国产亚洲精品一区二区www| 亚洲精品色激情综合| 欧美中文综合在线视频| 午夜福利在线在线| 国产淫片久久久久久久久 | 久久这里只有精品中国| 99久久精品国产亚洲精品| 日本黄大片高清| 老鸭窝网址在线观看| 香蕉久久夜色| 国产欧美日韩精品亚洲av| 中文在线观看免费www的网站| 欧美日韩一级在线毛片| 成年版毛片免费区| 91在线精品国自产拍蜜月 | 久久精品国产综合久久久| 精品国产美女av久久久久小说| 久久草成人影院| 精品久久久久久,| 中文字幕精品亚洲无线码一区| 久久精品91蜜桃| 桃红色精品国产亚洲av| 亚洲色图av天堂| 99国产综合亚洲精品| 麻豆一二三区av精品| 亚洲av成人av| 制服人妻中文乱码| 色综合亚洲欧美另类图片| 久久精品国产99精品国产亚洲性色| 国产精品久久久久久亚洲av鲁大| 国产亚洲精品久久久com| 国产视频一区二区在线看| 欧美xxxx黑人xx丫x性爽| 国产伦一二天堂av在线观看| 一个人免费在线观看的高清视频| 真人做人爱边吃奶动态| 女生性感内裤真人,穿戴方法视频| 国产成人av激情在线播放| 97超视频在线观看视频| 亚洲欧洲精品一区二区精品久久久| 国产又色又爽无遮挡免费看| 国产日本99.免费观看| 午夜福利高清视频| tocl精华| 色哟哟哟哟哟哟| 两性夫妻黄色片| 亚洲电影在线观看av| 最近最新免费中文字幕在线| 国产精品国产高清国产av| 亚洲欧美日韩卡通动漫| 日韩国内少妇激情av| 男女之事视频高清在线观看| 国产精品99久久久久久久久| 亚洲性夜色夜夜综合| 亚洲成av人片在线播放无| 国产精品日韩av在线免费观看| 啦啦啦观看免费观看视频高清| 变态另类丝袜制服| 黑人欧美特级aaaaaa片| 岛国视频午夜一区免费看| xxx96com| 免费高清视频大片| 脱女人内裤的视频| 88av欧美| 真实男女啪啪啪动态图| 国产免费av片在线观看野外av| 欧美日韩亚洲国产一区二区在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 精品久久蜜臀av无| 丁香欧美五月| 蜜桃久久精品国产亚洲av| 午夜a级毛片| 欧美中文综合在线视频| 久久精品aⅴ一区二区三区四区| 日韩欧美在线二视频| 热99在线观看视频| 欧美国产日韩亚洲一区| 国产伦精品一区二区三区视频9 | 国产精品久久视频播放| 手机成人av网站| 性色avwww在线观看| 99视频精品全部免费 在线 | 黄色成人免费大全| 亚洲精品久久国产高清桃花| 日本黄色视频三级网站网址| 欧美成狂野欧美在线观看| 国产高清视频在线播放一区| 在线观看日韩欧美| 亚洲专区中文字幕在线| 国产麻豆成人av免费视频| 亚洲精品在线观看二区| 久久这里只有精品19| 亚洲美女黄片视频| 亚洲第一欧美日韩一区二区三区| 亚洲国产精品999在线| 人妻久久中文字幕网| 热99在线观看视频| 久久午夜综合久久蜜桃| 欧美黑人欧美精品刺激| 怎么达到女性高潮| 久久久久久大精品| 搡老熟女国产l中国老女人| 亚洲七黄色美女视频| 一个人看的www免费观看视频| 免费人成视频x8x8入口观看| 国产精品亚洲一级av第二区| 别揉我奶头~嗯~啊~动态视频| 国产爱豆传媒在线观看| 亚洲人成伊人成综合网2020| 精华霜和精华液先用哪个| www.精华液| 色吧在线观看| 欧美最黄视频在线播放免费| 一个人免费在线观看的高清视频| 成人永久免费在线观看视频| 亚洲av熟女| 久久香蕉精品热| 日韩有码中文字幕| 村上凉子中文字幕在线| 美女扒开内裤让男人捅视频| 亚洲激情在线av| 国产伦精品一区二区三区四那| 免费大片18禁| 精品福利观看| 美女cb高潮喷水在线观看 | 国模一区二区三区四区视频 | 久9热在线精品视频| 国产三级中文精品| 最新在线观看一区二区三区| 国产精品香港三级国产av潘金莲| 观看免费一级毛片| 床上黄色一级片| 黑人操中国人逼视频|