• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Single-frequency distributed Bragg reflector Tm:YAG ceramic derived all-glass fiber laser at 1.95μm

    2022-12-28 09:53:28GuoQuanQian錢國權(quán)MinBoWu吳敏波GuoWuTang唐國武MinSun孫敏DongDanChen陳東丹ZhiBinZhang張志斌HuiLuo羅輝andQiQian錢奇
    Chinese Physics B 2022年12期
    關(guān)鍵詞:國權(quán)唐國

    Guo-Quan Qian(錢國權(quán)) Min-Bo Wu(吳敏波) Guo-Wu Tang(唐國武) Min Sun(孫敏)Dong-Dan Chen(陳東丹) Zhi-Bin Zhang(張志斌) Hui Luo(羅輝) and Qi Qian(錢奇)

    1Yunnan Police College,Kunming 650223,China

    2Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques,South China University of Technology,Guangzhou 510640,China

    3School of Physics and Optoelectronic Engineering,Guangdong University of Technology,Guangzhou 510006,China

    4Southwest Institute of Technical Physics,Chengdu 610041,China

    Keywords: all-glass fiber,single-frequency,2μm fiber laser,Tm:YAG ceramic derived

    1. Introduction

    Single-frequency fiber lasers operating at~2 μm have attracted intense attention for their wide-ranging applications,from high-resolution spectroscopy and noninvasive medicine to coherent beam combining,due to their outstanding properties of low noise, narrow linewidth and at an eye-safe wavelength regime.[1–4]Up to now,~2μm single-frequency fiber lasers have been achieved in various cavity structures,including ring cavities,distributed feedback(DFB)cavities and distributed Bragg reflector (DBR) cavities.[5–7]More recently,Walasiket al.reported a 2μm single-frequency all-fiber DFB laser source employing fiber Bragg gratings(FBGs)which has a laser linewidth of 5 kHz.[8]Here, we focus on a~2 μm single-frequency fiber laser with a DBR cavity structure. A key factor in obtaining a DBR single-frequency fiber laser is the use of high-gain glass fibers for shorting the laser cavity.[9]It is known that a high rare earth(RE)ion doping concentration can achieve a large pump absorption and high gain per unit length in the resulting glass fiber, which allows efficient laser output in a short piece of RE ion-doped active fiber.[10,11]

    To date, single-frequency DBR fiber lasers at~2 μm have been developed by using different Tm3+-doped glass fibers, such as silica, silicate and germanate glass fibers.[7,12,13]However,pure silica glass fibers have a low RE ion doping concentration because of the well-defined glass structure consisting of a [SiO4] tetrahedron, which limits the gain of the resulting silica glass fibers.[14]In 2015, Fuet al.demonstrated a 2μm single-frequency DBR fiber laser based on a 1.9-cm long commercially available Tm3+-doped silica glass fiber; this had a maximum output power of 18 mW and a slope efficiency of 13.4% with respect to the absorbed pump of a 793 nm laser diode (LD).[7]The output power of a 2 μm single-frequency DBR fiber laser can be improved by means of in-band pumping at the 1.5 μm band.[15]Note that multicomponent glasses,which have high RE ion solubility, are usually used to fabricate high-gain glass fibers.[1,16]Genget al.reported a single-frequency DBR fiber laser at 1893 nm based on a 2 cm long heavily Tm3+-doped germanate glass fiber; this had a pump threshold of 30 mW and a maximum output power of 50 mW.[17]They went on to demonstrate a narrow-linewidth single-frequency DBR fiber laser at 1.95μm with a 2 cm long heavily Tm3+-doped silicate glass fiber.[12]However, the large splicing losses (~2.2 dB) between the active fiber and two FBGs resulted in a relatively high threshold.[12,15]In 2018, Tanget al.fabricated a heavily Tm3+-doped barium gallo-germanate glass fiber that had a gain per unit length of 3.6 dB·cm?1at 1.95μm.[13]A singlefrequency DBR fiber laser of over 220 mW at 1.95μm was realized in a 1.5 cm long active fiber,showing a slope efficiency of 30.2% with respect to the absorbed pump of a 1568 nm fiber laser.[13]Although the multicomponent glass fibers used in these reports possess higher RE ion solubility over the silica fiber,which enables~2μm single-frequency DBR fiber laser operation with higher output power and slope efficiency,there are still some obstacles to their application in the aforementioned areas.[15,18]For example, their softening temperature and thermal expansion coefficient are different from those of commercial silica glass fiber,implying that it is more challenging to achieve low-loss spliced with silica-based fiber devices,such as wavelength division multiplexer(WDM)and FBG.[7]Moreover,the resulting splice joint exhibits reduced mechanical strength, which sacrifices the reliability of the fiber laser system.[15]Therefore, the development of novel fiber materials, fiber design and fabrication techniques could facilitate some high RE ion-doped silica-based fibers becoming competitive candidates for single-frequency fiber lasers.

    In recent years, RE ion-doped Y3Al5O12(YAG) single crystal or polycrystalline ceramic (precursor phase) derived all-glass fibers with novel properties have been developed and fabricated for high-power fiber lasers,ultrafast fiber lasers and single-frequency fiber lasers.[19–22]Compared with RE ion-doped silica glass fibers,YAG-derived all-glass fibers with a high yttrium (Y) and aluminum (Al) concentration in the fiber core [yttrium aluminosilicate (YAS) glass] have a higher thermal conductivity and a higher stimulated Brillouin scattering threshold, properties which are beneficial for achieving high-power single-frequency fiber lasers.[23–26]Additionally, in contrast to RE ion-doped multicomponent glass fiber, the thermal expansion coefficient and refractive index of these YAG-derived all-glass fibers better matches with the silica glass cladding, making them easier to splice with silica fibers.[22,27,28]In 2019, Zhanget al.demonstrated a singlefrequency DBR fiber laser at 1.064 μm based on a 1.7 cm long Yb:YAG ceramic-derived all-glass fiber.[19]Although the output power and slope efficiency of the laser were relatively low, this work was the first to provide a prospect for the development of all-fiber single-frequency DBR fiber lasers by using YAG-derived all-glass fibers. Then, Liuet al.reported a 110 mW single-frequency DBR fiber laser at 1.064 μm with a slope efficiency of 18.5% based on a 1.4 cm long Yb:YAG crystal-derived all-glass fiber by reducing the resonance loss.[20]More recently,Xieet al.reported a 24.2 mW pulsed single-frequency laser at 1.55 μm based on a 1.8 cm long Er:YAG crystal-derived all-glass fiber.[29]However, single-frequency DBR fiber lasers at~2 μm based on Tm:YAG crystal or ceramic-derived all-glass fibers have never been reported.

    Here,Tm:YAG ceramic-derived all-glass fiber was drawn by using the molten core method. It has a gain per unit length of 2.7 dB·cm?1at 1.95 μm. The as-drawn fiber has a YAS glass core, which is composed of 14.2 mol.% Al2O3,77.1 mol.%SiO2, 6.5 mol.%Y2O3, and 2.25 mol.%Tm2O3.Details of the as-drawn YAS glass fiber can be found in Table 1. A 1.95 μm single-frequency DBR fiber laser was achieved by using a 2 cm long Tm:YAG ceramic-derived all-glass fiber. The fiber laser has a high optical signal-tonoise ratio (OSNR) of~77 dB and a low pump threshold of~15.4 mW. The direct output power of the laser reached 135 mW with a pump power of 1340 mW, corresponding to a slope efficiency of 10.2% with respect to the absorbed pump power. In addition, the linewidth and relative intensity noise(RIN)were measured. This work is a proof-of-concept that Tm:YAG-derived all-glass fiber with a high gain per unit length can be used in a compact 2μm single-frequency DBR fiber laser.

    Table 1. Properties of Tm:YAG ceramic-derived all-glass fiber.

    2. Experimental details

    Tm:YAG ceramic samples were prepared by the solidstate reaction method. Commercial powders (Al2O3, Y2O3,Tm2O3) were weighed and then mixed. Boric acid (1 wt%)was used as a sintering aid in the samples. Column-shaped YAG ceramic samples were prepared after the pressed green bodies were sintered at 1600?C for 5 h in a muffle furnace,and then ground and polished into cylindrical rods with a diameter of~2.8 mm. The YAG rods were washed repeatedly with dilute hydrochloric acid, alcohol and distilled water to remove the contaminated surface layer and then placed into a vacuum drying oven at 400?C for 12 h. After preparation the initial precursor material was inserted into cylindrical silica glass tubes (optical quality 99.99%, inner diameter~3 mm,external diameter~30 mm,length~150 mm). One end of the tube was sealed using an oxyhydrogen flame. Optical fiber was prepared using a standard fiber drawing tower at a temperature of~2000?C.During the drawing process of the molten core method, the glass cladding is similar to‘the crucible’, which provides a high-temperature, high-pressure environment for the core material,and the molten core is rapidly quenched. Glass fibers with different diameters can be obtained by controlling the feeding speed, the temperature and the pulling speed. Hundreds of meters of fibers with an outer diameter of~125μm were collected for test characterization and laser experiments.

    Figure 1(a) shows the XRD pattern of the Tm:YAG ceramic sample. The diffraction peaks of the sample match well with the standard card of YAG (PDF#33-0044), suggesting that the prepared ceramic sample is pure YAG phase. Figure 1(b) shows the Raman spectra of the resulting Tm:YAS fiber core and silica glass cladding. The broad Raman bands in the fiber core and cladding indicate the amorphous state of the obtained fiber.

    Figure 2(a) shows the electron micrograph image of the Tm:YAS all-glass fiber. It can be observed that the fiber core has a good circularity. Figures 2(b)–2(e) show the electron probe microanalyzer mapping of Si, Y Al, and Tm. The Al,Tm, and Y are mainly distributed in the core region, while the Si is distributed in both the cladding and the core. In our previous work this type of YAS glass fiber was proven to be a graded refractive index fiber due to the elemental migration between the melting core and the softened cladding.[27]

    Fig.1.(a)XRD pattern of the Tm:YAG ceramic sample.(b)Raman spectra of the resulting Tm:YAS glass fiber core and the silica glass cladding.

    Fig.2. (a)Electron micrograph image of the Tm:YAS all-glass fiber. (b)–(e)Electron probe microanalyzer images of the distribution of different elements across the fiber cross section.

    The scheme of the experimental setup for the 1.95 μm single-frequency DBR fiber laser is shown in Fig.3. The laser cavity combines a partial-reflection fiber Bragg grating (PRFBG), a high-reflection fiber Bragg grating (HR-FBG) and a short piece of as-drawn gain fiber. The two ends of the gain fiber were spliced with the PR-FBG and HR-FBG. The PRFBG has a reflectivity of 50.0%at 1950 nm and a 3 dB bandwidth of 0.09 nm. The HR-FBG has a reflectivity of 99.5%at 1950 nm. A backward pumping scheme was used in the laser experiment. The fiber laser was counter-pumped by a highpower 1610 nm fiber laser, through a 1610/1950 nm WDM.The whole laser cavity was placed in an aluminum tube,which was temperature-controlled by a cooling system with an accuracy of±0.1?C. To achieve efficient single-frequency laser operation,a short cavity length is necessary to enlarge the longitudinal mode spacing. For this purpose, a section of 2 cm long Tm:YAG-derived all-glass fiber was chosen as the gain fiber by the cut-back method. The laser output spectrum was monitored by an optical spectrum analyzer (AQ6375, Yokogawa, Japan) with a wavelength resolution of 0.02 nm. The single-frequency operation of the laser was confirmed by using a scanning fiber Fabry–Perot interferometer (FFPI; SA200-18B, Thorlabs) with a free-spectral range (FSR) of 1.5 GHz and a resolution of 7.5 MHz. The laser linewidth was measured by a self-heterodyne method. The RIN of the fiber laser was measured by an electrical spectrum analyzer,whose resolution bandwidth was set to 1 kHz. During each measurement of RIN the laser power was attenuated to 0.5 mW before being injected into a photoelectric detector.

    Fig.3. Scheme of the experimental setup for the 1.95μm single-frequency DBR fiber laser based on the as-drawn gain fiber(GF).

    3. Results and discussion

    The laser output spectrum is shown in Fig. 4(a). The achieved laser has a central wavelength of 1950 nm with an OSNR of~77 dB. The laser output power and the residual power were measured by a standard power meter. Figure 4(b) shows the laser output power as a function of the absorbed pump power. The laser threshold was measured to be~15.4 mW. The fiber laser yields a maximum laser output power of 135 mW with a slope efficiency of 10.2%. Note that the phenomenon of power saturation was not observed,suggesting that the output power could be further improved by using a higher available pump power. The stability of the laser output power at 60 mW was measured for 40 min; the result is shown in the inset of Fig.4(b). The constructed fiber laser is stable with an output power fluctuation relative to the average power of~3.24%(relative standard deviation)during the entire period.

    The scanning spectrum over the FSR of the FFPI is presented in Fig.5.A stable single-longitudinal-mode output was achieved when the temperature of the laser cavity was controlled at 19.6?C. Through the strict temperature control of the whole laser cavity, the laser operated stably in a singlefrequency regime without mode hopping or mode competition as the pump power increased. Therefore, a 135 mW singlefrequency DBR fiber laser operating at 1.95μm was realized in a 2 cm long gain fiber when in-band pumped by a 1610 nm fiber laser.

    Fig.4. (a)Measured output spectrum of the fiber laser. (b)The laser output power versus the absorbed pump power. The inset shows the power stability of the laser output power at 60 mW for 40 min.

    The laser linewidth was measured at a laser output power of 100 mW using the self-heterodyne method performed with a 3 km delay fiber (SMF-28M, Corning). Figure 6(a)shows the measured heterodyne signal which was fitted with a Lorentz lineshape. It can be observed that the signal is 90 kHz at 20 dB from the peak, indicating that the fiber laser has a linewidth of 4.5 kHz. Laser noise is an important parameter for a single-frequency fiber laser. Figure 6(b) shows the output RIN results under different laser output powers in the frequency range 0 MHz–15 MHz. The relaxation oscillation frequency peaks under different laser output powers were observed at frequencies of 0.55 MHz,0.95 MHz,and 1.24 MHz,respectively. The relaxation oscillation frequency peaks move toward the higher frequency from 0.55 MHz to 1.24 MHz with increasing output power. The measured RIN is less than?140 dB·Hz?1at frequencies above 10 MHz. Table 2 summarizes the performance of different single-frequency DBR fiber lasers based on RE ion-doped silica glass fiber and YAGderived all-glass fibers. Here, the slope efficiency is defined as the slope of the curve obtained by plotting the laser output power versus the absorbed pump power. It can be found that the output power and the slope efficiency achieved in this work are higher than that in the single-frequency DBR Tm3+doped silica fiber laser.[15]In addition, compared with the other single-frequency DBR YAG-derived all-glass fiber lasers,the performance of the 1.95μm single-frequency DBR fiber laser achieved in this work is competitive. Further improvement should be made with respect to cavity design,such as optimizing the gain fiber numerical aperture(NA)and using high-NA FBGs to optimize the coupling efficiency of pump light.

    Fig.6. (a)Linewidth of the single-frequency fiber laser measured by the self-heterodyne method. (b)RIN of the single-frequency fiber laser in the frequency band of 0 MHz–15 MHz with different output powers.

    Table 2. Performance of different single-frequency DBR fiber lasers based on RE ion-doped silica fiber and YAG-derived all-glass fibers.

    4. Conclusion

    In conclusion, a 1.95 μm single-frequency DBR fiber laser was realized by using a 2 cm long Tm:YAG ceramicderived all-glass fiber pumped by a 1610 nm fiber laser. A maximum output power of 135 mW was obtained in this allfiber integrated laser system with a linewidth of 4.5 kHz. The fiber laser has a high OSNR of~77 dB and a low pump threshold of~15.4 mW.In addition,the RIN was investigated under different laser output powers.These results indicate that high-gain Tm:YAG ceramic-derived all-glass fiber is a promising candidate in 2μm single-frequency DBR fiber lasers.

    Acknowledgments

    Project supported by the Yunnan Fundamental Research Projects (Grant No. 202201AU070065), Natural Science Foundation of China for Young Scholars (Grant No. 52002131), Open Fund of the Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques(Grant No.2021-04),and the Scientific Research Fund Project of Yunnan Provincial Department of Education(Grant No.2022J0591).

    猜你喜歡
    國權(quán)唐國
    “電競游戲”思維下的體育游戲設(shè)計
    體育科技(2022年2期)2022-08-05 14:27:14
    甘薯解偶聯(lián)蛋白基因家族鑒定與表達分析
    唐國龍【布面水彩】
    淺析高層建筑剪力墻結(jié)構(gòu)優(yōu)化設(shè)計
    成都大學(xué)學(xué)報(社會科學(xué)版)(2019年3期)2019-07-11 08:05:20
    成都大學(xué)學(xué)報(社會科學(xué)版)(2018年5期)2018-11-12 00:22:58
    擺不平的劣跡
    紫甘薯紅色素與其他同類色素的穩(wěn)定性比較
    40年前發(fā)生的“桑蘭事件”
    大眾健康(2001年5期)2001-04-29 14:51:33
    藝術(shù),不朽的活力
    雕塑(1998年2期)1998-06-28 12:57:08
    黄色女人牲交| 青草久久国产| 又黄又粗又硬又大视频| 欧美日韩一级在线毛片| 欧美成人一区二区免费高清观看 | 在线天堂中文资源库| 美女大奶头视频| 亚洲精品一区av在线观看| 窝窝影院91人妻| 成熟少妇高潮喷水视频| 夜夜夜夜夜久久久久| 岛国视频午夜一区免费看| 国产av一区二区精品久久| 久久精品aⅴ一区二区三区四区| 97碰自拍视频| 国产欧美日韩一区二区三区在线| 欧美一级a爱片免费观看看 | 99精品久久久久人妻精品| 国产精品九九99| 国产又色又爽无遮挡免费看| 超碰成人久久| 国产精品 国内视频| 999久久久国产精品视频| 亚洲最大成人中文| 成人精品一区二区免费| 精品第一国产精品| 老司机福利观看| 免费在线观看亚洲国产| 很黄的视频免费| 99久久国产精品久久久| 在线观看日韩欧美| 麻豆国产av国片精品| 午夜福利在线观看吧| 久久精品国产清高在天天线| 精品国产超薄肉色丝袜足j| 精品高清国产在线一区| 日本在线视频免费播放| 一进一出抽搐动态| 最近最新中文字幕大全免费视频| 国产成人精品在线电影| 亚洲精品美女久久av网站| 国产xxxxx性猛交| 啦啦啦免费观看视频1| 日韩精品免费视频一区二区三区| 免费少妇av软件| 亚洲自拍偷在线| 97人妻精品一区二区三区麻豆 | 日本三级黄在线观看| 亚洲国产精品久久男人天堂| 91麻豆av在线| 自拍欧美九色日韩亚洲蝌蚪91| 久99久视频精品免费| 99riav亚洲国产免费| 在线观看午夜福利视频| 欧美成狂野欧美在线观看| 一级,二级,三级黄色视频| 国产高清有码在线观看视频 | 亚洲人成电影观看| 老鸭窝网址在线观看| 欧美乱码精品一区二区三区| 国产成人精品久久二区二区免费| 91九色精品人成在线观看| 国产亚洲精品一区二区www| 国产精品野战在线观看| 国产精品电影一区二区三区| 欧美一级a爱片免费观看看 | 嫩草影院精品99| 亚洲人成77777在线视频| 性色av乱码一区二区三区2| 久久精品国产亚洲av高清一级| 精品国产乱码久久久久久男人| 性色av乱码一区二区三区2| 久久亚洲真实| av福利片在线| 两人在一起打扑克的视频| 亚洲成国产人片在线观看| 亚洲成a人片在线一区二区| 91麻豆av在线| 国内久久婷婷六月综合欲色啪| 久久人人爽av亚洲精品天堂| 亚洲色图综合在线观看| 日日夜夜操网爽| netflix在线观看网站| 在线国产一区二区在线| 日日摸夜夜添夜夜添小说| 亚洲一区二区三区不卡视频| 亚洲av成人一区二区三| netflix在线观看网站| 一级毛片高清免费大全| 亚洲专区字幕在线| 国产成+人综合+亚洲专区| 久久久久国产精品人妻aⅴ院| 亚洲一区中文字幕在线| 成人特级黄色片久久久久久久| 亚洲精品一区av在线观看| 99re在线观看精品视频| 久久精品国产清高在天天线| 欧美日本中文国产一区发布| 视频区欧美日本亚洲| av有码第一页| 亚洲精品中文字幕一二三四区| а√天堂www在线а√下载| 久久精品人人爽人人爽视色| 免费看美女性在线毛片视频| 电影成人av| 一区在线观看完整版| 桃色一区二区三区在线观看| 成人国语在线视频| 校园春色视频在线观看| 国产成人啪精品午夜网站| 免费观看精品视频网站| 91在线观看av| 亚洲精品一卡2卡三卡4卡5卡| 一区二区三区激情视频| 欧美日韩瑟瑟在线播放| 一边摸一边做爽爽视频免费| 久久精品91蜜桃| 日本免费一区二区三区高清不卡 | 国产麻豆成人av免费视频| 精品午夜福利视频在线观看一区| 亚洲成a人片在线一区二区| 色av中文字幕| 午夜免费鲁丝| 在线观看舔阴道视频| 亚洲一区中文字幕在线| 黄网站色视频无遮挡免费观看| 日韩精品青青久久久久久| 97人妻精品一区二区三区麻豆 | 久久精品影院6| 国产精品一区二区精品视频观看| 久久久久久人人人人人| 动漫黄色视频在线观看| 国产精品免费视频内射| 伊人久久大香线蕉亚洲五| 精品国产一区二区三区四区第35| 色综合亚洲欧美另类图片| 亚洲av成人av| 国产亚洲欧美在线一区二区| 国产高清有码在线观看视频 | av超薄肉色丝袜交足视频| 青草久久国产| 国产成人欧美在线观看| 久久午夜综合久久蜜桃| 国产亚洲精品av在线| 日日摸夜夜添夜夜添小说| 久久精品亚洲熟妇少妇任你| 精品一区二区三区视频在线观看免费| 亚洲伊人色综图| 欧美黑人精品巨大| 老汉色av国产亚洲站长工具| 亚洲性夜色夜夜综合| 99riav亚洲国产免费| 欧美丝袜亚洲另类 | 色精品久久人妻99蜜桃| 宅男免费午夜| 一级黄色大片毛片| 日韩欧美一区视频在线观看| 1024香蕉在线观看| 久久久久久久久久久久大奶| 日韩一卡2卡3卡4卡2021年| 日日摸夜夜添夜夜添小说| 亚洲熟女毛片儿| 午夜a级毛片| 亚洲av成人av| a在线观看视频网站| 久久精品国产99精品国产亚洲性色 | 婷婷六月久久综合丁香| 精品久久久久久久毛片微露脸| 制服诱惑二区| 国产精品久久电影中文字幕| 欧美绝顶高潮抽搐喷水| 国语自产精品视频在线第100页| 国产男靠女视频免费网站| 视频区欧美日本亚洲| 欧美日韩一级在线毛片| 高潮久久久久久久久久久不卡| 在线观看免费视频日本深夜| 亚洲精品久久成人aⅴ小说| 国产精品精品国产色婷婷| 三级毛片av免费| 中文字幕高清在线视频| 亚洲国产欧美日韩在线播放| 在线观看一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 97超级碰碰碰精品色视频在线观看| 一区二区三区国产精品乱码| 一进一出抽搐gif免费好疼| 日韩 欧美 亚洲 中文字幕| 极品教师在线免费播放| 两个人视频免费观看高清| 日本vs欧美在线观看视频| 啦啦啦韩国在线观看视频| 激情视频va一区二区三区| 欧美黑人精品巨大| 久久久久久久久久久久大奶| 国产单亲对白刺激| 亚洲国产欧美网| 99国产极品粉嫩在线观看| 久久久久久大精品| 一进一出抽搐动态| 亚洲中文日韩欧美视频| 女人被躁到高潮嗷嗷叫费观| 黄色女人牲交| 久久久久久久精品吃奶| 成人国语在线视频| 亚洲一区二区三区不卡视频| 嫩草影视91久久| 成人免费观看视频高清| 免费在线观看黄色视频的| 91老司机精品| 精品一区二区三区视频在线观看免费| 日韩欧美一区二区三区在线观看| 亚洲一码二码三码区别大吗| 狂野欧美激情性xxxx| 亚洲一区二区三区不卡视频| www.自偷自拍.com| 成人免费观看视频高清| 别揉我奶头~嗯~啊~动态视频| 国产精品一区二区免费欧美| 少妇 在线观看| 亚洲片人在线观看| 69av精品久久久久久| 精品欧美一区二区三区在线| 亚洲国产日韩欧美精品在线观看 | 久久久久九九精品影院| 国产亚洲欧美精品永久| 老司机深夜福利视频在线观看| 久久久久亚洲av毛片大全| 久久香蕉国产精品| 国产熟女午夜一区二区三区| 成人18禁高潮啪啪吃奶动态图| 女同久久另类99精品国产91| 精品国产一区二区三区四区第35| 两个人视频免费观看高清| 国产成人啪精品午夜网站| 97人妻天天添夜夜摸| 丰满的人妻完整版| 69av精品久久久久久| 精品熟女少妇八av免费久了| 午夜亚洲福利在线播放| 国产成人啪精品午夜网站| 又紧又爽又黄一区二区| 97碰自拍视频| 免费高清在线观看日韩| 狂野欧美激情性xxxx| 又黄又爽又免费观看的视频| 久热这里只有精品99| 久久国产乱子伦精品免费另类| 免费看美女性在线毛片视频| 女人被狂操c到高潮| 波多野结衣巨乳人妻| 久久人人精品亚洲av| 51午夜福利影视在线观看| 十分钟在线观看高清视频www| 欧美乱码精品一区二区三区| 波多野结衣av一区二区av| 一个人免费在线观看的高清视频| 日本vs欧美在线观看视频| 亚洲午夜理论影院| 人人妻人人澡欧美一区二区 | 中文字幕久久专区| 999精品在线视频| 亚洲熟妇熟女久久| 中文字幕人妻熟女乱码| 看免费av毛片| 一区二区三区高清视频在线| 国产精品,欧美在线| 又大又爽又粗| 国产av一区在线观看免费| 侵犯人妻中文字幕一二三四区| 久久亚洲精品不卡| 巨乳人妻的诱惑在线观看| 亚洲精品粉嫩美女一区| 日本一区二区免费在线视频| 成人精品一区二区免费| 神马国产精品三级电影在线观看 | 麻豆成人av在线观看| 欧美黑人精品巨大| 国产亚洲av嫩草精品影院| 淫妇啪啪啪对白视频| 色哟哟哟哟哟哟| 女生性感内裤真人,穿戴方法视频| 热99re8久久精品国产| 中文字幕高清在线视频| 日本五十路高清| 国产成人精品久久二区二区91| 成熟少妇高潮喷水视频| 欧美不卡视频在线免费观看 | 亚洲精品av麻豆狂野| 999久久久国产精品视频| 女生性感内裤真人,穿戴方法视频| 可以在线观看的亚洲视频| 一区二区三区国产精品乱码| 久久久国产欧美日韩av| 国产一区二区三区在线臀色熟女| 精品无人区乱码1区二区| 一级毛片女人18水好多| 免费看a级黄色片| 精品免费久久久久久久清纯| 色综合欧美亚洲国产小说| 亚洲国产精品合色在线| 国产欧美日韩一区二区三| 如日韩欧美国产精品一区二区三区| 国产精品电影一区二区三区| 乱人伦中国视频| 老鸭窝网址在线观看| 免费观看精品视频网站| 无遮挡黄片免费观看| 免费人成视频x8x8入口观看| 国内久久婷婷六月综合欲色啪| 老熟妇仑乱视频hdxx| or卡值多少钱| 国产欧美日韩一区二区三区在线| 国产亚洲精品久久久久久毛片| 长腿黑丝高跟| 久久久久久亚洲精品国产蜜桃av| 老熟妇乱子伦视频在线观看| 18禁国产床啪视频网站| 欧美日韩福利视频一区二区| 国产激情欧美一区二区| 午夜影院日韩av| 免费人成视频x8x8入口观看| 精品国产乱子伦一区二区三区| 国产av在哪里看| 人成视频在线观看免费观看| 两个人看的免费小视频| 亚洲 国产 在线| 免费搜索国产男女视频| 脱女人内裤的视频| 国产成人系列免费观看| 久久久久九九精品影院| 免费在线观看日本一区| 欧美黑人精品巨大| 美女 人体艺术 gogo| 两性午夜刺激爽爽歪歪视频在线观看 | 女同久久另类99精品国产91| 宅男免费午夜| 两人在一起打扑克的视频| 国产熟女xx| 色综合亚洲欧美另类图片| 一进一出抽搐动态| 两性午夜刺激爽爽歪歪视频在线观看 | 一级,二级,三级黄色视频| 免费在线观看日本一区| 亚洲精品久久成人aⅴ小说| 别揉我奶头~嗯~啊~动态视频| 中文字幕精品免费在线观看视频| 亚洲激情在线av| av片东京热男人的天堂| 亚洲av五月六月丁香网| 男女床上黄色一级片免费看| 很黄的视频免费| 侵犯人妻中文字幕一二三四区| 色综合站精品国产| 少妇的丰满在线观看| 午夜两性在线视频| av在线天堂中文字幕| 天堂影院成人在线观看| 97碰自拍视频| 一级片免费观看大全| 亚洲 欧美一区二区三区| 成人三级黄色视频| 桃红色精品国产亚洲av| 亚洲一区二区三区不卡视频| 免费av毛片视频| 99久久国产精品久久久| 成人国产综合亚洲| 国产一区二区三区综合在线观看| 色综合欧美亚洲国产小说| 国产99白浆流出| 高清黄色对白视频在线免费看| 丁香六月欧美| 日韩欧美一区二区三区在线观看| aaaaa片日本免费| 欧美日韩黄片免| 久久精品国产亚洲av高清一级| 国产成人av激情在线播放| 亚洲美女黄片视频| 久9热在线精品视频| 曰老女人黄片| 成人免费观看视频高清| 久久久国产成人精品二区| 亚洲中文字幕一区二区三区有码在线看 | 长腿黑丝高跟| 午夜福利成人在线免费观看| 成人av一区二区三区在线看| 久久久久久久精品吃奶| 国产亚洲精品综合一区在线观看 | 少妇的丰满在线观看| 亚洲中文字幕日韩| 国产精品精品国产色婷婷| 亚洲男人的天堂狠狠| 亚洲全国av大片| 久久精品成人免费网站| 国产熟女xx| 国产欧美日韩精品亚洲av| 性欧美人与动物交配| 成人av一区二区三区在线看| 成在线人永久免费视频| 级片在线观看| 丁香欧美五月| 人人妻人人澡人人看| 精品福利观看| 黑丝袜美女国产一区| 久久人妻av系列| 国产真人三级小视频在线观看| 禁无遮挡网站| 国产熟女xx| 免费av毛片视频| 狂野欧美激情性xxxx| 老熟妇仑乱视频hdxx| 亚洲一码二码三码区别大吗| 高潮久久久久久久久久久不卡| 在线观看免费视频网站a站| 国产精品美女特级片免费视频播放器 | 美女国产高潮福利片在线看| 久久久久久久午夜电影| 亚洲欧洲精品一区二区精品久久久| 国产男靠女视频免费网站| 欧美色视频一区免费| 黄色成人免费大全| 日韩三级视频一区二区三区| 色尼玛亚洲综合影院| 此物有八面人人有两片| 黄片大片在线免费观看| 激情在线观看视频在线高清| 天天添夜夜摸| 黄片播放在线免费| 久久亚洲精品不卡| av片东京热男人的天堂| 老汉色∧v一级毛片| 51午夜福利影视在线观看| 中文字幕av电影在线播放| 美女高潮喷水抽搐中文字幕| 欧美日本中文国产一区发布| 18禁美女被吸乳视频| 国产精品电影一区二区三区| 国产主播在线观看一区二区| 精品无人区乱码1区二区| 欧美日韩黄片免| 一级片免费观看大全| 国产熟女xx| 99在线人妻在线中文字幕| 伦理电影免费视频| 丁香欧美五月| bbb黄色大片| 动漫黄色视频在线观看| av超薄肉色丝袜交足视频| 熟妇人妻久久中文字幕3abv| avwww免费| 欧美乱妇无乱码| 国产精品98久久久久久宅男小说| 露出奶头的视频| 免费一级毛片在线播放高清视频 | 国产av又大| 女性被躁到高潮视频| 亚洲人成77777在线视频| 亚洲欧美日韩高清在线视频| 少妇被粗大的猛进出69影院| 女人精品久久久久毛片| 亚洲 国产 在线| 午夜精品在线福利| 黄色成人免费大全| 免费搜索国产男女视频| 国产免费男女视频| 琪琪午夜伦伦电影理论片6080| 亚洲在线自拍视频| 日韩欧美一区二区三区在线观看| 国产成人欧美在线观看| 人人妻,人人澡人人爽秒播| 国产欧美日韩综合在线一区二区| 欧美日韩黄片免| 视频在线观看一区二区三区| 亚洲午夜精品一区,二区,三区| 成在线人永久免费视频| 校园春色视频在线观看| 国产不卡一卡二| 午夜老司机福利片| 国产精品亚洲一级av第二区| 免费人成视频x8x8入口观看| 国产精品亚洲美女久久久| 国产av精品麻豆| 在线观看舔阴道视频| 久久精品影院6| 久久人人爽av亚洲精品天堂| 国产精品,欧美在线| 久久久久精品国产欧美久久久| 男女下面进入的视频免费午夜 | 国产成人精品久久二区二区91| 久久精品亚洲精品国产色婷小说| 亚洲性夜色夜夜综合| 在线播放国产精品三级| 成人三级黄色视频| 欧美黄色淫秽网站| 人人妻,人人澡人人爽秒播| 人人妻人人澡人人看| 日本免费一区二区三区高清不卡 | 色哟哟哟哟哟哟| 精品欧美国产一区二区三| 亚洲电影在线观看av| 丝袜人妻中文字幕| 欧美精品亚洲一区二区| 免费观看人在逋| 国产亚洲精品一区二区www| 天天添夜夜摸| 亚洲国产日韩欧美精品在线观看 | 精品国产超薄肉色丝袜足j| 1024视频免费在线观看| 国产精品99久久99久久久不卡| 亚洲av熟女| 女性被躁到高潮视频| 两个人视频免费观看高清| 岛国在线观看网站| 黄频高清免费视频| 日日爽夜夜爽网站| 黄色视频不卡| 午夜免费鲁丝| 99精品欧美一区二区三区四区| 久久热在线av| 精品乱码久久久久久99久播| 国产成人啪精品午夜网站| av视频免费观看在线观看| svipshipincom国产片| av视频免费观看在线观看| 欧美中文综合在线视频| 久久亚洲精品不卡| 法律面前人人平等表现在哪些方面| 国产真人三级小视频在线观看| 亚洲欧美激情综合另类| 悠悠久久av| 久久性视频一级片| 999久久久精品免费观看国产| 成年人黄色毛片网站| 精品国产超薄肉色丝袜足j| 真人一进一出gif抽搐免费| 免费在线观看影片大全网站| 精品欧美国产一区二区三| 久久婷婷成人综合色麻豆| 久久久国产成人免费| ponron亚洲| 国产精品秋霞免费鲁丝片| 亚洲国产欧美日韩在线播放| 99香蕉大伊视频| 大型黄色视频在线免费观看| 一进一出抽搐动态| 黑人巨大精品欧美一区二区蜜桃| x7x7x7水蜜桃| 91成人精品电影| 91国产中文字幕| 激情视频va一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久久人人人人人| 99久久国产精品久久久| 人人妻,人人澡人人爽秒播| 操美女的视频在线观看| 亚洲成人精品中文字幕电影| 亚洲欧美精品综合久久99| 国产不卡一卡二| 级片在线观看| 日本精品一区二区三区蜜桃| 黄色a级毛片大全视频| 变态另类丝袜制服| 啦啦啦韩国在线观看视频| 午夜福利免费观看在线| 精品卡一卡二卡四卡免费| 国产精品精品国产色婷婷| 欧美性长视频在线观看| 啪啪无遮挡十八禁网站| 女同久久另类99精品国产91| 久久九九热精品免费| 欧美一区二区精品小视频在线| 三级毛片av免费| 日本五十路高清| 欧美色欧美亚洲另类二区 | 亚洲人成伊人成综合网2020| 天天躁夜夜躁狠狠躁躁| 禁无遮挡网站| 亚洲欧美日韩另类电影网站| 亚洲精品久久国产高清桃花| 中文亚洲av片在线观看爽| 99精品久久久久人妻精品| www.自偷自拍.com| 久久草成人影院| 国产免费av片在线观看野外av| 久久热在线av| 国产欧美日韩精品亚洲av| 精品国产国语对白av| 最近最新中文字幕大全免费视频| 亚洲一区中文字幕在线| 午夜免费激情av| 国产欧美日韩一区二区三区在线| e午夜精品久久久久久久| 亚洲第一av免费看| 国产av一区在线观看免费| 老汉色av国产亚洲站长工具| 久久精品国产综合久久久| 亚洲精品中文字幕一二三四区| 变态另类成人亚洲欧美熟女 | 色婷婷久久久亚洲欧美| 久久久久久久久久久久大奶| 动漫黄色视频在线观看| 女警被强在线播放| 国产在线观看jvid| 日韩欧美国产在线观看| 19禁男女啪啪无遮挡网站| 午夜福利影视在线免费观看| 69av精品久久久久久| 激情视频va一区二区三区| 国产麻豆69| 此物有八面人人有两片| 久久久国产成人精品二区| 少妇被粗大的猛进出69影院| 日日夜夜操网爽| 国产精品av久久久久免费| 亚洲av五月六月丁香网|