• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impact of incident direction on neutron-induced single-bit and multiple-cell upsets in 14 nm FinFET and 65 nm planar SRAMs

    2022-12-28 09:54:14ShaoHuaYang楊少華ZhanGangZhang張戰(zhàn)剛ZhiFengLei雷志鋒YunHuang黃云KaiXi習(xí)凱SongLinWang王松林TianJiaoLiang梁天驕TengTong童騰XiaoHuiLi李曉輝ChaoPeng彭超FuGenWu吳福根andBinLi李斌
    Chinese Physics B 2022年12期
    關(guān)鍵詞:黃云天驕

    Shao-Hua Yang(楊少華) Zhan-Gang Zhang(張戰(zhàn)剛) Zhi-Feng Lei(雷志鋒) Yun Huang(黃云)Kai Xi(習(xí)凱) Song-Lin Wang(王松林) Tian-Jiao Liang(梁天驕) Teng Tong(童騰)Xiao-Hui Li(李曉輝) Chao Peng(彭超) Fu-Gen Wu(吳福根) and Bin Li(李斌)

    1School of Physics and Optoeletronic Engineering,Guangdong University of Technology,Guangzhou 510006,China

    2Science and Technology on Reliability Physics and Application of Electronic Component Laboratory,China Electronic Product Reliability and Environmental Testing Research Institute,Guangzhou 510370,China

    3Institute of Microelectronics of Chinese Academy of Sciences,Beijing 100029,China

    4Institute of High Energy Physics,Chinese Academy of Sciences,Beijing 100049,China

    5Spallation Neutron Source Science Center,Dongguan 523803,China

    6School of Microelectronics,South China University of Technology,Guangzhou 510640,China

    Keywords: neutron,fin field-effect transistor(FinFET),single event upset(SEU),Monte–Carlo simulation

    1. Introduction

    Atmospheric neutron-induced single event effects (SEE)in avionics and key ground electronics are gaining increasing attention, due to the fact that the SEE performance of an integrated circuit (IC) becomes worse as the feature size shrinks.[1,2]Hence, the evaluation of real-time neutroninduced SEE sensitivity in the applied environments, especially for nanometric ICs,can be very important for the system reliability insurance.

    To measure the atmospheric radiation induced soft error rate(SER),accelerated testing can be conveniently performed by using the ground-based neutron sources.[3]While clear differences exist between neutrons from ground-based neutron sources and real atmosphere,such as incident direction,energy spectrum,etc.It can be predicted that single event upset(SEU)response is affected by the incident direction of neutron,since that upsets are produced by secondary particles generated by nuclear reactions between neutrons and their traversing materials. Consequently, understanding the impact of incident directions on SEE is critical in several aspects: (1)guiding the ground-based testing, and (2) selecting the “best incident direction”,which can be conveniently utilized to reduce the SER by the selection of board orientation during equipment setup.

    In the past, angular dependence of neutron-induced SEE was reported by several research groups.[4–8]In 2019, S.Abe[9]reported that the number of SEUs in 65 nm static random-access memory (SRAM) obtained by the board-side irradiation was approximately 20% to 30% smaller than that obtained by irradiation on the plastic package side, by using quasi-monoenergetic neutrons. Tibetan-Plateau based realtime testing[10]and accelerated testing of 65 nm quad data rate(QDR)SRAMs[11]were conducted to reveal the SEU characteristics and mechanisms in our previous publications. The 14 nm fin filed-effect transistor (FinFET) SRAMs were also irradiated by neutrons at normal incidence.[11]However, few publications focused on the impact of incident direction on neutron-induced SEE response in advanced FinFET technology.

    In this work,the impact of incident direction on neutroninduced single-bit upsets (SBU) and multiple-cell upsets(MCU)in 14 nm FinFET SRAM and 65 nm QDRII+SRAM is studied in a comparative way, by experiments at the BL09 terminal of China Spallation Neutron Source (CSNS) and Monte–Carlo simulations.

    2. Experimental setup

    2.1. Devices under test

    Parameters of the tested SRAM devices are showed in Table 1. Note that,the 14 nm FinFET SRAM is packaged inflip-chip ball grid array (BGA), with the substrate thinned to 60μm(designed for previous heavy-ion testing). The 65 nm SRAM is packaged in wire-bonded BGA,and the plastic package above the chip was not etched before irradiation.

    Table 1. Parameters of the tested SRAM devices.

    2.2. Experimental setup

    The experiment was conducted at the BL09 terminal of CSNS.The simulated neutron energy spectrum of BL09 at irradiation position is shown in Fig.1,which is obtained by simulation based on the actual setup. The beam flux during the experiments is fixed, with a total of 2.8×107n/(cm2·s). The flux of thermal neutrons (E<0.4 eV) is 2.7×106n/(cm2·s),and the flux of high energy neutrons (E> 10 MeV) is 1.1×105n/(cm2·s). During the irradiation, the thermal neutrons can be selected to be filtered,by inserting cadmium(Cd)film (~2 mm) into the beam. After passing through the Cd film,neutrons with energy below 0.4 eV are eliminated.While the energy spectrum in theE>10 MeV region is basically unchanged since Cd film has a cutoff energy of 0.4 eV.[3]Specifically,for the 14 nm FinFET SRAM,the thermal neutrons were not filtered during irradiation, since that the irradiated device under test(DUT)was sensitive to thermal neutrons. While for the 65 nm QDRII+SRAM,the thermal neutrons were filtered,since that the irradiated DUT was immune to thermal neutrons,as reported in our previous publication.[11]

    Fig. 1. The simulated neutron energy spectrum at irradiation position of the BL09 terminal of CSNS.

    Figure 2 illustrates three kinds of incident directions during neutron irradiation: front, back and side. Additionally,Table 2 lists the layers that neutrons penetrate before reaching the sensitive volume(SV),for different incident directions.Note that, due to the different package of the two DUTs (see Table 1), the layers that neutrons penetrate before reaching the SV can be quite different, even under the same incident direction. For the 14 nm FinFET SRAM, the BGA package includes solder ball (with a diameter of~0.8 mm), substrate (~0.7 mm), and small solder ball (with a diameter of~0.08 mm), along the direction of neutron incidence. The detailed metallization struture of the 14 nm FinFET SRAM is shown in Fig. 10(a). Eight layers of metal wiring can be seen,and the majority of the metal materials are copper.Tungsten plugs are found between M0 and the active silicon layer.The total depth of the mentalizations is about 6.3μm. For the 65 nm QDRII+SRAM,the BGA package includes solder ball(with a diameter of~0.9 mm)and substrate(~0.5 mm),following the direction of neutron incidence. Six layers of metallization are found,and the majority of the metal materials are copper. Tungsten plugs are found between M0 and the active silicon layer. The total depth of the mentalizations is about 7.1 μm. As examples, Figs. 3 and 4 show the pictures of the 14 nm FinFET SRAM and the 65 nm QDRII+SRAM under side direction irradiation,respectively.

    Fig.2. Three kinds of incident directions during neutron irradiation.

    Table 2. Layers that neutrons penetrate before reaching the SV,for different incident directions.

    Fig.3. The 14 nm FinFET SRAM under irradiation(side direction).

    Fig. 4. The 65 nm QDRII+SRAM under irradiation (side direction).Note that,the test board was designed also for high-altitude experiment and only the arrowed DUT of the 18 loaded devices was tested.

    Checkerboard pattern was written into the DUT before irradiation, and contents of the DUT were read and compared with the golden data periodically during the neutron bombardment. The detailed SEU information including the error time,address and data were reported. In addition, the device currents were monitored continuously and no single event latchup(SEL)was observed during all the tests. The ambient temperature was controlled at 25±5?C.

    3. Experimental results and analysis

    3.1. SEU cross sections

    Figure 5 shows the neutron-induced SEU cross sections in the 14 nm FinFET SRAM under different incident directions.Obviously,back incidence is the“worst case”,with SEU cross section 1.7–4.7 times higher than those of front and side incidences.The reason that side incidence exhibits the lowest SEU cross section is discussed here. In the 14 nm FinFET SRAM,neutron-induced electron–hole pairs are collected by both drift and diffusion processes. For side incidence,the generated secondary particles by high energy neutron tend to traverse the fin from the side. Hence,for most cases,the generated electron–hole pairs are collected by drift or diffusion process, depending on the location of the ion trajectory (in the fin or in the substrate). However,for front and back incidences,the trajectory of secondary particle tends to cross both the fin and the substrate. Electron–hole pairs can be collected by both drift and diffusion processes, resulting into higher SEU cross sections.

    Note that,the SEU cross section is calculated by counting the MCU as separate soft errors and using the total neutron flux of 2.8×107n/(cm2·s). It should be noted that the SEU cross sections include the contribution of thermal neutrons.

    Fig. 5. Neutron-induced SEU cross sections in the 14 nm FinFET SRAM under different incident directions.

    Fig. 6. Neutron-induced SEU cross sections in the 65 nm QDRII+SRAM under different incident directions.

    Figure 6 shows the neutron-induced SEU cross sections in the 65 nm QDRII+SRAM under different incident directions. Differently, front incidence is the “worst case”, with SEU cross section 1.7–1.8 times higher than those of back and side incidences. Note that, the SEU cross sections are calculated by using the high energy neutron(E>10 MeV) flux of 1.05×105n/(cm2·s). The reasons are that: (1) the 65 nm QDRII+SRAM is immune to thermal neutron, as reported in our previous publication,[11]and (2) high energy neutrons(E>10 MeV)are the main contribution of soft error rate, as specified in the JESD89A standard.[3]

    Comparing Figs.5 and 6,it seems that the worst incident direction for the 14 nm FinFET technology and the 65 nm planar technology is opposite. However, combining the above results with Table 2,it can be found that the worst incident direction corresponds to the case that neutrons traverse package and metallization before reaching the SV. In order to further reveal the underlying mechanisms, Monte–Carlo simulations are conducted,which are shown in Section 4.

    3.2. MCU characteristics

    MCU ratios of 14 nm FinFET SRAM and 65 nm QDRII+SRAM under different incident directions are shown in Figs.7 and 8, respectively. Obviously, most of the MCU events are double-bit upsets (i.e., MCU2). The largest MCU for the 14 nm FinFET SRAM involves 8 bits,while the largest MCU for the 65 nm QDRII+SRAM involves 4 bits. For MCU response,side incidence is the“worst case”. Here,“worst case”corresponds to the case with highest MCU ratio,because more MCU events mean more bit-flips, and more error correcting code(ECC)resource must be used to eliminate them.The phenomenon can be explained by that neutrons at side incidence are most likely to traverse and affect multiple SVs, since that majority of the secondary particles generated by the interactions between spallation neutrons and DUT are moving forward. Since that large MCU event is relatively rare,the probability of MCU≥4 under back incidence in Fig.7 is higher than that under side incidence,due to the poor statistics.

    Fig. 7. MCU ratios of the 14 nm FinFET SRAM under different incident directions.

    Fig.8. MCU ratios of the 65 nm QDRII+SRAM under different incident directions.

    4. Monte–Carlo simulations

    Aims of Monte–Carlo simulations of the neutron transport are investigating the characteristics of secondary ions in the device SV, including ion species, LET, range and making comparisons between different incident directions. This part mainly focuses on the research of 14 nm FinFET SRAM,since that Abe’s paper[9]can be referred to for the inner mechanisms of results of the 65 nm SRAM in the previous section.The main conclusions of Abe’s paper are that the atomic composition of the material placed in front of the memory chip has a considerable influence on the SER because production yields and angular distributions of secondary hydrogen (H)and helium(He)ions(the main causes of SEUs)depend on the composition. In particular, the existence of hydrides, such as plastic,considerably increases the SER because of the higher production yields of secondary H ions that are generated via elastic scattering of neutrons with hydrogen atoms.

    4.1. The 3D simulation model of DUT

    Simulation model of the 14 nm FinFET SRAM is built based on the reverse-technique result of DUT (see Fig. 9)and experimental setup. Reverse-technique processes include cross-section analysis and layer-grinding analysis. Crosssection analysis is used to obtain Fig. 9(a), by cutting the DUT and observing by scanning electron microscopy(SEM).Layer-grinding analysis is used to obtained Fig.9(b),by grinding the DUT to polysilicon layer and observing by SEM. In Fig.9(a),eight layers of metallization can be seen,and the majority of the metal materials are copper. Tungsten (W) plugs are found between M0 and the active silicon layer. On the top of the Fin,high-Kmetal gate(HKMG)exists. Material of the high-Kgate oxide is HfO2with a depth of 1.9 nm. Material of the metal gate is TiN with a depth of 4.6 nm. The total depth of the mentalizations is about 6.3μm.

    Table 3 shows the memory cell sizes and SV parameters of the 14 nm FinFET SRAM. The drain of the off-state Nchannel metal oxide semiconductor(NMOS)transistor is considered to be the SV of one memory cell. The depth of the SV is set as the fin height. Importantly,note that the LET threshold of the DUT is smaller than 0.5 MeV·cm2/mg, making it sensitive to proton direct-ionization effect.

    Fig.9. (a)Cross section and(b)polysilicon layer images of the 14 nm FinFET SRAM.

    Table 3. Memory cell sizes and SV parameters for the 14 nm FinFET SRAM.

    4.2. Neutron transport simulations

    Neutron transport process is simulated by the Geant4 toolkit.[12]Thex×yscale of the device model is set as scales of the SV,in order to improve the simulation efficiency. A total number of 109neutrons strike the surface of device model normally. Typical neutron energies are selected in the simulation, including 5 MeV, 100 MeV, 500 MeV, and 1 GeV.The reasons are that for the 14 nm FinFET SRAM,upsets are mainly induced by thermal neutrons and high energy neutrons.Considering the low critical charge of the device,5 MeV neutrons are also simulated. Thermal neutrons are not simulated because that thermal neutrons induce upsets by the products of the10B(n,α)7Li reaction. In this reaction,the alpha particle and the lithium(Li)nucleus are emitted in roughly opposite directions to conserve momentum.[13]The outgoing directions of the products exhibit random distribution. Thus,under different incident directions of thermal neutrons, characteristics of the reaction products in the device SV are basically the same.

    The characteristics of secondary ions in the device SV,including ion species, LET, and range under different incident directions are obtained. Note that, side incidence is not simulated in this paper and will be investigated in the future,because that under side incidence, neutrons traverse different depths of silicon before reaching the SVs of the DUT, which means that the situations for all the SVs are not same. Nevertheless,as can be seen in Table 2,front incidence is similar to side incidence for the 14 nm FinFET SRAM,and the simulation results can be referred to.

    5. Simulation results

    Figures 1 and 11 compare the secondary ion species in SV of the 14 nm FinFET SRAM induced by incident neutrons with various energies,for front incidence and back incidence,respectively. The impact of incident direction is obviously shown. The total yield of secondary ions for back incidence is clearly higher than that for front incidence, by about 6×.Note the log-scale ofY-axis in Figs.1 and 11,majority of the reaction products are n,p,α,Si,Al,etc.The p andαare capable of inducing soft errors in the 14 nm FinFET SRAM,with a critical charge of 0.05 fC (see Table 3). This explains the phenomenon in Fig.5 that neutron-induced SEU cross section in the 14 nm FinFET SRAM under back incidence is higher,since that neutrons at back incidence are capable of creating more“useful”secondary ions in the device SV,and thus more upsets are induced.

    Fig.10. Secondary ion species in the SV induced by incident neutrons with various energies(front incidence).

    Fig.11. Secondary ion species in the SV induced by incident neutrons with various energies(back incidence).

    It can also be observed that neutrons with higher energy are capable of creating more diverse secondary ion species,for both front and back incidences. Besides, for the front incidence, the heaviest secondary ion is Si. While for the back incidence, the heaviest secondary ion is W. Compared to the neutrons at front incidence, neutrons at back incidence create more various secondary ions in the SV,ranging from p to W.The inner reasons can be found in Table 2,which lists the layers that neutrons penetrate before reaching the SV of the 14 nm FinFET SRAM, for different incident directions. For the front incidence, the material that neutrons traverse before reaching the SV is Si substrate, while for the back incidence,the intermediates are more complicated and contain various materials with high-Zelements,such as W plugs and Hf in the high-Kgate oxide. It can be confirmed that secondary ions heavier than Si are induced by nuclear reactions between incident neutrons and the metallization&HKMG on the top of the fins. This explains the phenomenon in Fig. 7 that MCU ratio of the 14 nm FinFET SRAM under back incidence is higher than that under front incidence,since(1)the total yield of secondary ions for back incidence is clearly higher than that for front incidence,including both light and heavy secondary ions, and (2) light secondary ions with long range and heavy secondary ions with enough range are both capable of inducing MCU events.

    Figures 12 and 13 show the LET and range of secondary ions in the SV of the 14 nm FinFET SRAM induced by incident neutrons with various energies,for front incidence and back incidence,respectively. One symbol in the figure represents one secondary ion in the SV.It is obvious that neutrons with higher energy are capable of generating secondary ions with larger LET values, longer ranges, and thus more generated charges in the SV,with also higher probability.Moreover,clear differences can be seen between the front incidence and the back incidence.For the back incidence,the LET and range of secondary ions in the SV are showing wider distribution than that of the front incidence case,which is consistent with the previous experimental results.

    Fig.12.LET and range of secondary ions in the SV induced by incident neutrons with various energies(front incidence).

    Fig.13.LET and range of secondary ions in the SV induced by incident neutrons with various energies(back incidence).

    6. Implications for application

    In the previous sections,we find that for both technology nodes,the“worst direction”corresponds to the case that neutrons traverse package and metallization before reaching the SV of the DUT.The SEU cross section under the worst direction is 1.7–4.7 times higher than those under other incidences.While for the MCU sensitivity,side incidence is the worst direction,with the highest MCU ratio.

    This information can be conveniently utilized to reduce the SER by the selection of board orientation during equipment setup. Specially, for avionic or ground application, atmospheric neutrons are mainly flying from top to down. Thus,for most boards,placing in a reverse way(i.e.,with front side downward) seems to be a good choice since most of the ICs are not in flip-chip package. Moreover, upright setup of the board should be avoided,especially for MCU-sensitive ICs.

    7. Conclusions

    In this work,the impact of incident direction on neutroninduced SBUs and MCUs in 14 nm FinFET SRAM and 65 nm QDRII+SRAM is studied,by both irradiation experiment and Monte–Carlo simulation. It is found that,for both technology nodes,the“worst direction”corresponds to the case that neutrons traverse package and metallization before reaching the SV of the DUT.The SEU cross section under the worst direction is 1.7–4.7 times higher than those under other incidences.While for the MCU sensitivity,side incidence is the worst direction, with the highest MCU ratio. Further, Monte–Carlo simulations show that the presence of package and metallization results into high amount of diverse secondary ions in the device SV,and thus higher SEU and MCU cross sections. Majority of the reaction products are p,α,Si,and Al.

    It seems that side incidence of neutron is the“best direction”,but the MCUs should be paid special attention to.

    Acknowledgements

    Project supported by the Key-Area Research and Development Program of Guangdong Province, China (Grant No.2019B010145001),the National Natural Science Foundation of China (Grant Nos. 12075065 and 12175045), and the Applied Fundamental Research Project of Guangzhou City,China(Grant No.202002030299).

    猜你喜歡
    黃云天驕
    天津現(xiàn)代天驕農(nóng)業(yè)科技股份有限公司
    別董大
    天津現(xiàn)代天驕農(nóng)業(yè)科技股份有限公司
    社交牛人癥該怎么治
    意林彩版(2022年2期)2022-05-03 10:25:08
    長(zhǎng)沙市六藝天驕星城園學(xué)生作品展示
    我還差一票
    “平行線及其判定”檢測(cè)題
    競(jìng)寫
    黃云:一個(gè)學(xué)者型官員的墮落史
    新西部(2009年1期)2009-03-31 02:53:46
    被熟人套牢的區(qū)長(zhǎng)黃云
    国产极品精品免费视频能看的| 成年人黄色毛片网站| 久久人妻av系列| 日韩欧美国产一区二区入口| 最后的刺客免费高清国语| 可以在线观看毛片的网站| 国产成人aa在线观看| 久久久久久久精品吃奶| 亚洲av日韩精品久久久久久密| 亚洲国产精品sss在线观看| 欧美zozozo另类| 欧美bdsm另类| 亚洲最大成人中文| 夜夜夜夜夜久久久久| 变态另类成人亚洲欧美熟女| 欧美+日韩+精品| 露出奶头的视频| 欧美一级a爱片免费观看看| 久久精品国产自在天天线| 欧美乱妇无乱码| 久久国产精品影院| 国内毛片毛片毛片毛片毛片| 美女被艹到高潮喷水动态| 欧美午夜高清在线| e午夜精品久久久久久久| 午夜福利高清视频| 亚洲成av人片免费观看| 在线观看免费视频日本深夜| 亚洲aⅴ乱码一区二区在线播放| 亚洲久久久久久中文字幕| 亚洲自拍偷在线| 午夜福利视频1000在线观看| 免费无遮挡裸体视频| 免费大片18禁| 99久久99久久久精品蜜桃| АⅤ资源中文在线天堂| 日韩欧美国产在线观看| 久久精品夜夜夜夜夜久久蜜豆| 在线观看免费午夜福利视频| 欧美日韩黄片免| 欧美xxxx黑人xx丫x性爽| 少妇高潮的动态图| а√天堂www在线а√下载| 9191精品国产免费久久| 99在线人妻在线中文字幕| 久久人妻av系列| 日韩欧美精品v在线| 日本黄色片子视频| 成人国产一区最新在线观看| 操出白浆在线播放| 欧美日韩瑟瑟在线播放| 成人18禁在线播放| 好男人电影高清在线观看| 久久九九热精品免费| 国产精品乱码一区二三区的特点| 午夜福利18| 国产亚洲欧美98| 久久人人精品亚洲av| 国产精品久久视频播放| 亚洲av二区三区四区| 色播亚洲综合网| 免费无遮挡裸体视频| 午夜福利成人在线免费观看| 亚洲久久久久久中文字幕| 久99久视频精品免费| 白带黄色成豆腐渣| 99久久无色码亚洲精品果冻| 亚洲av五月六月丁香网| 色播亚洲综合网| 免费av不卡在线播放| 亚洲精品影视一区二区三区av| 看片在线看免费视频| 淫秽高清视频在线观看| 国内精品久久久久精免费| 亚洲av免费在线观看| 99热这里只有是精品50| 国产高清视频在线观看网站| 亚洲av成人精品一区久久| www日本黄色视频网| www国产在线视频色| av欧美777| 中文在线观看免费www的网站| 少妇人妻一区二区三区视频| 99热6这里只有精品| 久久久久久九九精品二区国产| 日本一二三区视频观看| 日本黄大片高清| 午夜精品久久久久久毛片777| 免费看光身美女| 欧美高清成人免费视频www| 久久草成人影院| 中国美女看黄片| 亚洲熟妇中文字幕五十中出| 亚洲国产精品sss在线观看| 国产aⅴ精品一区二区三区波| 草草在线视频免费看| 最新美女视频免费是黄的| 国产一区二区亚洲精品在线观看| 淫妇啪啪啪对白视频| 床上黄色一级片| 久久精品亚洲精品国产色婷小说| 淫秽高清视频在线观看| 伊人久久精品亚洲午夜| 精品国内亚洲2022精品成人| 男人的好看免费观看在线视频| 国内揄拍国产精品人妻在线| 国产极品精品免费视频能看的| 法律面前人人平等表现在哪些方面| 国产91精品成人一区二区三区| 中文在线观看免费www的网站| 香蕉av资源在线| 国产探花在线观看一区二区| 制服丝袜大香蕉在线| 白带黄色成豆腐渣| 午夜精品久久久久久毛片777| 色哟哟哟哟哟哟| 美女 人体艺术 gogo| 免费看a级黄色片| 欧美乱妇无乱码| 久久欧美精品欧美久久欧美| 久久中文看片网| 亚洲国产中文字幕在线视频| 精品久久久久久久毛片微露脸| 特级一级黄色大片| 国模一区二区三区四区视频| 久久久久久人人人人人| 国产精品亚洲av一区麻豆| 日韩欧美一区二区三区在线观看| 久久伊人香网站| 丰满人妻一区二区三区视频av | 久久久久国产精品人妻aⅴ院| 麻豆久久精品国产亚洲av| 免费在线观看亚洲国产| 日本 av在线| 99热精品在线国产| 日日干狠狠操夜夜爽| 亚洲中文字幕一区二区三区有码在线看| www.www免费av| 亚洲色图av天堂| 久9热在线精品视频| 色在线成人网| 亚洲欧美日韩高清在线视频| 免费大片18禁| 成人特级黄色片久久久久久久| 欧美日韩一级在线毛片| 亚洲精品一区av在线观看| 国产精品永久免费网站| 久久久久久大精品| 白带黄色成豆腐渣| 非洲黑人性xxxx精品又粗又长| 亚洲欧美日韩无卡精品| 亚洲人成网站高清观看| 观看美女的网站| 夜夜看夜夜爽夜夜摸| 国产97色在线日韩免费| 国产91精品成人一区二区三区| 九色国产91popny在线| 91在线精品国自产拍蜜月 | 久久国产精品影院| 国产精品嫩草影院av在线观看 | www日本黄色视频网| 看黄色毛片网站| 国产精品久久视频播放| 久久人人精品亚洲av| 成人欧美大片| 男女视频在线观看网站免费| 91字幕亚洲| 午夜激情福利司机影院| 亚洲精品一区av在线观看| 中文字幕人妻熟人妻熟丝袜美 | 久久天躁狠狠躁夜夜2o2o| 亚洲 国产 在线| 中文字幕高清在线视频| 一进一出抽搐动态| 成年女人永久免费观看视频| 亚洲 国产 在线| netflix在线观看网站| 欧美黄色淫秽网站| а√天堂www在线а√下载| 色噜噜av男人的天堂激情| 国产精品一区二区三区四区免费观看 | 1000部很黄的大片| 天天一区二区日本电影三级| 99久久九九国产精品国产免费| 好看av亚洲va欧美ⅴa在| 欧美一级毛片孕妇| 色精品久久人妻99蜜桃| 亚洲18禁久久av| 真实男女啪啪啪动态图| 亚洲精品456在线播放app | 熟妇人妻久久中文字幕3abv| 少妇的丰满在线观看| 91av网一区二区| 国产成人a区在线观看| 最后的刺客免费高清国语| 久久精品影院6| 2021天堂中文幕一二区在线观| 91av网一区二区| 丝袜美腿在线中文| 亚洲人成网站在线播| 少妇高潮的动态图| 午夜福利欧美成人| 日本免费a在线| 精品日产1卡2卡| 亚洲国产精品合色在线| 国产真人三级小视频在线观看| 国产蜜桃级精品一区二区三区| 国产精品久久久久久精品电影| 国产蜜桃级精品一区二区三区| 乱人视频在线观看| 国产真实乱freesex| 国内精品久久久久精免费| 国产精品亚洲一级av第二区| 一区福利在线观看| 亚洲精品色激情综合| a在线观看视频网站| 成人18禁在线播放| 变态另类成人亚洲欧美熟女| 高清日韩中文字幕在线| 国产亚洲av嫩草精品影院| 久久人妻av系列| 亚洲国产高清在线一区二区三| 欧美日韩精品网址| 男人舔女人下体高潮全视频| 国产亚洲av嫩草精品影院| 一级毛片高清免费大全| 日韩欧美国产一区二区入口| or卡值多少钱| 少妇人妻精品综合一区二区 | 欧美日本亚洲视频在线播放| 99精品在免费线老司机午夜| ponron亚洲| 国产真实伦视频高清在线观看 | 欧美xxxx黑人xx丫x性爽| 97超级碰碰碰精品色视频在线观看| 欧美丝袜亚洲另类 | 午夜福利18| 久久精品综合一区二区三区| 午夜精品久久久久久毛片777| 欧美黄色淫秽网站| 亚洲av成人精品一区久久| 免费av不卡在线播放| 久久精品国产亚洲av香蕉五月| 九色成人免费人妻av| 性色avwww在线观看| 国产精品永久免费网站| 精品不卡国产一区二区三区| 精品乱码久久久久久99久播| 国产精品 国内视频| av女优亚洲男人天堂| 国内久久婷婷六月综合欲色啪| 99国产精品一区二区蜜桃av| 午夜激情福利司机影院| 可以在线观看毛片的网站| 欧美最新免费一区二区三区 | 小说图片视频综合网站| 久久中文看片网| 国产精品久久久久久人妻精品电影| 熟女人妻精品中文字幕| 看黄色毛片网站| 无遮挡黄片免费观看| 欧美zozozo另类| 亚洲人成网站在线播| 变态另类成人亚洲欧美熟女| 他把我摸到了高潮在线观看| 欧美xxxx黑人xx丫x性爽| 看黄色毛片网站| 国产免费av片在线观看野外av| 俄罗斯特黄特色一大片| 欧美成人免费av一区二区三区| 免费看光身美女| 成年女人永久免费观看视频| 亚洲人成网站高清观看| 国产精品免费一区二区三区在线| 热99re8久久精品国产| 九九在线视频观看精品| 少妇裸体淫交视频免费看高清| 日本黄色片子视频| 亚洲 国产 在线| 美女cb高潮喷水在线观看| 色老头精品视频在线观看| 丰满乱子伦码专区| 国产高清videossex| 久久人人精品亚洲av| 操出白浆在线播放| 国产精品综合久久久久久久免费| a级毛片a级免费在线| 亚洲av不卡在线观看| 人人妻,人人澡人人爽秒播| 两个人视频免费观看高清| 可以在线观看毛片的网站| 国产一区二区在线观看日韩 | 国产视频一区二区在线看| 日日干狠狠操夜夜爽| 9191精品国产免费久久| 噜噜噜噜噜久久久久久91| 欧美最黄视频在线播放免费| 亚洲精品美女久久久久99蜜臀| 精品日产1卡2卡| 午夜免费成人在线视频| 亚洲人成伊人成综合网2020| 亚洲av成人不卡在线观看播放网| 国产亚洲av嫩草精品影院| 黄片大片在线免费观看| 小说图片视频综合网站| 久久久久国内视频| 国产精品一区二区三区四区免费观看 | 首页视频小说图片口味搜索| 久久精品人妻少妇| 国产精华一区二区三区| 搡老熟女国产l中国老女人| 男女床上黄色一级片免费看| 国产成人av教育| 中文资源天堂在线| 亚洲内射少妇av| 国产在线精品亚洲第一网站| 国产精品一及| 国产色爽女视频免费观看| 久久久成人免费电影| 成年女人毛片免费观看观看9| 日本黄色视频三级网站网址| 美女cb高潮喷水在线观看| 亚洲色图av天堂| 成人午夜高清在线视频| 国产精品亚洲美女久久久| a级毛片a级免费在线| 日日夜夜操网爽| 免费av毛片视频| 日韩欧美在线二视频| eeuss影院久久| 国产中年淑女户外野战色| www日本在线高清视频| 成年女人永久免费观看视频| 成人一区二区视频在线观看| АⅤ资源中文在线天堂| 国产av一区在线观看免费| av欧美777| 亚洲av电影不卡..在线观看| 男女下面进入的视频免费午夜| 一级作爱视频免费观看| 又黄又粗又硬又大视频| 我要搜黄色片| 亚洲欧美日韩东京热| 欧美性感艳星| 两性午夜刺激爽爽歪歪视频在线观看| 九九热线精品视视频播放| 看片在线看免费视频| 国产黄a三级三级三级人| 国产高清三级在线| 免费高清视频大片| 可以在线观看毛片的网站| 久久精品影院6| 中文字幕久久专区| 国产亚洲欧美在线一区二区| 国产精品电影一区二区三区| 床上黄色一级片| 国产激情欧美一区二区| 90打野战视频偷拍视频| 99久久99久久久精品蜜桃| 国产精品爽爽va在线观看网站| 国产精品一区二区免费欧美| 亚洲18禁久久av| 精品一区二区三区av网在线观看| 搡女人真爽免费视频火全软件 | 精品电影一区二区在线| 中文字幕精品亚洲无线码一区| 国产极品精品免费视频能看的| 一区二区三区免费毛片| 日本成人三级电影网站| 欧美乱妇无乱码| 国产精品久久久久久久电影 | 国产99白浆流出| av在线天堂中文字幕| 脱女人内裤的视频| 国产蜜桃级精品一区二区三区| 99视频精品全部免费 在线| 亚洲,欧美精品.| 内地一区二区视频在线| 99国产极品粉嫩在线观看| 日韩高清综合在线| 国产精品99久久99久久久不卡| 综合色av麻豆| 精品一区二区三区av网在线观看| 亚洲真实伦在线观看| 国产高清有码在线观看视频| 国产综合懂色| 热99在线观看视频| 亚洲欧美激情综合另类| 国内精品美女久久久久久| 欧美zozozo另类| 9191精品国产免费久久| 哪里可以看免费的av片| 一卡2卡三卡四卡精品乱码亚洲| 日本成人三级电影网站| 91在线精品国自产拍蜜月 | 国产老妇女一区| 香蕉丝袜av| 啦啦啦韩国在线观看视频| 婷婷六月久久综合丁香| 国产成人av教育| 99视频精品全部免费 在线| 少妇裸体淫交视频免费看高清| 欧美大码av| 此物有八面人人有两片| 十八禁人妻一区二区| 免费看光身美女| 亚洲av日韩精品久久久久久密| 日韩欧美在线二视频| 2021天堂中文幕一二区在线观| 最后的刺客免费高清国语| 亚洲欧美日韩东京热| 亚洲无线在线观看| 国产成人a区在线观看| avwww免费| 国内精品久久久久久久电影| 两个人的视频大全免费| 嫁个100分男人电影在线观看| 国产成+人综合+亚洲专区| www.999成人在线观看| 欧美最黄视频在线播放免费| 99国产综合亚洲精品| 欧美精品啪啪一区二区三区| 最后的刺客免费高清国语| a级一级毛片免费在线观看| 乱人视频在线观看| 99久久九九国产精品国产免费| 精品免费久久久久久久清纯| 久久精品国产亚洲av涩爱 | 99久久综合精品五月天人人| 国产高清激情床上av| 级片在线观看| 国产三级黄色录像| 熟妇人妻久久中文字幕3abv| 母亲3免费完整高清在线观看| 给我免费播放毛片高清在线观看| 亚洲中文字幕日韩| 国产精品美女特级片免费视频播放器| 波多野结衣高清无吗| 国产日本99.免费观看| 搡老岳熟女国产| 欧美国产日韩亚洲一区| 88av欧美| 久久精品国产综合久久久| 午夜亚洲福利在线播放| 女同久久另类99精品国产91| 男人和女人高潮做爰伦理| 日韩精品青青久久久久久| 少妇的丰满在线观看| 久久婷婷人人爽人人干人人爱| 日韩欧美国产在线观看| 国产成人福利小说| 亚洲一区二区三区不卡视频| 色精品久久人妻99蜜桃| 每晚都被弄得嗷嗷叫到高潮| 老司机午夜十八禁免费视频| 欧美bdsm另类| 国产色爽女视频免费观看| 国产一区二区亚洲精品在线观看| 国产午夜精品论理片| 男女视频在线观看网站免费| 1000部很黄的大片| 女人被狂操c到高潮| 国产伦精品一区二区三区视频9 | 女人被狂操c到高潮| 午夜福利欧美成人| 夜夜躁狠狠躁天天躁| 嫩草影院精品99| 日韩国内少妇激情av| 亚洲精品久久国产高清桃花| 91久久精品电影网| 国产精品久久久久久久久免 | 精品久久久久久,| svipshipincom国产片| www.999成人在线观看| 欧美日本视频| 免费看美女性在线毛片视频| 成人高潮视频无遮挡免费网站| 国产精品自产拍在线观看55亚洲| 国产伦在线观看视频一区| 亚洲精品影视一区二区三区av| 精品福利观看| 午夜免费激情av| 悠悠久久av| 99久久精品国产亚洲精品| 久久欧美精品欧美久久欧美| 熟女少妇亚洲综合色aaa.| 国产成年人精品一区二区| 9191精品国产免费久久| 18禁美女被吸乳视频| 在线a可以看的网站| 国产成人aa在线观看| eeuss影院久久| 国产成人av激情在线播放| 俄罗斯特黄特色一大片| 小说图片视频综合网站| x7x7x7水蜜桃| www.色视频.com| 国产激情欧美一区二区| 亚洲欧美日韩卡通动漫| 悠悠久久av| 欧美一级毛片孕妇| 十八禁网站免费在线| 又黄又粗又硬又大视频| 国产亚洲av嫩草精品影院| 国产男靠女视频免费网站| 在线播放国产精品三级| 国产精品爽爽va在线观看网站| 国产熟女xx| 中国美女看黄片| 久久精品人妻少妇| 熟女少妇亚洲综合色aaa.| 波多野结衣高清作品| 老司机深夜福利视频在线观看| 久久天躁狠狠躁夜夜2o2o| 在线观看av片永久免费下载| 狂野欧美激情性xxxx| 美女高潮喷水抽搐中文字幕| 欧美乱码精品一区二区三区| 一本久久中文字幕| 村上凉子中文字幕在线| 欧美大码av| 俄罗斯特黄特色一大片| 日本黄色视频三级网站网址| 亚洲一区高清亚洲精品| 免费电影在线观看免费观看| 脱女人内裤的视频| 久久久久久久精品吃奶| 精品一区二区三区人妻视频| 女警被强在线播放| 人人妻,人人澡人人爽秒播| 最新在线观看一区二区三区| 亚洲精品一区av在线观看| 欧美3d第一页| 日韩欧美精品v在线| 人妻久久中文字幕网| 国产一区二区在线观看日韩 | 精品久久久久久久人妻蜜臀av| 亚洲精品粉嫩美女一区| 免费观看精品视频网站| 国产成人福利小说| 少妇的逼水好多| 免费大片18禁| 久久久久国产精品人妻aⅴ院| 一夜夜www| 又黄又爽又免费观看的视频| 亚洲国产精品成人综合色| 在线a可以看的网站| 欧美乱妇无乱码| 在线观看av片永久免费下载| 99久久精品国产亚洲精品| 在线视频色国产色| 成年免费大片在线观看| 3wmmmm亚洲av在线观看| 内地一区二区视频在线| 亚洲,欧美精品.| 可以在线观看毛片的网站| 精品久久久久久久毛片微露脸| 在线国产一区二区在线| 免费看美女性在线毛片视频| 国内精品一区二区在线观看| 老鸭窝网址在线观看| 亚洲精品在线美女| 午夜精品久久久久久毛片777| 免费看a级黄色片| 日本一本二区三区精品| 岛国在线免费视频观看| 伊人久久大香线蕉亚洲五| 高清在线国产一区| 国内毛片毛片毛片毛片毛片| 色哟哟哟哟哟哟| 亚洲国产中文字幕在线视频| 露出奶头的视频| 欧美三级亚洲精品| 色av中文字幕| a级毛片a级免费在线| 日韩中文字幕欧美一区二区| 女人被狂操c到高潮| 99在线人妻在线中文字幕| 一个人看的www免费观看视频| 欧美色视频一区免费| 欧美在线黄色| 国产精品电影一区二区三区| 中亚洲国语对白在线视频| 久久久久亚洲av毛片大全| 亚洲人成网站高清观看| 欧美在线一区亚洲| 婷婷精品国产亚洲av在线| 久久人妻av系列| 亚洲欧美日韩卡通动漫| 亚洲av成人不卡在线观看播放网| 国产单亲对白刺激| 久久久久久久久大av| 成人欧美大片| 国产免费av片在线观看野外av| 观看美女的网站| 国产精品国产高清国产av| 午夜精品久久久久久毛片777| 一进一出抽搐gif免费好疼| 舔av片在线| 婷婷亚洲欧美| 一个人免费在线观看的高清视频| 啦啦啦韩国在线观看视频| 免费看美女性在线毛片视频| 婷婷精品国产亚洲av| a在线观看视频网站| 国产精品久久久久久久电影 | 国产精品1区2区在线观看.| 亚洲人成电影免费在线| 欧美在线黄色| 成人18禁在线播放| 少妇丰满av| 脱女人内裤的视频| 久久中文看片网| 亚洲男人的天堂狠狠| 在线免费观看的www视频|