• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impact of incident direction on neutron-induced single-bit and multiple-cell upsets in 14 nm FinFET and 65 nm planar SRAMs

    2022-12-28 09:54:14ShaoHuaYang楊少華ZhanGangZhang張戰(zhàn)剛ZhiFengLei雷志鋒YunHuang黃云KaiXi習(xí)凱SongLinWang王松林TianJiaoLiang梁天驕TengTong童騰XiaoHuiLi李曉輝ChaoPeng彭超FuGenWu吳福根andBinLi李斌
    Chinese Physics B 2022年12期
    關(guān)鍵詞:黃云天驕

    Shao-Hua Yang(楊少華) Zhan-Gang Zhang(張戰(zhàn)剛) Zhi-Feng Lei(雷志鋒) Yun Huang(黃云)Kai Xi(習(xí)凱) Song-Lin Wang(王松林) Tian-Jiao Liang(梁天驕) Teng Tong(童騰)Xiao-Hui Li(李曉輝) Chao Peng(彭超) Fu-Gen Wu(吳福根) and Bin Li(李斌)

    1School of Physics and Optoeletronic Engineering,Guangdong University of Technology,Guangzhou 510006,China

    2Science and Technology on Reliability Physics and Application of Electronic Component Laboratory,China Electronic Product Reliability and Environmental Testing Research Institute,Guangzhou 510370,China

    3Institute of Microelectronics of Chinese Academy of Sciences,Beijing 100029,China

    4Institute of High Energy Physics,Chinese Academy of Sciences,Beijing 100049,China

    5Spallation Neutron Source Science Center,Dongguan 523803,China

    6School of Microelectronics,South China University of Technology,Guangzhou 510640,China

    Keywords: neutron,fin field-effect transistor(FinFET),single event upset(SEU),Monte–Carlo simulation

    1. Introduction

    Atmospheric neutron-induced single event effects (SEE)in avionics and key ground electronics are gaining increasing attention, due to the fact that the SEE performance of an integrated circuit (IC) becomes worse as the feature size shrinks.[1,2]Hence, the evaluation of real-time neutroninduced SEE sensitivity in the applied environments, especially for nanometric ICs,can be very important for the system reliability insurance.

    To measure the atmospheric radiation induced soft error rate(SER),accelerated testing can be conveniently performed by using the ground-based neutron sources.[3]While clear differences exist between neutrons from ground-based neutron sources and real atmosphere,such as incident direction,energy spectrum,etc.It can be predicted that single event upset(SEU)response is affected by the incident direction of neutron,since that upsets are produced by secondary particles generated by nuclear reactions between neutrons and their traversing materials. Consequently, understanding the impact of incident directions on SEE is critical in several aspects: (1)guiding the ground-based testing, and (2) selecting the “best incident direction”,which can be conveniently utilized to reduce the SER by the selection of board orientation during equipment setup.

    In the past, angular dependence of neutron-induced SEE was reported by several research groups.[4–8]In 2019, S.Abe[9]reported that the number of SEUs in 65 nm static random-access memory (SRAM) obtained by the board-side irradiation was approximately 20% to 30% smaller than that obtained by irradiation on the plastic package side, by using quasi-monoenergetic neutrons. Tibetan-Plateau based realtime testing[10]and accelerated testing of 65 nm quad data rate(QDR)SRAMs[11]were conducted to reveal the SEU characteristics and mechanisms in our previous publications. The 14 nm fin filed-effect transistor (FinFET) SRAMs were also irradiated by neutrons at normal incidence.[11]However, few publications focused on the impact of incident direction on neutron-induced SEE response in advanced FinFET technology.

    In this work,the impact of incident direction on neutroninduced single-bit upsets (SBU) and multiple-cell upsets(MCU)in 14 nm FinFET SRAM and 65 nm QDRII+SRAM is studied in a comparative way, by experiments at the BL09 terminal of China Spallation Neutron Source (CSNS) and Monte–Carlo simulations.

    2. Experimental setup

    2.1. Devices under test

    Parameters of the tested SRAM devices are showed in Table 1. Note that,the 14 nm FinFET SRAM is packaged inflip-chip ball grid array (BGA), with the substrate thinned to 60μm(designed for previous heavy-ion testing). The 65 nm SRAM is packaged in wire-bonded BGA,and the plastic package above the chip was not etched before irradiation.

    Table 1. Parameters of the tested SRAM devices.

    2.2. Experimental setup

    The experiment was conducted at the BL09 terminal of CSNS.The simulated neutron energy spectrum of BL09 at irradiation position is shown in Fig.1,which is obtained by simulation based on the actual setup. The beam flux during the experiments is fixed, with a total of 2.8×107n/(cm2·s). The flux of thermal neutrons (E<0.4 eV) is 2.7×106n/(cm2·s),and the flux of high energy neutrons (E> 10 MeV) is 1.1×105n/(cm2·s). During the irradiation, the thermal neutrons can be selected to be filtered,by inserting cadmium(Cd)film (~2 mm) into the beam. After passing through the Cd film,neutrons with energy below 0.4 eV are eliminated.While the energy spectrum in theE>10 MeV region is basically unchanged since Cd film has a cutoff energy of 0.4 eV.[3]Specifically,for the 14 nm FinFET SRAM,the thermal neutrons were not filtered during irradiation, since that the irradiated device under test(DUT)was sensitive to thermal neutrons. While for the 65 nm QDRII+SRAM,the thermal neutrons were filtered,since that the irradiated DUT was immune to thermal neutrons,as reported in our previous publication.[11]

    Fig. 1. The simulated neutron energy spectrum at irradiation position of the BL09 terminal of CSNS.

    Figure 2 illustrates three kinds of incident directions during neutron irradiation: front, back and side. Additionally,Table 2 lists the layers that neutrons penetrate before reaching the sensitive volume(SV),for different incident directions.Note that, due to the different package of the two DUTs (see Table 1), the layers that neutrons penetrate before reaching the SV can be quite different, even under the same incident direction. For the 14 nm FinFET SRAM, the BGA package includes solder ball (with a diameter of~0.8 mm), substrate (~0.7 mm), and small solder ball (with a diameter of~0.08 mm), along the direction of neutron incidence. The detailed metallization struture of the 14 nm FinFET SRAM is shown in Fig. 10(a). Eight layers of metal wiring can be seen,and the majority of the metal materials are copper.Tungsten plugs are found between M0 and the active silicon layer.The total depth of the mentalizations is about 6.3μm. For the 65 nm QDRII+SRAM,the BGA package includes solder ball(with a diameter of~0.9 mm)and substrate(~0.5 mm),following the direction of neutron incidence. Six layers of metallization are found,and the majority of the metal materials are copper. Tungsten plugs are found between M0 and the active silicon layer. The total depth of the mentalizations is about 7.1 μm. As examples, Figs. 3 and 4 show the pictures of the 14 nm FinFET SRAM and the 65 nm QDRII+SRAM under side direction irradiation,respectively.

    Fig.2. Three kinds of incident directions during neutron irradiation.

    Table 2. Layers that neutrons penetrate before reaching the SV,for different incident directions.

    Fig.3. The 14 nm FinFET SRAM under irradiation(side direction).

    Fig. 4. The 65 nm QDRII+SRAM under irradiation (side direction).Note that,the test board was designed also for high-altitude experiment and only the arrowed DUT of the 18 loaded devices was tested.

    Checkerboard pattern was written into the DUT before irradiation, and contents of the DUT were read and compared with the golden data periodically during the neutron bombardment. The detailed SEU information including the error time,address and data were reported. In addition, the device currents were monitored continuously and no single event latchup(SEL)was observed during all the tests. The ambient temperature was controlled at 25±5?C.

    3. Experimental results and analysis

    3.1. SEU cross sections

    Figure 5 shows the neutron-induced SEU cross sections in the 14 nm FinFET SRAM under different incident directions.Obviously,back incidence is the“worst case”,with SEU cross section 1.7–4.7 times higher than those of front and side incidences.The reason that side incidence exhibits the lowest SEU cross section is discussed here. In the 14 nm FinFET SRAM,neutron-induced electron–hole pairs are collected by both drift and diffusion processes. For side incidence,the generated secondary particles by high energy neutron tend to traverse the fin from the side. Hence,for most cases,the generated electron–hole pairs are collected by drift or diffusion process, depending on the location of the ion trajectory (in the fin or in the substrate). However,for front and back incidences,the trajectory of secondary particle tends to cross both the fin and the substrate. Electron–hole pairs can be collected by both drift and diffusion processes, resulting into higher SEU cross sections.

    Note that,the SEU cross section is calculated by counting the MCU as separate soft errors and using the total neutron flux of 2.8×107n/(cm2·s). It should be noted that the SEU cross sections include the contribution of thermal neutrons.

    Fig. 5. Neutron-induced SEU cross sections in the 14 nm FinFET SRAM under different incident directions.

    Fig. 6. Neutron-induced SEU cross sections in the 65 nm QDRII+SRAM under different incident directions.

    Figure 6 shows the neutron-induced SEU cross sections in the 65 nm QDRII+SRAM under different incident directions. Differently, front incidence is the “worst case”, with SEU cross section 1.7–1.8 times higher than those of back and side incidences. Note that, the SEU cross sections are calculated by using the high energy neutron(E>10 MeV) flux of 1.05×105n/(cm2·s). The reasons are that: (1) the 65 nm QDRII+SRAM is immune to thermal neutron, as reported in our previous publication,[11]and (2) high energy neutrons(E>10 MeV)are the main contribution of soft error rate, as specified in the JESD89A standard.[3]

    Comparing Figs.5 and 6,it seems that the worst incident direction for the 14 nm FinFET technology and the 65 nm planar technology is opposite. However, combining the above results with Table 2,it can be found that the worst incident direction corresponds to the case that neutrons traverse package and metallization before reaching the SV. In order to further reveal the underlying mechanisms, Monte–Carlo simulations are conducted,which are shown in Section 4.

    3.2. MCU characteristics

    MCU ratios of 14 nm FinFET SRAM and 65 nm QDRII+SRAM under different incident directions are shown in Figs.7 and 8, respectively. Obviously, most of the MCU events are double-bit upsets (i.e., MCU2). The largest MCU for the 14 nm FinFET SRAM involves 8 bits,while the largest MCU for the 65 nm QDRII+SRAM involves 4 bits. For MCU response,side incidence is the“worst case”. Here,“worst case”corresponds to the case with highest MCU ratio,because more MCU events mean more bit-flips, and more error correcting code(ECC)resource must be used to eliminate them.The phenomenon can be explained by that neutrons at side incidence are most likely to traverse and affect multiple SVs, since that majority of the secondary particles generated by the interactions between spallation neutrons and DUT are moving forward. Since that large MCU event is relatively rare,the probability of MCU≥4 under back incidence in Fig.7 is higher than that under side incidence,due to the poor statistics.

    Fig. 7. MCU ratios of the 14 nm FinFET SRAM under different incident directions.

    Fig.8. MCU ratios of the 65 nm QDRII+SRAM under different incident directions.

    4. Monte–Carlo simulations

    Aims of Monte–Carlo simulations of the neutron transport are investigating the characteristics of secondary ions in the device SV, including ion species, LET, range and making comparisons between different incident directions. This part mainly focuses on the research of 14 nm FinFET SRAM,since that Abe’s paper[9]can be referred to for the inner mechanisms of results of the 65 nm SRAM in the previous section.The main conclusions of Abe’s paper are that the atomic composition of the material placed in front of the memory chip has a considerable influence on the SER because production yields and angular distributions of secondary hydrogen (H)and helium(He)ions(the main causes of SEUs)depend on the composition. In particular, the existence of hydrides, such as plastic,considerably increases the SER because of the higher production yields of secondary H ions that are generated via elastic scattering of neutrons with hydrogen atoms.

    4.1. The 3D simulation model of DUT

    Simulation model of the 14 nm FinFET SRAM is built based on the reverse-technique result of DUT (see Fig. 9)and experimental setup. Reverse-technique processes include cross-section analysis and layer-grinding analysis. Crosssection analysis is used to obtain Fig. 9(a), by cutting the DUT and observing by scanning electron microscopy(SEM).Layer-grinding analysis is used to obtained Fig.9(b),by grinding the DUT to polysilicon layer and observing by SEM. In Fig.9(a),eight layers of metallization can be seen,and the majority of the metal materials are copper. Tungsten (W) plugs are found between M0 and the active silicon layer. On the top of the Fin,high-Kmetal gate(HKMG)exists. Material of the high-Kgate oxide is HfO2with a depth of 1.9 nm. Material of the metal gate is TiN with a depth of 4.6 nm. The total depth of the mentalizations is about 6.3μm.

    Table 3 shows the memory cell sizes and SV parameters of the 14 nm FinFET SRAM. The drain of the off-state Nchannel metal oxide semiconductor(NMOS)transistor is considered to be the SV of one memory cell. The depth of the SV is set as the fin height. Importantly,note that the LET threshold of the DUT is smaller than 0.5 MeV·cm2/mg, making it sensitive to proton direct-ionization effect.

    Fig.9. (a)Cross section and(b)polysilicon layer images of the 14 nm FinFET SRAM.

    Table 3. Memory cell sizes and SV parameters for the 14 nm FinFET SRAM.

    4.2. Neutron transport simulations

    Neutron transport process is simulated by the Geant4 toolkit.[12]Thex×yscale of the device model is set as scales of the SV,in order to improve the simulation efficiency. A total number of 109neutrons strike the surface of device model normally. Typical neutron energies are selected in the simulation, including 5 MeV, 100 MeV, 500 MeV, and 1 GeV.The reasons are that for the 14 nm FinFET SRAM,upsets are mainly induced by thermal neutrons and high energy neutrons.Considering the low critical charge of the device,5 MeV neutrons are also simulated. Thermal neutrons are not simulated because that thermal neutrons induce upsets by the products of the10B(n,α)7Li reaction. In this reaction,the alpha particle and the lithium(Li)nucleus are emitted in roughly opposite directions to conserve momentum.[13]The outgoing directions of the products exhibit random distribution. Thus,under different incident directions of thermal neutrons, characteristics of the reaction products in the device SV are basically the same.

    The characteristics of secondary ions in the device SV,including ion species, LET, and range under different incident directions are obtained. Note that, side incidence is not simulated in this paper and will be investigated in the future,because that under side incidence, neutrons traverse different depths of silicon before reaching the SVs of the DUT, which means that the situations for all the SVs are not same. Nevertheless,as can be seen in Table 2,front incidence is similar to side incidence for the 14 nm FinFET SRAM,and the simulation results can be referred to.

    5. Simulation results

    Figures 1 and 11 compare the secondary ion species in SV of the 14 nm FinFET SRAM induced by incident neutrons with various energies,for front incidence and back incidence,respectively. The impact of incident direction is obviously shown. The total yield of secondary ions for back incidence is clearly higher than that for front incidence, by about 6×.Note the log-scale ofY-axis in Figs.1 and 11,majority of the reaction products are n,p,α,Si,Al,etc.The p andαare capable of inducing soft errors in the 14 nm FinFET SRAM,with a critical charge of 0.05 fC (see Table 3). This explains the phenomenon in Fig.5 that neutron-induced SEU cross section in the 14 nm FinFET SRAM under back incidence is higher,since that neutrons at back incidence are capable of creating more“useful”secondary ions in the device SV,and thus more upsets are induced.

    Fig.10. Secondary ion species in the SV induced by incident neutrons with various energies(front incidence).

    Fig.11. Secondary ion species in the SV induced by incident neutrons with various energies(back incidence).

    It can also be observed that neutrons with higher energy are capable of creating more diverse secondary ion species,for both front and back incidences. Besides, for the front incidence, the heaviest secondary ion is Si. While for the back incidence, the heaviest secondary ion is W. Compared to the neutrons at front incidence, neutrons at back incidence create more various secondary ions in the SV,ranging from p to W.The inner reasons can be found in Table 2,which lists the layers that neutrons penetrate before reaching the SV of the 14 nm FinFET SRAM, for different incident directions. For the front incidence, the material that neutrons traverse before reaching the SV is Si substrate, while for the back incidence,the intermediates are more complicated and contain various materials with high-Zelements,such as W plugs and Hf in the high-Kgate oxide. It can be confirmed that secondary ions heavier than Si are induced by nuclear reactions between incident neutrons and the metallization&HKMG on the top of the fins. This explains the phenomenon in Fig. 7 that MCU ratio of the 14 nm FinFET SRAM under back incidence is higher than that under front incidence,since(1)the total yield of secondary ions for back incidence is clearly higher than that for front incidence,including both light and heavy secondary ions, and (2) light secondary ions with long range and heavy secondary ions with enough range are both capable of inducing MCU events.

    Figures 12 and 13 show the LET and range of secondary ions in the SV of the 14 nm FinFET SRAM induced by incident neutrons with various energies,for front incidence and back incidence,respectively. One symbol in the figure represents one secondary ion in the SV.It is obvious that neutrons with higher energy are capable of generating secondary ions with larger LET values, longer ranges, and thus more generated charges in the SV,with also higher probability.Moreover,clear differences can be seen between the front incidence and the back incidence.For the back incidence,the LET and range of secondary ions in the SV are showing wider distribution than that of the front incidence case,which is consistent with the previous experimental results.

    Fig.12.LET and range of secondary ions in the SV induced by incident neutrons with various energies(front incidence).

    Fig.13.LET and range of secondary ions in the SV induced by incident neutrons with various energies(back incidence).

    6. Implications for application

    In the previous sections,we find that for both technology nodes,the“worst direction”corresponds to the case that neutrons traverse package and metallization before reaching the SV of the DUT.The SEU cross section under the worst direction is 1.7–4.7 times higher than those under other incidences.While for the MCU sensitivity,side incidence is the worst direction,with the highest MCU ratio.

    This information can be conveniently utilized to reduce the SER by the selection of board orientation during equipment setup. Specially, for avionic or ground application, atmospheric neutrons are mainly flying from top to down. Thus,for most boards,placing in a reverse way(i.e.,with front side downward) seems to be a good choice since most of the ICs are not in flip-chip package. Moreover, upright setup of the board should be avoided,especially for MCU-sensitive ICs.

    7. Conclusions

    In this work,the impact of incident direction on neutroninduced SBUs and MCUs in 14 nm FinFET SRAM and 65 nm QDRII+SRAM is studied,by both irradiation experiment and Monte–Carlo simulation. It is found that,for both technology nodes,the“worst direction”corresponds to the case that neutrons traverse package and metallization before reaching the SV of the DUT.The SEU cross section under the worst direction is 1.7–4.7 times higher than those under other incidences.While for the MCU sensitivity,side incidence is the worst direction, with the highest MCU ratio. Further, Monte–Carlo simulations show that the presence of package and metallization results into high amount of diverse secondary ions in the device SV,and thus higher SEU and MCU cross sections. Majority of the reaction products are p,α,Si,and Al.

    It seems that side incidence of neutron is the“best direction”,but the MCUs should be paid special attention to.

    Acknowledgements

    Project supported by the Key-Area Research and Development Program of Guangdong Province, China (Grant No.2019B010145001),the National Natural Science Foundation of China (Grant Nos. 12075065 and 12175045), and the Applied Fundamental Research Project of Guangzhou City,China(Grant No.202002030299).

    猜你喜歡
    黃云天驕
    天津現(xiàn)代天驕農(nóng)業(yè)科技股份有限公司
    別董大
    天津現(xiàn)代天驕農(nóng)業(yè)科技股份有限公司
    社交牛人癥該怎么治
    意林彩版(2022年2期)2022-05-03 10:25:08
    長(zhǎng)沙市六藝天驕星城園學(xué)生作品展示
    我還差一票
    “平行線及其判定”檢測(cè)題
    競(jìng)寫
    黃云:一個(gè)學(xué)者型官員的墮落史
    新西部(2009年1期)2009-03-31 02:53:46
    被熟人套牢的區(qū)長(zhǎng)黃云
    五月开心婷婷网| 亚洲av.av天堂| 视频区图区小说| 99香蕉大伊视频| 日日撸夜夜添| 欧美另类一区| 91精品伊人久久大香线蕉| 一二三四中文在线观看免费高清| 卡戴珊不雅视频在线播放| 免费观看性生交大片5| 国精品久久久久久国模美| 久久国内精品自在自线图片| 国产乱来视频区| 国产精品久久久久久精品古装| 免费黄色在线免费观看| 国产日韩欧美亚洲二区| 美女中出高潮动态图| 成人午夜精彩视频在线观看| 伦理电影大哥的女人| 岛国毛片在线播放| 18禁观看日本| 性高湖久久久久久久久免费观看| 超碰97精品在线观看| 一边摸一边做爽爽视频免费| 日韩av免费高清视频| 一级毛片 在线播放| 最新中文字幕久久久久| 欧美日韩精品成人综合77777| 久久99一区二区三区| 亚洲av电影在线进入| 人人妻人人爽人人添夜夜欢视频| 少妇的逼水好多| 久久这里有精品视频免费| 美女午夜性视频免费| 日本91视频免费播放| 免费播放大片免费观看视频在线观看| 亚洲精品国产av蜜桃| 少妇 在线观看| 中文乱码字字幕精品一区二区三区| 亚洲精品国产一区二区精华液| 久久精品国产亚洲av高清一级| 韩国精品一区二区三区| 一二三四中文在线观看免费高清| 久久午夜综合久久蜜桃| 欧美精品国产亚洲| av福利片在线| 香蕉国产在线看| 男女边摸边吃奶| 久久精品国产亚洲av高清一级| 精品国产一区二区三区久久久樱花| 亚洲国产成人一精品久久久| 欧美国产精品一级二级三级| 99久久综合免费| 欧美精品亚洲一区二区| 亚洲国产精品国产精品| 黄色一级大片看看| 人妻系列 视频| 国产精品久久久久久久久免| 午夜激情久久久久久久| 韩国av在线不卡| 一级片'在线观看视频| 90打野战视频偷拍视频| 久热久热在线精品观看| 一级黄片播放器| 国产精品99久久99久久久不卡 | 啦啦啦啦在线视频资源| videossex国产| 搡老乐熟女国产| 国产激情久久老熟女| 爱豆传媒免费全集在线观看| videossex国产| 建设人人有责人人尽责人人享有的| 十八禁高潮呻吟视频| 国产不卡av网站在线观看| 国产av码专区亚洲av| 国产极品天堂在线| 免费高清在线观看视频在线观看| 中文精品一卡2卡3卡4更新| 亚洲,一卡二卡三卡| 亚洲国产色片| 免费黄频网站在线观看国产| 久久人妻熟女aⅴ| 国产精品人妻久久久影院| 亚洲av免费高清在线观看| 免费少妇av软件| 久久精品国产亚洲av高清一级| 欧美日韩亚洲国产一区二区在线观看 | 如何舔出高潮| 国产欧美亚洲国产| 边亲边吃奶的免费视频| 在线天堂最新版资源| 两性夫妻黄色片| 亚洲av.av天堂| 色视频在线一区二区三区| 欧美日韩精品网址| 久久国产精品男人的天堂亚洲| 久久鲁丝午夜福利片| 免费高清在线观看日韩| 精品国产一区二区久久| 国产亚洲最大av| 欧美bdsm另类| 2018国产大陆天天弄谢| 热re99久久国产66热| 下体分泌物呈黄色| 国产成人精品一,二区| 久久鲁丝午夜福利片| 久久久久久久久久久久大奶| 色吧在线观看| 久久精品国产综合久久久| 久久久精品区二区三区| 亚洲视频免费观看视频| 黄频高清免费视频| 99热网站在线观看| 天美传媒精品一区二区| 狂野欧美激情性bbbbbb| 欧美老熟妇乱子伦牲交| 天堂中文最新版在线下载| 日韩不卡一区二区三区视频在线| 亚洲情色 制服丝袜| 亚洲精品日本国产第一区| 自线自在国产av| 午夜福利,免费看| 亚洲在久久综合| 天天操日日干夜夜撸| 亚洲av成人精品一二三区| 成人18禁高潮啪啪吃奶动态图| 久久久久久久精品精品| 国产成人欧美| 国产精品二区激情视频| 一级,二级,三级黄色视频| 成人国产av品久久久| 欧美人与善性xxx| av女优亚洲男人天堂| 王馨瑶露胸无遮挡在线观看| 色视频在线一区二区三区| 精品第一国产精品| 亚洲色图综合在线观看| 久久 成人 亚洲| 色播在线永久视频| 精品久久久精品久久久| 9191精品国产免费久久| 99久国产av精品国产电影| 久久久久网色| 国产黄色视频一区二区在线观看| a 毛片基地| 亚洲五月色婷婷综合| 麻豆精品久久久久久蜜桃| 亚洲五月色婷婷综合| 狠狠婷婷综合久久久久久88av| 精品人妻一区二区三区麻豆| 亚洲少妇的诱惑av| 欧美在线黄色| 免费少妇av软件| 亚洲第一av免费看| 一区福利在线观看| 黄片小视频在线播放| 十八禁网站网址无遮挡| 欧美日本中文国产一区发布| 久久鲁丝午夜福利片| 叶爱在线成人免费视频播放| 中文天堂在线官网| 国产av码专区亚洲av| 久久精品国产亚洲av高清一级| 国产成人精品福利久久| 哪个播放器可以免费观看大片| 亚洲情色 制服丝袜| 久久久精品区二区三区| 黄片小视频在线播放| 国产日韩欧美视频二区| 亚洲,欧美精品.| a级毛片在线看网站| 午夜激情久久久久久久| 国产精品免费视频内射| 欧美97在线视频| 国产精品av久久久久免费| 欧美日韩精品成人综合77777| 看免费av毛片| 午夜精品国产一区二区电影| 国产色婷婷99| 国产有黄有色有爽视频| 亚洲av.av天堂| 亚洲欧美一区二区三区久久| 国产日韩欧美亚洲二区| 免费观看在线日韩| 爱豆传媒免费全集在线观看| 高清欧美精品videossex| 亚洲av在线观看美女高潮| 亚洲精品美女久久久久99蜜臀 | 成人国语在线视频| 啦啦啦在线免费观看视频4| 丝袜喷水一区| 电影成人av| 国产亚洲av片在线观看秒播厂| 国产成人精品在线电影| 中国国产av一级| 97在线人人人人妻| 亚洲美女黄色视频免费看| 精品国产国语对白av| 午夜免费观看性视频| 日本色播在线视频| 欧美人与性动交α欧美软件| 尾随美女入室| 99热网站在线观看| 18禁动态无遮挡网站| 亚洲欧美精品自产自拍| 久久97久久精品| 久久国产精品男人的天堂亚洲| 如日韩欧美国产精品一区二区三区| 人妻人人澡人人爽人人| 大香蕉久久网| 9色porny在线观看| 亚洲三级黄色毛片| 99香蕉大伊视频| 亚洲精品日本国产第一区| 欧美日本中文国产一区发布| 搡老乐熟女国产| 精品亚洲成a人片在线观看| 男女啪啪激烈高潮av片| 一区二区三区乱码不卡18| 国产又色又爽无遮挡免| av又黄又爽大尺度在线免费看| 亚洲av综合色区一区| 你懂的网址亚洲精品在线观看| 在线观看国产h片| 97在线人人人人妻| 精品国产乱码久久久久久小说| 国产精品久久久久久精品电影小说| 岛国毛片在线播放| 制服人妻中文乱码| 男人添女人高潮全过程视频| 国产熟女午夜一区二区三区| 五月天丁香电影| 日韩,欧美,国产一区二区三区| 亚洲av福利一区| 亚洲三区欧美一区| 在线观看www视频免费| 国产一区亚洲一区在线观看| 日韩av免费高清视频| 丰满少妇做爰视频| 亚洲欧美精品综合一区二区三区 | 亚洲婷婷狠狠爱综合网| 国产欧美日韩一区二区三区在线| 九草在线视频观看| 国产精品无大码| 中国国产av一级| 国产一级毛片在线| 久久久久精品人妻al黑| 人人妻人人澡人人看| av卡一久久| 日日啪夜夜爽| 美女脱内裤让男人舔精品视频| 国产一区亚洲一区在线观看| 久久久久精品性色| 另类亚洲欧美激情| 两性夫妻黄色片| 亚洲,一卡二卡三卡| 亚洲av在线观看美女高潮| 亚洲精品,欧美精品| 成年人午夜在线观看视频| 成年人免费黄色播放视频| 97在线视频观看| av线在线观看网站| 超色免费av| 天美传媒精品一区二区| 免费日韩欧美在线观看| 精品一区二区免费观看| 亚洲av福利一区| 国产精品熟女久久久久浪| 亚洲欧美色中文字幕在线| 高清黄色对白视频在线免费看| 高清av免费在线| 777久久人妻少妇嫩草av网站| 九草在线视频观看| 亚洲综合色惰| 日韩免费高清中文字幕av| 亚洲av在线观看美女高潮| 日本免费在线观看一区| 精品国产乱码久久久久久小说| 丰满少妇做爰视频| 精品国产一区二区三区四区第35| 五月开心婷婷网| 精品一区二区免费观看| 在现免费观看毛片| 亚洲,欧美精品.| 又大又黄又爽视频免费| 天天躁日日躁夜夜躁夜夜| 一区福利在线观看| 街头女战士在线观看网站| 免费观看无遮挡的男女| 亚洲av在线观看美女高潮| 天天操日日干夜夜撸| av电影中文网址| 伦理电影大哥的女人| 久久人人爽av亚洲精品天堂| 亚洲视频免费观看视频| 国产亚洲最大av| 一级爰片在线观看| 日韩av不卡免费在线播放| 亚洲欧洲精品一区二区精品久久久 | 亚洲美女搞黄在线观看| 国产熟女欧美一区二区| 亚洲欧洲精品一区二区精品久久久 | 色哟哟·www| 亚洲三区欧美一区| 老司机影院毛片| 色哟哟·www| 女的被弄到高潮叫床怎么办| 性高湖久久久久久久久免费观看| 免费在线观看黄色视频的| 王馨瑶露胸无遮挡在线观看| 少妇精品久久久久久久| freevideosex欧美| 国产免费视频播放在线视频| 丝袜喷水一区| 伊人亚洲综合成人网| 黄片播放在线免费| 亚洲图色成人| 亚洲av日韩在线播放| 91久久精品国产一区二区三区| 建设人人有责人人尽责人人享有的| 久久女婷五月综合色啪小说| 国产成人免费无遮挡视频| 亚洲成av片中文字幕在线观看 | 久久久久视频综合| 欧美精品人与动牲交sv欧美| 汤姆久久久久久久影院中文字幕| 丰满乱子伦码专区| 国语对白做爰xxxⅹ性视频网站| 久久精品夜色国产| 巨乳人妻的诱惑在线观看| 91aial.com中文字幕在线观看| 国产在视频线精品| 80岁老熟妇乱子伦牲交| av免费观看日本| 一本大道久久a久久精品| 国产精品二区激情视频| 久久久久视频综合| 青春草国产在线视频| 欧美日本中文国产一区发布| 少妇人妻 视频| 久久国内精品自在自线图片| 男女无遮挡免费网站观看| 1024视频免费在线观看| www.精华液| 91国产中文字幕| 亚洲av福利一区| 国产成人aa在线观看| 人妻一区二区av| 久久久国产一区二区| 久久精品国产a三级三级三级| 在线观看免费日韩欧美大片| 日本欧美国产在线视频| 老汉色av国产亚洲站长工具| 欧美精品国产亚洲| 女人被躁到高潮嗷嗷叫费观| 人成视频在线观看免费观看| 国精品久久久久久国模美| 建设人人有责人人尽责人人享有的| 性高湖久久久久久久久免费观看| 欧美精品国产亚洲| 91午夜精品亚洲一区二区三区| 国产极品天堂在线| 国产精品三级大全| 黄色 视频免费看| 电影成人av| 大片免费播放器 马上看| 18禁国产床啪视频网站| 高清视频免费观看一区二区| 精品亚洲成国产av| 十八禁网站网址无遮挡| 一本色道久久久久久精品综合| 麻豆精品久久久久久蜜桃| 中文字幕另类日韩欧美亚洲嫩草| 亚洲情色 制服丝袜| 纯流量卡能插随身wifi吗| 美女中出高潮动态图| 2022亚洲国产成人精品| 一本—道久久a久久精品蜜桃钙片| 国产免费视频播放在线视频| 亚洲精品久久成人aⅴ小说| av福利片在线| 日韩 亚洲 欧美在线| 性高湖久久久久久久久免费观看| 大片电影免费在线观看免费| 欧美成人精品欧美一级黄| 国产成人精品久久二区二区91 | 国产黄频视频在线观看| 最近手机中文字幕大全| 深夜精品福利| 777米奇影视久久| 妹子高潮喷水视频| 亚洲精品aⅴ在线观看| 好男人视频免费观看在线| 考比视频在线观看| 亚洲国产精品一区三区| 亚洲在久久综合| av国产精品久久久久影院| 亚洲,欧美精品.| 日本av手机在线免费观看| 国产午夜精品一二区理论片| 国产日韩一区二区三区精品不卡| 中文字幕人妻丝袜一区二区 | 9热在线视频观看99| 精品福利永久在线观看| 国产成人aa在线观看| 亚洲激情五月婷婷啪啪| 激情视频va一区二区三区| 黄片无遮挡物在线观看| 如何舔出高潮| 亚洲av.av天堂| 国产日韩欧美在线精品| 国产亚洲午夜精品一区二区久久| 国产不卡av网站在线观看| 人人澡人人妻人| 精品人妻熟女毛片av久久网站| 啦啦啦中文免费视频观看日本| 看免费成人av毛片| av卡一久久| 一级毛片黄色毛片免费观看视频| 热99国产精品久久久久久7| 90打野战视频偷拍视频| 我要看黄色一级片免费的| 交换朋友夫妻互换小说| 国产日韩欧美视频二区| 欧美bdsm另类| 一个人免费看片子| 精品一区在线观看国产| 免费少妇av软件| 黑人猛操日本美女一级片| 久久av网站| 国精品久久久久久国模美| 亚洲成人av在线免费| 丰满少妇做爰视频| 国产成人精品久久久久久| 黄色视频在线播放观看不卡| 欧美最新免费一区二区三区| 国产亚洲午夜精品一区二区久久| 美女国产高潮福利片在线看| 精品午夜福利在线看| 老汉色∧v一级毛片| 女人久久www免费人成看片| 男女国产视频网站| 国产黄色视频一区二区在线观看| 一区二区日韩欧美中文字幕| 午夜激情久久久久久久| 一级爰片在线观看| av免费在线看不卡| 久久精品aⅴ一区二区三区四区 | 国产精品 欧美亚洲| 男人添女人高潮全过程视频| 久久久久视频综合| 亚洲欧美色中文字幕在线| 女人精品久久久久毛片| 乱人伦中国视频| 搡女人真爽免费视频火全软件| 丝瓜视频免费看黄片| 欧美日韩一级在线毛片| 久久精品久久久久久久性| 亚洲精品视频女| 欧美日韩av久久| 国产成人精品无人区| 欧美人与性动交α欧美软件| 亚洲成色77777| 国产人伦9x9x在线观看 | 亚洲国产欧美在线一区| 国产又爽黄色视频| 在线观看三级黄色| 美女中出高潮动态图| 国产男人的电影天堂91| 一边亲一边摸免费视频| 午夜激情av网站| 日本免费在线观看一区| 啦啦啦在线免费观看视频4| 中文字幕人妻丝袜一区二区 | 高清不卡的av网站| 国产精品不卡视频一区二区| √禁漫天堂资源中文www| 欧美精品高潮呻吟av久久| 搡女人真爽免费视频火全软件| 亚洲精品在线美女| 国产黄色免费在线视频| 水蜜桃什么品种好| 中文天堂在线官网| 亚洲四区av| 亚洲第一区二区三区不卡| 一本大道久久a久久精品| 亚洲中文av在线| 国精品久久久久久国模美| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 欧美日韩亚洲国产一区二区在线观看 | 老司机亚洲免费影院| 在线天堂最新版资源| 美女福利国产在线| 国产探花极品一区二区| 久久ye,这里只有精品| 一区二区日韩欧美中文字幕| 777米奇影视久久| av在线app专区| 69精品国产乱码久久久| 国产无遮挡羞羞视频在线观看| 久久99蜜桃精品久久| 另类精品久久| av网站免费在线观看视频| 美女国产高潮福利片在线看| 你懂的网址亚洲精品在线观看| 亚洲国产最新在线播放| 成年人免费黄色播放视频| 亚洲欧洲日产国产| 99久久综合免费| 欧美+日韩+精品| 国产亚洲最大av| 久久这里有精品视频免费| 少妇的丰满在线观看| 18禁观看日本| 日韩不卡一区二区三区视频在线| 成年av动漫网址| 精品久久久久久电影网| 伊人久久大香线蕉亚洲五| 亚洲av成人精品一二三区| 精品99又大又爽又粗少妇毛片| 欧美日韩精品成人综合77777| 纯流量卡能插随身wifi吗| 最新中文字幕久久久久| av线在线观看网站| 亚洲av.av天堂| 天天影视国产精品| 有码 亚洲区| 亚洲视频免费观看视频| 成人影院久久| 欧美老熟妇乱子伦牲交| 在线观看美女被高潮喷水网站| 久久久久精品人妻al黑| 黄色毛片三级朝国网站| 色94色欧美一区二区| 美国免费a级毛片| 欧美激情高清一区二区三区 | 欧美日韩国产mv在线观看视频| 最近中文字幕2019免费版| 中文字幕精品免费在线观看视频| 欧美精品一区二区免费开放| 国产精品久久久av美女十八| 青春草亚洲视频在线观看| 色网站视频免费| 一区二区三区激情视频| 国产97色在线日韩免费| 99国产精品免费福利视频| 老司机亚洲免费影院| 日韩中字成人| 精品亚洲成国产av| 国产高清国产精品国产三级| 美女高潮到喷水免费观看| 日韩 亚洲 欧美在线| 一区二区av电影网| 亚洲精品一二三| av国产久精品久网站免费入址| 国产精品国产三级专区第一集| 国产精品久久久久久久久免| 国产激情久久老熟女| 国产在线免费精品| 少妇人妻精品综合一区二区| 亚洲欧洲国产日韩| 亚洲国产看品久久| 日韩三级伦理在线观看| 精品少妇黑人巨大在线播放| 亚洲欧美中文字幕日韩二区| 精品一区二区三区四区五区乱码 | 下体分泌物呈黄色| 亚洲美女视频黄频| 久久亚洲国产成人精品v| 免费在线观看视频国产中文字幕亚洲 | 亚洲精品国产av成人精品| 制服诱惑二区| 在线观看人妻少妇| 我的亚洲天堂| 成人亚洲欧美一区二区av| 侵犯人妻中文字幕一二三四区| 菩萨蛮人人尽说江南好唐韦庄| 蜜桃在线观看..| 一本久久精品| 中文字幕人妻熟女乱码| 久久毛片免费看一区二区三区| 久久精品亚洲av国产电影网| 老熟女久久久| 青青草视频在线视频观看| 国产女主播在线喷水免费视频网站| 超碰97精品在线观看| 亚洲综合色网址| 色94色欧美一区二区| 性色av一级| 一边亲一边摸免费视频| 夫妻性生交免费视频一级片| 啦啦啦啦在线视频资源| 国产激情久久老熟女| 欧美日韩综合久久久久久| 人妻系列 视频| 自拍欧美九色日韩亚洲蝌蚪91| 看十八女毛片水多多多| 天堂俺去俺来也www色官网| 午夜激情久久久久久久| 午夜福利在线免费观看网站| 欧美成人午夜精品| 啦啦啦在线观看免费高清www| 久久精品人人爽人人爽视色| 性色av一级| 有码 亚洲区| 在线天堂最新版资源| 中文字幕制服av| 成人18禁高潮啪啪吃奶动态图| 最近最新中文字幕大全免费视频 | 久久久精品区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 丰满迷人的少妇在线观看| 国产福利在线免费观看视频| 亚洲国产精品国产精品| 久久99热这里只频精品6学生|