*高薔 畢文岳
(1.山東理工大學(xué)分析測(cè)試中心 山東 255000 2.山東嘉岳新材料有限公司 山東 255000)
表面張力是冶金熔渣重要的物理化學(xué)性質(zhì)之一。煉鋼過程中的爐渣泡沫化現(xiàn)象、連鑄過程中保護(hù)渣卷渣、鋼渣在結(jié)晶器彎月面處發(fā)生界面化學(xué)反應(yīng)、保護(hù)渣吸收鋼中上浮的非金屬夾雜物等冶金現(xiàn)象與熔渣的表面張力性能密切相關(guān)[1-3]。因此,熔渣表面張力的測(cè)量和預(yù)測(cè)對(duì)于考察熔渣表面張力的演變行為、改善熔渣冶金性能具有重要意義。目前,關(guān)于高溫冶金熔渣表面張力的預(yù)測(cè)主要是依據(jù)Butler方程建立熔渣表面張力計(jì)算模型[4-7]。Arutyunyan等[6]和Nakamoto等[7]依據(jù)Butler方程建立了熔渣表面張力熱力學(xué)計(jì)算模型,通過此模型估算了CaO-Al2O3、CaO-SiO2-Na2O、CaO-SiO2-Al2O3和CaO-SiO2-B2O3等簡(jiǎn)單的二元和三元熔渣表面張力,但是對(duì)于多元熔渣體系,由于多元熔渣結(jié)構(gòu)復(fù)雜,熔體中各種離子的存在形式以及分布函數(shù)尚不清晰,造成在模型計(jì)算的過程中缺乏一些重要的參數(shù)。因此,表面張力計(jì)算模型在實(shí)際冶金熔渣體系中受到一定限制,而對(duì)于多元熔渣表面張力的數(shù)據(jù)獲取往往采用實(shí)驗(yàn)測(cè)定的方法。
實(shí)驗(yàn)測(cè)定液體表面張力的方法主要有毛細(xì)管上升法、差分最大氣泡壓力法、Wilhelmy盤法、懸滴法、滴體積法、拉筒法和靜滴法等[8-11]。其中,毛細(xì)管上升法、懸滴法和Wilhelmy盤法適用于中低溫液體表面張力的測(cè)定;差分最大氣泡壓力法和滴體積法操作過程中對(duì)實(shí)驗(yàn)設(shè)備要求苛刻,在高溫下不易對(duì)熔渣表面張力進(jìn)行測(cè)定;拉筒法和靜滴法均是測(cè)定高溫熔體表面張力較為適用的方法,但由于高溫下冶金熔渣的組成以及成分性質(zhì)不同,使得高溫熔渣表面張力的測(cè)定變得復(fù)雜,因此需根據(jù)高溫熔渣的組成情況而定。
連鑄結(jié)晶器保護(hù)渣主要以CaO和SiO2為基料,包含堿金屬氧化物(Na2O/K2O)和氟化物(CaF2)等氧化物的混合物。保護(hù)渣是提高連鑄坯質(zhì)量的重要材料,這主要取決于保護(hù)渣的物理化學(xué)性能,其中表面張力會(huì)影響彎月面的形狀以及液態(tài)保護(hù)渣與凝固坯殼之間的附著力,并進(jìn)一步影響保護(hù)渣的流動(dòng)速率和渣膜厚度。因此,本文以連鑄結(jié)晶器保護(hù)渣為考察對(duì)象,分別運(yùn)用拉筒法和靜滴法測(cè)定保護(hù)渣表面張力,在測(cè)定過程中分析這兩種實(shí)驗(yàn)方法的應(yīng)用特點(diǎn),并考察保護(hù)渣表面張力隨溫度變化的演變行為,從而為提高熔渣表面張力數(shù)值精確度、控制熔渣冶金性能、解析復(fù)雜的冶金現(xiàn)象提供一些數(shù)據(jù)和測(cè)定技術(shù)支撐。
參照工業(yè)生產(chǎn)用結(jié)晶器保護(hù)渣的組成和成分,選擇CaOSiO2-Na2O-CaF2渣為實(shí)驗(yàn)渣,CaO/SiO2質(zhì)量分?jǐn)?shù)比為1.0,Na2O和CaF2的質(zhì)量分?jǐn)?shù)分別為15%和20%,如表1所示。采用分析純?cè)噭〤aO、SiO2、Na2CO3和CaF2配制實(shí)驗(yàn)樣品,其中Na2O的用量由Na2CO3折算而成。實(shí)驗(yàn)前,將CaO、SiO2、Na2CO3和CaF2試劑在800℃下焙燒2h,以除去水分及其他雜質(zhì)。
表1 CaO-SiO2-Na2O-CaF2熔渣組成(質(zhì)量分?jǐn)?shù)/%)
拉筒法是利用一個(gè)垂直中空的圓筒帶起液體所產(chǎn)生的拉力與液體表面張力的平衡關(guān)系來計(jì)算表面張力[12],如式(1)所示:
式中,σ—熔渣表面張力;mmax—拉起液體的最大質(zhì)量,在液體即將脫離圓筒的瞬間,即液體對(duì)拉筒的拉力與表面張力平衡時(shí),拉力達(dá)到最大;g—重力加速度;R—圓筒的半徑;C—校正參數(shù),在測(cè)量熔體表面張力之前,在室溫中需通過測(cè)量已知表面張力數(shù)值的純物質(zhì)(如純凈水)來獲取校正參數(shù)值,且要多次測(cè)量直到參數(shù)值達(dá)到穩(wěn)定。在高溫下測(cè)定熔體表面張力,需選擇材質(zhì)合適的圓筒。圓筒所采用的材質(zhì)熔點(diǎn)必須高于熔體;為了提高實(shí)驗(yàn)測(cè)量的精確度,需選擇低熱膨脹性的圓筒,保證在高溫下圓筒不發(fā)生變形;圓筒與熔體之間要有一定的潤(rùn)濕性,保證在拉筒的過程中能夠帶起熔體,同時(shí)還要避免熔體與圓筒之間發(fā)生化學(xué)反應(yīng)。在本實(shí)驗(yàn)中,圓筒的材質(zhì)為金屬鉬,為了降低鉬的熱膨脹性,采用質(zhì)量分?jǐn)?shù)為99.999%的高純鉬。另外,圓筒的尺寸也是影響熔體表面張力數(shù)值精確度的重要因素之一。采用尺寸過大的圓筒,會(huì)延長(zhǎng)達(dá)到圓筒與熔體熱平衡的時(shí)間;采用尺寸過小的圓筒,在高溫和通氣的條件下易受到熱氣流的影響。在本實(shí)驗(yàn)中,圓筒的半徑為6.5mm。
采用拉筒法測(cè)定熔渣表面張力需借助高溫熔體物性綜合測(cè)定儀。該設(shè)備主要包括高溫爐、電子天平(精度為0.001g)和溫度控制及數(shù)據(jù)采集系統(tǒng)。熔渣表面張力測(cè)定過程如下:將分析純?cè)噭〤aO、SiO2、Na2CO3和CaF2按照成分配比分別進(jìn)行稱重并充分混合均勻;將混合試劑放入高純石墨坩堝(質(zhì)量分?jǐn)?shù)為99.99%);將高純石墨坩堝放入到高溫爐的恒溫區(qū)內(nèi);常溫下多次測(cè)量純凈水的表面張力值,數(shù)值達(dá)到穩(wěn)定后,將數(shù)值代入到式(1)中獲取校正參數(shù)值C;通入保護(hù)性氣體高純氬氣(防止石墨坩堝和石墨套筒被氧化);以5℃·min-1的升溫速率進(jìn)行升溫,升至設(shè)定溫度后保溫1h;待渣樣充分熔化后,放入一個(gè)垂直中空的鉬圓筒,將鉬圓筒與熔渣液面水平接觸,60s后將拉筒平穩(wěn)且緩慢地拉離熔渣表面;讀取帶起液體的重量最大值,并根據(jù)式(1)計(jì)算熔渣的表面張力。熔渣實(shí)驗(yàn)結(jié)果如圖1所示。
靜滴法是根據(jù)在水平墊片上自然形成的液滴形狀(如圖2所示)以及Young-Laplace方程來計(jì)算表面張力[13],式(2)即為靜滴法根據(jù)液滴外形計(jì)算表面張力的基本方程:
式中,ρl,ρg—液相和氣相的密度;z—以液滴頂點(diǎn)O為原點(diǎn)時(shí)液滴表面上任意一點(diǎn)Q的垂直坐標(biāo);x—以O(shè)點(diǎn)為原點(diǎn)的液滴表面上Q點(diǎn)的水平坐標(biāo);R1—液滴曲面Q點(diǎn)處的曲率半徑;R0—液滴頂點(diǎn)O處的曲率半徑;φ—Q點(diǎn)處的曲率半徑與z坐標(biāo)軸之間的夾角。
運(yùn)用靜滴法的基本方程獲取高溫熔體表面張力的過程如下:通過高溫實(shí)驗(yàn)獲取熔體液滴輪廓的幾何圖形;利用圖像處理技術(shù)將高溫實(shí)驗(yàn)獲取的液滴輪廓圖形進(jìn)行處理和提取,如圖3(a)所示,得到一組離散的實(shí)驗(yàn)數(shù)據(jù);依據(jù)靜滴法基本方程式(2),利用提取的液滴輪廓圖形實(shí)驗(yàn)數(shù)據(jù)建立一個(gè)連續(xù)的液滴邊緣輪廓曲線函數(shù);采用曲線擬合方法使得曲線方程能夠在最大程度上與實(shí)驗(yàn)數(shù)據(jù)相吻合[14],獲得一條最接近實(shí)驗(yàn)數(shù)據(jù)的理想曲線,如圖3(b)所示,并通過此理想曲線方程求得表面張力值。
在采用靜滴法測(cè)定表面張力前,需制備預(yù)熔渣。所需試劑同上節(jié)中拉筒法測(cè)定表面張力實(shí)驗(yàn)一致,即分析純?cè)噭〤aO、SiO2、Na2CO3和CaF2。將稱量好的化學(xué)試劑放入高純石墨坩堝內(nèi),并放入高溫淬火爐恒溫區(qū)域中;操作溫度控制程序進(jìn)行升溫,為保證上節(jié)中拉筒法表面張力測(cè)定過程中保護(hù)渣成分與該實(shí)驗(yàn)所制備的保護(hù)渣成分一致,該實(shí)驗(yàn)升溫速率與拉筒法測(cè)定表面張力的升溫速率一致,即為5℃·min-1,升溫至設(shè)定溫度同樣保溫1h,使渣樣充分熔化;待實(shí)驗(yàn)渣完全熔化后,使渣樣迅速墜入冰水混合物中淬冷,干燥并研磨至74μm以下。
該實(shí)驗(yàn)需借助高溫熔體界面性質(zhì)測(cè)定儀,該測(cè)量?jī)x主要由液滴圖像拍攝系統(tǒng)(包含高速相機(jī),其安裝在高溫爐爐管的一端,以便觀察和拍攝熔體的整個(gè)熔化過程)、高溫爐和控溫系統(tǒng)(在高溫爐中剛玉爐管外部和內(nèi)部基板底下均安裝了B型熱電偶,其精度在±1℃)以及氣體凈化系統(tǒng)(防止熔體和基板被氧化)所組成。
實(shí)驗(yàn)渣表面張力測(cè)定的實(shí)驗(yàn)過程如下:將預(yù)熔渣壓成直徑4mm×高10mm的圓柱體;將圓柱體試樣放在高純石墨基板(質(zhì)量分?jǐn)?shù)為99.99%)上,然后將基板放在水平試樣支架上;在冷態(tài)下將試樣支架放入爐膛的恒溫區(qū)內(nèi);為了保持液滴形狀的規(guī)則性和對(duì)稱性,調(diào)整石墨基板的水平度,以保證其上沿表面在水平線上;封閉爐管;抽真空,待爐內(nèi)真空度在10~2Pa以下時(shí)向爐內(nèi)通入高純氬氣;以5℃·min-1升溫速率升至設(shè)定溫度然后保溫0.5h;在從試樣開始熔化至保溫時(shí)間結(jié)束整個(gè)過程中,采用高速相機(jī)對(duì)樣品輪廓的變化進(jìn)行拍攝,并對(duì)樣品輪廓圖片進(jìn)行圖片數(shù)據(jù)處理;運(yùn)用表面張力計(jì)算程序?qū)?shí)驗(yàn)渣表面張力進(jìn)行計(jì)算。熔渣實(shí)驗(yàn)結(jié)果如圖1所示。
在本實(shí)驗(yàn)中,對(duì)于CaO-SiO2-Na2O-CaF2渣,采用拉筒法和靜滴法分別測(cè)得的表面張力結(jié)果如圖1所示。從圖中可看出,無論采用靜滴法還是拉筒法,測(cè)定的熔渣表面張力數(shù)值均隨著溫度的升高而下降。熔渣表面張力隨溫度上升而下降這一變化趨勢(shì)在Vaisburd[15]、Oliveira[16]和Dudek[17]等對(duì)CaO-Al2O3-SiO2、CaO-Al2O3和精煉渣表面張力的研究中也有體現(xiàn)。根據(jù)愛因斯坦方程[18],如式(3)所示,升高溫度可使平均位移x-增加,即分子的無規(guī)則熱運(yùn)動(dòng)就越劇烈,致使分子間距離變大。分子間距離增大,分子間相互作用力隨之減小,進(jìn)而熔體表面張力減小[19-20]。
分別將拉筒法和靜滴法測(cè)得的結(jié)晶器保護(hù)渣表面張力數(shù)據(jù)進(jìn)行線性擬合可得:
另外,從圖1還可看出采用靜滴法測(cè)得的表面張力數(shù)值明顯高于拉筒法測(cè)得的表面張力數(shù)值。將預(yù)熔渣和靜滴法測(cè)定后的樣品分別進(jìn)行X-射線熒光光譜分析(XRF),結(jié)果如表2所示。從表中可看出,靜滴法測(cè)定后的樣品中Na2O和CaF2的含量明顯低于預(yù)熔渣。這是由于Na2O和CaF2均是易揮發(fā)成分,兩者生成的NaF(即反應(yīng)方程N(yùn)a2O+CaF2=CaO+2NaF)亦是易揮發(fā)成分[21],由此造成靜滴法測(cè)定保護(hù)渣表面張力過程中Na2O、CaF2和NaF的再次揮發(fā),熔渣化學(xué)成分的二次變化導(dǎo)致熔渣表面張力的變化。
熔體表面張力與熔渣結(jié)構(gòu)的聚合程度密切相關(guān)[22-23]。連鑄結(jié)晶器保護(hù)渣屬于硅酸鹽,硅酸鹽熔體中含有不同聚合程度的硅氧陰離子團(tuán)。熔渣結(jié)構(gòu)的聚合程度用符號(hào)“NBO/TSi”表示,其計(jì)算公式如式(4)所示。NBO/TSi值越小,說明熔體聚合程度越高。將預(yù)熔渣和靜滴法測(cè)定后的渣樣成分分別帶入到式(6)中,計(jì)算結(jié)果如表2所示。從表中可以看出,靜滴法測(cè)定后渣樣的NBO/TSi值小于預(yù)熔渣的NBO/TSi值,說明靜滴法測(cè)定后的渣樣熔體結(jié)構(gòu)聚合程度高于預(yù)熔渣熔體結(jié)構(gòu)聚合程度。這是由于F-能降低熔渣結(jié)構(gòu)的聚合程度,將高聚合程度的硅氧陰離子團(tuán)逐漸解聚成低聚合程度的硅氧陰離子,同時(shí)Na2O電解出O2-,O2-的出現(xiàn)亦可降低熔體的聚合程度,反應(yīng)式見(7)~(9):
表2 CaO-SiO2-Na2O-CaF2熔渣組成(質(zhì)量分?jǐn)?shù)/%)
從熔渣離子結(jié)構(gòu)理論分析認(rèn)為:Na2O和CaF2能降低保護(hù)渣熔體結(jié)構(gòu)的聚合程度,因此F-和Na+均是變網(wǎng)離子。Sukenaga等[24-25]認(rèn)為變網(wǎng)離子的靜電勢(shì)越大,熔渣表面張力越大。F-和Na+的靜電勢(shì)小于O2-的靜電勢(shì),靜電勢(shì)較小的F-和Na+被排斥到熔渣表面,使得熔渣單位表面上的質(zhì)點(diǎn)數(shù)增加,從而降低了熔渣的表面張力。因此在靜滴法測(cè)定表面張力的過程中,F(xiàn)-和Na+的二次揮發(fā),使得靜滴法測(cè)定后的渣樣表面張力明顯高于拉筒法測(cè)得的表面張力數(shù)值。
從實(shí)驗(yàn)操作上看,采用拉筒法獲取表面張力,不需要熔體密度值,不需要預(yù)熔實(shí)驗(yàn),但是在測(cè)定的過程中無法保證氣氛的無氧化,因此不宜用拉筒法測(cè)定易氧化熔體的表面張力。靜滴法雖所需試樣較少,不需用標(biāo)準(zhǔn)物質(zhì)校正,并且氣氛可控,但需保證預(yù)熔樣品成分穩(wěn)定。
本文參照工業(yè)生產(chǎn)用連鑄結(jié)晶器保護(hù)渣的組成和成分,選擇了CaO-SiO2-Na2O-CaF2渣(CaO/SiO2質(zhì)量分?jǐn)?shù)比為1.0,Na2O和CaF2的質(zhì)量分?jǐn)?shù)分別為15%和20%)為考察對(duì)象,分別采用拉筒法和靜滴法測(cè)定了1350℃、1370℃、1390℃和1410℃下CaO-SiO2-Na2O-CaF2保護(hù)渣的表面張力。實(shí)驗(yàn)結(jié)果發(fā)現(xiàn)拉筒法和靜滴法測(cè)定的熔渣表面張力隨溫度的演變行為一致,均隨著溫度的升高而下降;同一溫度下采用靜滴法測(cè)得的表面張力數(shù)值高于拉筒法測(cè)得的表面張力數(shù)值,這是由于CaO-SiO2-Na2O-CaF2渣中含有揮發(fā)成分Na2O和CaF2,靜滴法測(cè)定表面張力過程中Na2O和CaF2的二次揮發(fā)使得表面張力數(shù)值升高。