• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analytical model for Rayleigh–Taylor instability in conical target conduction region

    2022-10-26 09:46:48ZhongYuanZhu朱仲源YunXingLiu劉云星YingJunLi李英駿andJieZhang張杰
    Chinese Physics B 2022年10期
    關鍵詞:張杰

    Zhong-Yuan Zhu(朱仲源) Yun-Xing Liu(劉云星) Ying-Jun Li(李英駿) and Jie Zhang(張杰)

    1School of Science,China University of Mining and Technology,Beijing 100083,China

    2Double-cone Ignition(DCI)Joint Team,State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology,Beijing 100083,China

    3Double-cone Ignition(DCI)Joint Team,Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    Keywords: double-cone ignition,Rayleigh–Taylor instability,conical target conduction region

    1. Introduction

    In inertial confinement fusion (ICF)[1–10]schemes with directly driven conical and spherical targets, the Rayleigh–Taylor instability (RTI) imposes a fundamental constraint on the design parameters required for both of these ignition schemes.[11–14]Livescuet al.[15–17]studied RTI using direct numerical simulations. Yu and Ye[18]also adopted numerical simulations of hydrodynamic instabilities during direct-drive ICF implosion ignition based on the LARED-S program, but these were for the spherical target. In 1986, a formalism for the semi-analytical form of RTI in spherical geometry was developed by Gupta and Lawand.[19]In 1996, Sanz proposed a self-consistent analytical model for RTI in ICF.[20]Most of the works mentioned above are restricted to numerical simulations or only aim to study RTI in direct-drive spherical targets.In 2020, Zhang proposed a new ignition scheme,[21]i.e., the double-cone ignition scheme (Fig. 1). It is well known that during the direct drive of a spherical target pellet,the ablation front is unstable,affecting the central implosion ignition of the pellet. However,what is actually affected by RTI during laserirradiated conical targets is the compression process.[22,23]In 2022, Fang and Zhanget al.[24]conducted experimental and numerical simulations to study RTI in conical targets caused by factors such as the thickness of the target pellet, but their work ignored the effect of laser-plasma instability(LPI).

    Studies have been carried out on the heat conduction region. De Groot[25]proposed an analytical model of a planar plasma in 1992, which explicitly includes the temporal evolution of the heat conduction region. Models for the onedimensional resolution of the plasma in the conduction region in a planar target have been given by Chang and Li,[26–28]respectively. In 2020, Bettiet al.[29]also presented a semianalytical model of the hot spot and compressible shell,using analytical and simulation methods to study the physics of burn propagation in inertially confined plasmas. In Refs. [30–32],the parameters of the heat conduction region in the planar target have also been investigated experimentally[30]and numerically[31,32]by numerous researchers. Notably,in order to better analyze and solve the RTI of the compression process,the authors developed an analytical model of the plasma in the conduction zone instead of modeling the hydrodynamic instability of the ablation surface. Moreover, for the purpose of this paper, the parameters of the plasma (length, density,temperature,etc.) in the conduction zone are given below.

    Fig.1. (a)Schematic of the initial stage. The yellow line in this diagram is the drive laser;the two sides are composed of symmetrical metal walls;and the ignition assembly is placed in the center of the entire unit. (b)Schematic of the compression stage. As the compressed fuel is ejected at high speed and fused together,the ignition assembly ignites and triggers fusion.[33]

    The authors ignored the viscosity between the two metal walls and the fusion fuel. The incompressibility(i.e.,isobaric approximation) has been widely used in the analytical treatment of the ablation RTI at the ablation front over the past decades. The formula for the growth rate of RTI[34–36]at the ablation front in ICF is expressed as follows:

    wherekis the perturbed wave number; Atwood numberA=(ρ2-ρ1)/(ρ2+ρ1),gis the acceleration;Vais the ablation velocity;β ≈2–4 is expected in the direct-drive ablation;andLis the thickness of the fluid density layer. In combination with the specific parameters of the plasma obtained through the analytical model developed in this paper,it is necessary to analyze the RTI of the compression process in a conical target.This is the reason for and significance of the model described in this paper,and the analytical results are more intuitive than the numerical solutions.

    2. Analytical model and application

    Since the laser is uniformly irradiated on the spherical target,the polarization angle of the laser irradiation is 2π. However, in the conical target model, the angle becomes smaller compared to that of the former. The authors temporarily define this angle asθ,which ranges from 90°to 120°. Namely,the current study in this paper is two-dimensional(2D).

    In Ref. [26], Li gave a one-dimensional self-similar model based on the hydrodynamic behavior of a flat target.Based on research by previous scholars,this paper introduces the physical process of the conduction region in the direct driven conical target model(Fig.2),focusing on the fluid behavior and properties exhibited by the plasma in the conduction region.

    Fig. 2. Diagram of conical target conduction region. The authors define xa as the ablation surface and xc as the critical density surface. In addition,xc is the coordinate origin.

    When laser irradiates a solid target to generate plasma,the whole region is usually divided into three regions,[37,38]i.e.,the compression region,conduction region and corona region.The boundary between the conduction and corona regions is the critical density surface. The generation of the plasma conduction region of the laser-irradiated conical target consists of three steps. First,the laser acts on the critical density surface of plasma on the conical target,and is absorbed mainly in the corona region since it cannot enter the critical density surface.Plasma heats the conduction region via electron heat conduction. In the 2D case,the electron heat conduction model[39,40]is expressed as whereQris heat flux;Teis electron temperature;and the heat flux isQ=-κ?Te/?r, whereκis thermal conductivity andκ∝T5/2e. Therefore,the heat energy entering the conduction region through electron heat conduction is the main energy source for plasma generation. Second, the plasma generated by the ablation of the solid material flows away from the ablation surface.The mass of a conical target ablated in unit time is called an ablation rate and is represented by dm/dt.Third,the authors consider that the driving laser is a long pulse,the conduction region reaches a steady state, and the fluid behavior in the conduction region is steady. The electron heat conduction increases the temperature in the conduction region,while the ablation decreases the temperature and increases the density. The expansion of the plasma results in decreases in its temperature and density. Many factors cause the plasma in the conduction region to expand isobarically. Therefore, the authors adopted an isobaric assumption in this model.

    Considering that the authors mainly study the conduction region with electron densityne>ncaway from the target in space,it is heat conduction,expansion,ablation,and other factors in this region that lead to its equilibrium state. Therefore,plasma fluids can be seen as quasi-steady. As the laser is completely absorbed in the corona region, in the heat conduction region,Te?Ti,P ≈Pe, andQ ≈Qe(Teis the temperature of electrons;Tiis the temperature of ions;Peis the pressure of electrons; andQeis the electronic heat flux). At the same time, assuming that the laser irradiation uniformity is good,the authors consider that the fluid behavior in the conduction region conforms to the steady-state assumption. Then,the expression for the single-fluid,steady-state,and viscous-free hydrodynamic equations are as follows:

    whereρ,P, andu(v) are the density, pressure, and velocity,respectively, of the plasma;E=ε+(u2/2);εis the internal energy per unit mass;andQis the heat flux.

    In order to facilitate the use of the analysis results of the self-similar equation,the authors adopted convenient units,as shown in Table 1.

    Table 1. Normalized values for scaled variables.

    Fig. 3. Evolution of density of plasma as a function of the spatial location for different pulse widths. Laser pulse widths of 1 ns, 2 ns, and 3 ns were randomly selected. Driving laser power density I=3.0×1014 W/cm2.

    Due to Eq. (4) and the ideal gas condition, the authors consider the pressure formulaP=ρC2sin Ref. [25], and the pressure in the conduction region is constant atPc,

    Solution(11)for the density shows that the length of the plasma and the angleθof the conical target can affect the changing pattern of the density. Whenθis kept constant,the longer the length of the plasma, the slower the density decreases; whereas, whenLris kept constant, the larger theθ,the steeper the density decrease trend of the plasma in the conduction zone. Figure 3 shows that when the pulse time or laser intensity is properly enhanced, the width of the conduction zone becomes larger and the density of the plasma decreases slowly, which is favorable for reducing the effects caused by RTI.

    The pulsed laser energy is absorbed in the corona region and cannot enter the conduction region. According to the work of De Grootet al.,[42,43]ρu= dm/dt, which is the ablation rate equation. From Eq. (6) and the pressure equation, the authors obtainC2s˙m(1+(u2/2C2s))=-Qr. It is known thatE=ε+(1/2)u2andε= (3/2)meC2s, whileme=9.1×10-31g, which is so small that it can be ignored.The plasma fluid velocity in the conduction region is less than the velocity of sonic surface,which leads to 0≤(u2/C2s)≤1,resulting in at the same time, the authors focus on the boundary condition of the conduction region. Whenr=0,T ≈Tc(whereTcis the temperature of the corona region). Additionally, whenr=-Lr,T ≈0. Therefore,the solution for temperature is and since the origin of the coordinates is on the critical density surface,the value ofris considered to be in the range[-Lr,0].Then, the following results are obtained using the coordinate transformation of Eq.(19):where the value range ofr(cm)is[-Lr,0]and the value range ofθis between 90°and 120°. Equations (2) and (22) show that,when the driving laser intensity and pulse time are guaranteed to be constant, the larger the angleθ, the higher the temperature near the coronal region. Similarly,if the angleθis held constant,increasing the intensity of the drive laser will also lead to a higher temperature near the coronal region,i.e.,the temperature trend in the conduction zone will also become steeper.

    Since the authors only consider the plasma length between the critical density surface (coordinate origin) and the ablation surface, based on the physical model, whereLr=LrmaxandT=Tc, the authors are interested in the length of plasma fluid from the ablation surface to the critical density surface. The approximate analytical model can be expressed as follows:

    Equation (23) and figure 4 are the relationships between the plasma length and the time in the conduction region. As can be seen from Eq. (23), when the pulse time and angleθare guaranteed, the desired increase in plasma length can be achieved by enhancing the intensity of the driving laser. Similarly,the plasma length can also be regulated by adjusting the pulse time and angleθwhen the laser intensity is determined.It can also be seen from Fig. 4 that the larger the angleθof the conical target,the smaller the length of the plasma will be when the pulse width is certain.

    3. Verification and discussion

    To verify the accuracy of the analysis results,the authors compared the results in this paper with a simulation program.A single-temperature computational fluid dynamics program based on Euler’s equation was utilized,[48]and the control equation is as follows:

    whereρ,Vr,e,T, andPrepresent the density, velocity, total energy, temperature, and pressure, respectively.Sis the laser energy deposition term induced by inverse bremsstrahlung absorption. The Spitzer–Harm model[49]was used for the electron heat transfer, andKeis the heat transfer coefficient. The finite volume method (FVM) was used for the fluid solution,with a non-uniform sparse grid being set at locations away from the target to extend the computational domain. Moreover, a dynamic grid function was added to ensure that the flow field remains in the encrypted grid. To compare the analytical results, the above equation is solved in a spherical coordinate system, and a one-dimensional laser shot problem is calculated taking into account the shrinkage effect.

    The same conditions were set for the simulation and analysis model:driving laser power densityI=3.0×1014W/cm2,wavelengthλ=0.351 μm, and pulse widtht=1.0 ns. The comparison between the analysis results and the program simulation results is shown in Fig. 5, which includes the plasma density,temperature,pressure,and velocity in the conduction region of the conical target.

    It is obvious from Fig. 5 that the analytical model developed in this paper and the numerical simulation results are generally consistent, although they show a small deviation in terms of values. This can be explained and their trends are consistent. In the model of this paper, when the laser is incident from the right, it can be seen that the left side of the conduction region is the compression zone. Therefore,the authors assume that the ablation surface also has a width,which leads to the fact that the plasma density at the ablation surface is unequal to the density of the solid fuel(Fig.5(a)).

    In the analytical process, the temperature of the ablation surface is approximated as 0 keV for computational convenience. However, in Fig. 5(b), the authors combine the data given by the simulation results and compare the trend with the temperature simulation results, and find that they are in general agreement with each other. In the conduction region,the plasma temperature increases quickly initially and then slowly with the passage of time,and the authors approximate that the plasma temperature remains constant in the coronal region.

    In Fig.5(c),the analytical results of the pressure and the simulation are in general agreement. In fact, the pressure decreases gradually and slowly from the ablation surface to the critical density surface, which can also be seen in the figure,but in the analysis, the authors approximate that it is an isobaric process,i.e.,the pressure remains essentially constant.

    Fig. 5. Density (a), temperature (b), pressure (c), and velocity (d) in the conduction region. It is noteworthy that the authors take the critical density surface as the coordinate origin.

    In the density model given in Eq.(12),adjusting the laser light intensity and pulse duration led to a change in the density gradient (Figs. 3 and 6), i.e., increasing the former two parameters reduces the gradient,but the effect is insignificant for the suppression ofγ. In other words,this adjustment in the proposed model has almost no effect on the Atwood number in Eq. (1). Therefore, the authors focus on the effect of the plasma length model on the RTI growth rate.

    The ablation velocityVain Eq. (1) can be treated as a constant.[50]According to the model in this paper, the linear growth curvesγinfluenced by wavelengthλand the length of the plasma in the conduction zone are shown in Fig.7.but it is negligible. In order to observe more clearly the effect of the change in laser intensity onγ, the growth rate curveγinfluenced by laser intensity is shown here separately(Fig.9).

    Fig. 6. Density curves at different laser intensities. The pulse width t=1.0 ns.

    Fig.7.Linear growth curves γ influenced by wavelength λ (a)and Lr(b).For the selection of acceleration g,the authors refer to the values in the numerical simulation of ablation RTI by Ye et al.,[51]where g=17.85 μm/ns2.Atwood number A ≈0.5,and according to the model in this paper,ρ1 ≈0.054 g/cm3 and ρ2 ≈0.158 g/cm3. In(b),the perturbation wave number k=2π/λ and λ =0.351 μm.

    Fig. 8. Linear growth curves γ influenced by laser intensity (a), time (b),and angle θ of the conical target (c). In (a) and (b), the angle θ of the conical target is chosen to be 90°, and in (c), driving laser power density I=3.0×1014 W/cm2.

    Overall,γdecays asLrincreases; however,which of the two,laser intensity or pulse time width,has a more significant effect on the growth rateγwill be discussed here(Fig.8).

    Figure 8 shows that increasing the laser intensity and pulse duration or decreasing the angleθas appropriate can attenuate the RTI growth rate. It is worth noting that adjusting the laser pulse duration is more beneficial for attenuating the RTI growth rate,and changing the laser intensity has a limited impact onγ. The change in angleθalso has an effect onγ,

    When the laser intensity is adjusted aroundI= 3.0×1014W/cm2in the experiment, the change in the growth rateγis minimal(Fig.9). There is only a fractional change in the order of magnitude. Moreover, it is necessary to drastically change the laser intensity to suppress the growth rate,but it is much easier and more efficient to alter the pulse duration.

    Analytical solutions for the density, temperature, and length of the plasma are shown in Eqs. (12), (22), and (23),which are key works of this paper. Here the effect of the parameters in the proposed model on the RTI of the ablation surface is explicitly analyzed,emphasizing the significance of RTI analysis to the work in this paper. As the plasma length grows, the RTI caused by the density gradient is attenuated.When the angle of the conical target is 90°, appropriately increasing the pulse duration or increasing the laser intensity is beneficial to suppressing the growth rateγ. However, adjusting the pulse duration will be more efficient than changing the laser intensity.theoretical methods and mechanisms instead of only numerical solutions. The isobaric steady-state analytical model in the conduction region established in this paper demonstrates clear physical images and robust results, which are useful for analyzing the favorable conditions for attenuating RTI in a conical target.

    Fig.9. Partial enlargement of the growth rate curve γ. The baseline for the laser intensity is chosen here as I=3.0×1014 W/cm2,pulse width t=1.0 ns,and angle θ =90°.

    4. Summary

    In summary, an isobaric, steady-state model of a plasma fluid in the conduction zone is provided in this work to discuss and resolve the RTI present in the double-cone ignition scheme. Within the angle range of the conical target (90°–120°),the pulse width and laser intensity are appropriately increased when the angle is 90°,which is the most favorable for attenuating the RTI on the ablation surface,and increasing the pulse duration is more efficient than increasing the laser intensity and adjusting the angle(Fig.7). Notably,the study of the hydrodynamics of the plasma in the conical target conduction region using analytical methods has not been proposed at all in previous works.

    Equations(12)and(23)show that laser intensity and time also affect the density trend in the conduction zone:increasing the laser intensity and pulse duration leads to a smaller density gradient and a longer lengthLof the plasma. The temperature solution of the energy equation of the fluid dynamics model is shown in Eq. (22). Increasing the laser intensity and time also increases the temperature near the critical density surface,which can have an impact on the temperature trend in the conduction zone. The two-dimensional calibration relations for the length, pressure, and velocity models of the plasma fluid in the conduction zone are provided by Eqs. (23), (24), and(28). The adjustable parameters inLrprovide convenience for the analysis of RTI on the ablation surface in the conical target.It can be concluded that extending the pulse duration is a more practical approach than increasing the laser intensity. Clearly,compared with the numerical simulation of two-dimensional fluid mechanics, the method proposed in this paper provides

    Acknowledgment

    Project supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDA 25051000 and XDA 25010100).

    猜你喜歡
    張杰
    關于不等式選講中一道模擬題的多種解法探究
    張杰:架起北京與家鄉(xiāng)的橋梁
    華人時刊(2023年7期)2023-05-17 09:05:04
    這個老師有點“壞”
    Magnetohydrodynamic Kelvin–Helmholtz instability for finite-thickness fluid layers
    張杰演唱功夫主題神曲《我是來揍你的》
    青年歌聲(2019年2期)2019-02-21 01:17:30
    張杰藝術作品
    藝術評論(2017年5期)2017-06-14 09:56:30
    從2015年高考題看能量復習
    謎語兩則
    Propulsive performance of a passively flapping plate in a uniform flow*
    Gust Front Statistical Characteristics and Automatic Identification Algorithm for CINRAD
    夜夜爽夜夜爽视频| 97超视频在线观看视频| 三级经典国产精品| 国产精华一区二区三区| 日本午夜av视频| 国产精品一区二区三区四区免费观看| 真实男女啪啪啪动态图| av线在线观看网站| 国产v大片淫在线免费观看| 亚洲最大成人手机在线| 亚洲自偷自拍三级| 国产伦精品一区二区三区视频9| 边亲边吃奶的免费视频| 九九在线视频观看精品| 啦啦啦观看免费观看视频高清| 九草在线视频观看| 高清午夜精品一区二区三区| 日本-黄色视频高清免费观看| 亚洲精华国产精华液的使用体验| 国产成年人精品一区二区| 亚洲精品色激情综合| 亚洲欧洲国产日韩| 日本-黄色视频高清免费观看| 成人美女网站在线观看视频| 国产精品伦人一区二区| 欧美成人a在线观看| 国产黄色小视频在线观看| 韩国av在线不卡| 国产色婷婷99| ponron亚洲| 久久99热这里只有精品18| 五月玫瑰六月丁香| 欧美又色又爽又黄视频| 22中文网久久字幕| 国产在线男女| 中文在线观看免费www的网站| 乱系列少妇在线播放| 搡老妇女老女人老熟妇| 乱人视频在线观看| 婷婷六月久久综合丁香| 丰满人妻一区二区三区视频av| 成人特级av手机在线观看| 国产精华一区二区三区| videos熟女内射| 人妻制服诱惑在线中文字幕| 91aial.com中文字幕在线观看| 久久久久久久午夜电影| 亚洲人与动物交配视频| 国产激情偷乱视频一区二区| 色网站视频免费| 插逼视频在线观看| 亚洲国产精品sss在线观看| 色综合站精品国产| 成年免费大片在线观看| 久久久久久久久久成人| 日本五十路高清| 狂野欧美激情性xxxx在线观看| 日本一二三区视频观看| 一级爰片在线观看| 永久网站在线| 97超视频在线观看视频| 水蜜桃什么品种好| 国产精品不卡视频一区二区| 亚洲精品日韩av片在线观看| 综合色丁香网| 毛片女人毛片| 极品教师在线视频| 日本一二三区视频观看| 国产高清国产精品国产三级 | 亚洲av不卡在线观看| 老师上课跳d突然被开到最大视频| 欧美97在线视频| 亚洲国产日韩欧美精品在线观看| 欧美+日韩+精品| 色综合色国产| 久久综合国产亚洲精品| 亚洲成人久久爱视频| 如何舔出高潮| 99热精品在线国产| 成人亚洲欧美一区二区av| 91久久精品电影网| 麻豆久久精品国产亚洲av| 国产不卡一卡二| 狂野欧美激情性xxxx在线观看| 天天躁日日操中文字幕| 国产真实乱freesex| 晚上一个人看的免费电影| 亚洲三级黄色毛片| 黄色配什么色好看| 精品不卡国产一区二区三区| 2022亚洲国产成人精品| 国产精品一及| av在线天堂中文字幕| 亚洲精品国产av成人精品| 国产精品国产三级国产专区5o | 日韩欧美精品v在线| 黑人高潮一二区| 日本av手机在线免费观看| 在现免费观看毛片| 91精品国产九色| 免费观看精品视频网站| 九草在线视频观看| 日本黄大片高清| 最新中文字幕久久久久| 一级毛片久久久久久久久女| 国产成人aa在线观看| 国产色爽女视频免费观看| 波野结衣二区三区在线| 国产一级毛片七仙女欲春2| 久久99热这里只有精品18| 偷拍熟女少妇极品色| 国内精品宾馆在线| 亚洲欧美精品综合久久99| 天堂网av新在线| 人妻制服诱惑在线中文字幕| 日韩av不卡免费在线播放| 婷婷六月久久综合丁香| av在线天堂中文字幕| 午夜精品在线福利| 国产精品久久电影中文字幕| 蜜桃久久精品国产亚洲av| 小蜜桃在线观看免费完整版高清| 国产高潮美女av| 91aial.com中文字幕在线观看| 国产高清视频在线观看网站| 国产在视频线精品| 在线免费观看不下载黄p国产| 99热这里只有精品一区| 欧美日本视频| 亚洲第一区二区三区不卡| 亚洲欧美成人精品一区二区| 欧美不卡视频在线免费观看| 国产精品麻豆人妻色哟哟久久 | 久久精品国产亚洲av涩爱| 日产精品乱码卡一卡2卡三| 在线观看美女被高潮喷水网站| 中文字幕制服av| 成年版毛片免费区| 一级毛片电影观看 | 男的添女的下面高潮视频| 久久久精品欧美日韩精品| 特大巨黑吊av在线直播| 日本熟妇午夜| 国产男人的电影天堂91| 久久久国产成人精品二区| 免费无遮挡裸体视频| 99久久中文字幕三级久久日本| 好男人在线观看高清免费视频| 赤兔流量卡办理| 欧美日韩在线观看h| 欧美成人a在线观看| 国产成人精品一,二区| 欧美一区二区精品小视频在线| 久久综合国产亚洲精品| 久久久久久久亚洲中文字幕| 中文字幕av成人在线电影| 一个人免费在线观看电影| 九九爱精品视频在线观看| 国产午夜福利久久久久久| 国国产精品蜜臀av免费| 欧美成人午夜免费资源| 22中文网久久字幕| 好男人视频免费观看在线| 久久精品久久久久久久性| 亚洲不卡免费看| av免费观看日本| 国产成人a∨麻豆精品| 久久久久久伊人网av| 久久久成人免费电影| 嫩草影院精品99| 青青草视频在线视频观看| 色哟哟·www| 国产午夜精品久久久久久一区二区三区| 欧美+日韩+精品| 麻豆一二三区av精品| 青春草视频在线免费观看| 亚洲性久久影院| 午夜福利高清视频| 日韩强制内射视频| 久久久久久久国产电影| 在线观看av片永久免费下载| 久久综合国产亚洲精品| 观看免费一级毛片| 久久欧美精品欧美久久欧美| 亚洲欧美清纯卡通| 欧美日本视频| 亚洲欧洲国产日韩| av女优亚洲男人天堂| 日韩成人伦理影院| 免费av毛片视频| 亚洲欧美中文字幕日韩二区| 老女人水多毛片| 国产精品1区2区在线观看.| 美女黄网站色视频| 亚洲欧美精品综合久久99| 99久久九九国产精品国产免费| 久久这里只有精品中国| 欧美成人a在线观看| 日韩一区二区视频免费看| 日韩av在线免费看完整版不卡| 最近中文字幕高清免费大全6| 成年av动漫网址| 老司机影院毛片| 爱豆传媒免费全集在线观看| 非洲黑人性xxxx精品又粗又长| 国产黄片美女视频| 九色成人免费人妻av| 国产单亲对白刺激| 全区人妻精品视频| 天堂√8在线中文| 蜜桃亚洲精品一区二区三区| 国产极品精品免费视频能看的| 亚洲av电影在线观看一区二区三区 | av播播在线观看一区| 欧美性猛交╳xxx乱大交人| 午夜福利视频1000在线观看| 亚洲成av人片在线播放无| 亚洲av成人精品一二三区| 插阴视频在线观看视频| 中文字幕av在线有码专区| 日韩av不卡免费在线播放| 日韩av在线大香蕉| 日韩一区二区视频免费看| 亚洲成人精品中文字幕电影| 超碰av人人做人人爽久久| 欧美成人午夜免费资源| 欧美日韩一区二区视频在线观看视频在线 | 久久久午夜欧美精品| 在线观看av片永久免费下载| 亚洲激情五月婷婷啪啪| 婷婷六月久久综合丁香| 在线天堂最新版资源| 国产三级中文精品| 三级国产精品欧美在线观看| 亚洲真实伦在线观看| 乱人视频在线观看| 特大巨黑吊av在线直播| 日日啪夜夜撸| 日韩欧美精品免费久久| 欧美人与善性xxx| 国内揄拍国产精品人妻在线| 男人和女人高潮做爰伦理| 亚洲欧美成人精品一区二区| 日韩大片免费观看网站 | 免费无遮挡裸体视频| 深夜a级毛片| 简卡轻食公司| 免费无遮挡裸体视频| 亚洲av.av天堂| 久久精品国产99精品国产亚洲性色| h日本视频在线播放| 长腿黑丝高跟| 精品无人区乱码1区二区| 亚洲av中文字字幕乱码综合| 国产三级在线视频| 日韩高清综合在线| 尾随美女入室| 九色成人免费人妻av| 久久精品国产99精品国产亚洲性色| 精品不卡国产一区二区三区| 欧美激情在线99| 热99re8久久精品国产| 日韩,欧美,国产一区二区三区 | 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 波多野结衣高清无吗| 亚洲av电影在线观看一区二区三区 | 久久国内精品自在自线图片| 国产黄a三级三级三级人| 深爱激情五月婷婷| 国产精品爽爽va在线观看网站| 卡戴珊不雅视频在线播放| 午夜免费激情av| 亚洲一区高清亚洲精品| 成人亚洲精品av一区二区| 亚洲国产精品合色在线| 中文精品一卡2卡3卡4更新| 18禁动态无遮挡网站| av在线蜜桃| or卡值多少钱| 久久精品国产亚洲av天美| 日本黄大片高清| 国产精品久久视频播放| 中文资源天堂在线| 黄片wwwwww| 国产成人aa在线观看| 欧美97在线视频| 久久久午夜欧美精品| 午夜福利高清视频| 男女那种视频在线观看| 国产又色又爽无遮挡免| 国产又色又爽无遮挡免| 国产成人freesex在线| 国产精品人妻久久久久久| kizo精华| 特级一级黄色大片| 欧美日韩综合久久久久久| 黄色日韩在线| av福利片在线观看| 欧美日韩综合久久久久久| 人人妻人人看人人澡| 嫩草影院入口| 村上凉子中文字幕在线| 毛片一级片免费看久久久久| 伦精品一区二区三区| 亚洲欧美日韩卡通动漫| 成人美女网站在线观看视频| 插阴视频在线观看视频| 久久人人爽人人片av| 欧美+日韩+精品| 国产极品天堂在线| 国产精品精品国产色婷婷| 69av精品久久久久久| 国产老妇伦熟女老妇高清| 91精品国产九色| 国产成人精品久久久久久| 中文字幕av成人在线电影| 久久6这里有精品| 久久亚洲国产成人精品v| 久久精品久久久久久噜噜老黄 | 国产亚洲精品av在线| 久久婷婷人人爽人人干人人爱| 免费黄色在线免费观看| 中文字幕久久专区| 欧美高清成人免费视频www| 青春草国产在线视频| 欧美一级a爱片免费观看看| 国产午夜精品论理片| 亚洲怡红院男人天堂| 亚洲国产色片| 亚洲国产精品国产精品| 男的添女的下面高潮视频| 精品99又大又爽又粗少妇毛片| 色播亚洲综合网| 女人被狂操c到高潮| 国产中年淑女户外野战色| 看黄色毛片网站| 成人亚洲欧美一区二区av| 国产精品人妻久久久久久| 麻豆成人午夜福利视频| 黄色欧美视频在线观看| 成人亚洲欧美一区二区av| 自拍偷自拍亚洲精品老妇| 菩萨蛮人人尽说江南好唐韦庄 | 国产三级中文精品| 99久久中文字幕三级久久日本| 国产真实伦视频高清在线观看| 色综合站精品国产| 久久久久九九精品影院| 亚洲精品影视一区二区三区av| av播播在线观看一区| 男女啪啪激烈高潮av片| 爱豆传媒免费全集在线观看| 两个人视频免费观看高清| 婷婷色综合大香蕉| 天堂√8在线中文| 简卡轻食公司| 九草在线视频观看| 九九热线精品视视频播放| 午夜久久久久精精品| 精品人妻视频免费看| 国内精品宾馆在线| 夫妻性生交免费视频一级片| 99国产精品一区二区蜜桃av| 黄色一级大片看看| 国产精品精品国产色婷婷| 黄色欧美视频在线观看| 人人妻人人澡人人爽人人夜夜 | 久久综合国产亚洲精品| 可以在线观看毛片的网站| 黄片wwwwww| 国产中年淑女户外野战色| 亚洲中文字幕一区二区三区有码在线看| 日日摸夜夜添夜夜爱| 国产午夜精品一二区理论片| 亚洲最大成人av| 日韩在线高清观看一区二区三区| a级毛片免费高清观看在线播放| 国产精品野战在线观看| 免费av毛片视频| 国产大屁股一区二区在线视频| 91av网一区二区| 99热全是精品| 日本免费在线观看一区| 69av精品久久久久久| 国产伦在线观看视频一区| 久久精品综合一区二区三区| 亚洲三级黄色毛片| 精品久久久久久久久av| 国产亚洲av嫩草精品影院| 亚洲经典国产精华液单| 亚洲欧洲国产日韩| 晚上一个人看的免费电影| 男女下面进入的视频免费午夜| 桃色一区二区三区在线观看| 日产精品乱码卡一卡2卡三| 美女高潮的动态| 男插女下体视频免费在线播放| 亚洲av免费在线观看| 免费电影在线观看免费观看| 精品人妻视频免费看| 国国产精品蜜臀av免费| 中文乱码字字幕精品一区二区三区 | 精品人妻视频免费看| 99久久精品一区二区三区| 中文资源天堂在线| 久久久久久九九精品二区国产| 日本色播在线视频| 日本午夜av视频| 最近中文字幕高清免费大全6| 久久久国产成人免费| 亚洲自偷自拍三级| 在线播放国产精品三级| 日韩成人伦理影院| 日产精品乱码卡一卡2卡三| 噜噜噜噜噜久久久久久91| 一个人观看的视频www高清免费观看| 亚洲自拍偷在线| 国产极品天堂在线| 久久精品国产自在天天线| 亚洲欧美成人综合另类久久久 | 在线天堂最新版资源| 国产高清不卡午夜福利| 中国国产av一级| 99热这里只有精品一区| 日本免费在线观看一区| 成人无遮挡网站| 国产黄片美女视频| 天堂√8在线中文| 国产成人福利小说| av在线老鸭窝| 亚洲精品日韩在线中文字幕| 中文精品一卡2卡3卡4更新| 99国产精品一区二区蜜桃av| 三级毛片av免费| 91在线精品国自产拍蜜月| 91精品伊人久久大香线蕉| 欧美成人精品欧美一级黄| 麻豆一二三区av精品| 精品人妻偷拍中文字幕| 一边亲一边摸免费视频| 国产精品嫩草影院av在线观看| 久久热精品热| 中文在线观看免费www的网站| 亚洲,欧美,日韩| 插逼视频在线观看| 国产三级中文精品| 日本-黄色视频高清免费观看| 一级a做视频免费观看| 欧美日韩av久久| 老司机影院毛片| 欧美+日韩+精品| 国产 一区精品| 一区在线观看完整版| 日本vs欧美在线观看视频| 午夜福利影视在线免费观看| 国产乱人偷精品视频| 另类精品久久| 欧美日本中文国产一区发布| 国产精品.久久久| kizo精华| 国产日韩欧美视频二区| 久久久久精品性色| 亚洲精品国产色婷婷电影| 另类精品久久| 制服诱惑二区| 欧美亚洲 丝袜 人妻 在线| 午夜老司机福利剧场| 久久久久久久久久成人| 中国国产av一级| 亚洲国产欧美日韩在线播放| 精品国产乱码久久久久久小说| 一边摸一边做爽爽视频免费| 国产女主播在线喷水免费视频网站| 久久国内精品自在自线图片| 欧美亚洲日本最大视频资源| 免费在线观看黄色视频的| 国产乱来视频区| 99精国产麻豆久久婷婷| 精品卡一卡二卡四卡免费| 男女边吃奶边做爰视频| √禁漫天堂资源中文www| 日韩成人伦理影院| 精品少妇内射三级| 国产白丝娇喘喷水9色精品| 美女国产视频在线观看| 中国国产av一级| 久久国产精品男人的天堂亚洲 | 如何舔出高潮| 日韩不卡一区二区三区视频在线| 超碰97精品在线观看| 免费在线观看完整版高清| 视频中文字幕在线观看| av.在线天堂| 成人无遮挡网站| 人体艺术视频欧美日本| 免费黄色在线免费观看| 亚洲经典国产精华液单| 国产精品久久久久久av不卡| 深夜精品福利| 菩萨蛮人人尽说江南好唐韦庄| 国产成人aa在线观看| 亚洲激情五月婷婷啪啪| 18禁动态无遮挡网站| 亚洲av男天堂| 亚洲精品国产av蜜桃| 大香蕉久久网| 少妇的丰满在线观看| 欧美日韩视频高清一区二区三区二| 亚洲欧美成人精品一区二区| 五月天丁香电影| 日本免费在线观看一区| 9热在线视频观看99| 欧美日韩一区二区视频在线观看视频在线| 一区二区三区乱码不卡18| av有码第一页| 欧美精品亚洲一区二区| 超色免费av| 精品一区二区三区视频在线| 国产av码专区亚洲av| 亚洲综合精品二区| 男的添女的下面高潮视频| 中文字幕制服av| 尾随美女入室| av一本久久久久| 国产精品一区二区在线观看99| 99九九在线精品视频| 成人毛片60女人毛片免费| 国产精品一区www在线观看| 亚洲欧美精品自产自拍| 热re99久久国产66热| 国产深夜福利视频在线观看| 亚洲精品乱久久久久久| 一级黄片播放器| 亚洲国产av新网站| 97在线人人人人妻| 一区二区av电影网| 欧美3d第一页| 赤兔流量卡办理| 国产综合精华液| 国产精品.久久久| 有码 亚洲区| 国产精品不卡视频一区二区| 亚洲精品av麻豆狂野| 在线精品无人区一区二区三| 18禁在线无遮挡免费观看视频| 国产福利在线免费观看视频| 国产亚洲欧美精品永久| 成年动漫av网址| 夫妻午夜视频| 久久av网站| 国内精品宾馆在线| 亚洲一码二码三码区别大吗| 建设人人有责人人尽责人人享有的| 色吧在线观看| 在线观看www视频免费| 日本av免费视频播放| 伊人久久国产一区二区| 青春草亚洲视频在线观看| 日韩熟女老妇一区二区性免费视频| 亚洲人与动物交配视频| 观看av在线不卡| 午夜福利视频在线观看免费| 欧美少妇被猛烈插入视频| 国产男女超爽视频在线观看| 欧美精品国产亚洲| 女的被弄到高潮叫床怎么办| 精品人妻一区二区三区麻豆| 中文字幕另类日韩欧美亚洲嫩草| 一二三四中文在线观看免费高清| 亚洲伊人色综图| av免费在线看不卡| 自线自在国产av| 久久人妻熟女aⅴ| 久久午夜福利片| 成人免费观看视频高清| 日本爱情动作片www.在线观看| 日韩熟女老妇一区二区性免费视频| 大片电影免费在线观看免费| 日本91视频免费播放| 免费黄网站久久成人精品| 欧美日本中文国产一区发布| 国产麻豆69| 激情视频va一区二区三区| 91午夜精品亚洲一区二区三区| 亚洲,一卡二卡三卡| 秋霞伦理黄片| 国产成人精品婷婷| 婷婷色综合www| av网站免费在线观看视频| 亚洲国产精品成人久久小说| freevideosex欧美| 女人被躁到高潮嗷嗷叫费观| 色吧在线观看| 九草在线视频观看| 亚洲人与动物交配视频| 欧美老熟妇乱子伦牲交| 女性被躁到高潮视频| 视频区图区小说| 在线 av 中文字幕| 99国产精品免费福利视频| 在线观看免费高清a一片| 秋霞在线观看毛片| 一区在线观看完整版| 最近的中文字幕免费完整| 一本色道久久久久久精品综合| 青春草视频在线免费观看| 天美传媒精品一区二区| 成年人免费黄色播放视频| 狂野欧美激情性bbbbbb| 你懂的网址亚洲精品在线观看| 亚洲国产欧美日韩在线播放| 十八禁网站网址无遮挡| 亚洲综合精品二区| 欧美日韩成人在线一区二区| 一区在线观看完整版|