• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Propulsive performance of a passively flapping plate in a uniform flow*

    2015-11-24 05:28:03HANRui韓瑞ZHANGJie張杰CAOLei曹壘LUXiyun陸夕云
    關(guān)鍵詞:張杰

    HAN Rui (韓瑞), ZHANG Jie (張杰), CAO Lei (曹壘), LU Xi-yun (陸夕云)

    1.State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences, Beijing 100085, China, E-mail: leicao@rcess.ac.cn

    2. Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, China

    Propulsive performance of a passively flapping plate in a uniform flow*

    HAN Rui (韓瑞)1, ZHANG Jie (張杰)2, CAO Lei (曹壘)1, LU Xi-yun (陸夕云)2

    1.State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences, Beijing 100085, China, E-mail: leicao@rcess.ac.cn

    2. Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, China

    Propulsive performance of a passively flapping plate in a uniform viscous flow has been studied numerically by means of a multiblock lattice Boltzmann method. The passively flapping plate is modeled by a rigid plate with a torsion spring acting about the pivot at the leading-edge of the plate, which is called a lumped-torsional-flexibility model. When the leading-edge is forced to take a vertical oscillation, the plate pitches passively due to the fluid-plate interaction. Based on our numerical simulations, various fundamental mechanisms dictating the propulsive performance, including the forces on the plate, power consumption, propulsive efficiency and vortical structures, have been studied. It is found that the torsional flexibility of the passively pitching plate can improve the propulsive performance. The results obtained in this study provide some physical insights into the understanding of the propulsive behaviors of swimming and flying animals.

    propulsive performance, passively flapping plate, flapping-based locomotion, flexibility effect, propulsive efficiency

    Introduction

    A common strategy of flying or swimming animals for locomotion through a fluid is to employ their wings or fins to perform flapping motions[1-3]. The wings and fins are flexible and usually can generate the deformations during their flapping motions[4,5]. The deformations in turn affect the fluid dynamic forces[6,7]. Thus it is worth to understand the influence of flexibility on the flapping-based locomotion adopted by the swimming and flying animals.

    The wings and fins have complex structural behaviors which are mainly related to the internal distribution of the compliant components. The wings and fins can be twisted easily to form a passive pitching motion. Because the large flexibility of wings or fins is mainly concentrated on the narrow and short root regions, the torsional flexibility can be assumed to be lumped together and be modeled by a torsion spring[8]. The lumped-torsional-flexibility model has been used to investigate the influence of flexibility on the locomotion of a passively flapping flat plate. The simplified model can reasonably predict the dynamics due to the fluid-plate interaction.

    The flapping-based locomotion has attracted much attention due to the fundamental principles relevant to the swimming and flying animals. Extensive investigations with prescribed flapping motions have been carried out experimentally[9]and numerically[10,11]. In these studies the foil-like structures for modeling wings or fins are rigid rather than flexible and the flapping motions are prescribed rather than being passive. Recently, some studies on flapping flexible bodies have also been performed to analyze the effect of flexibility on the dynamic behaviors of the fluid-solid system[12-17].

    In this study, the propulsive performance of a passively flapping plate in a uniform viscous flow is investigated by solving the Navier-Stokes equations using a multiblock lattice Boltzmann method[6-8]. The flexibility of the plate is modeled by a lumped-torsional-flexibility model. The purpose of this study is to achieve an improved understanding of the mechanisms relevant to the flapping-based locomotion.

    Fig.1 Sketch of a flapping and passive pitching plate

    1. Physical problem and mathematical formulation

    To investigate the flexibility effect of flapping wings and fins in animal locomotion, a lumped-torsional-flexibility model is used as shown in Fig.1 for the diagram. The flexibility of a plate is modeled by a torsion spring at the leading-edge of the plate O. When the edge is forced to take a vertical oscillation in a uniform viscous flow with the free-stream velocityU ,the plate pitches passively due to the fluid-plate interaction. Here, the oscillation of the edgeO is represented as

    The incompressible Navier-Stokes equations are used to describe the flow dynamics which are given as

    whereu is the velocity,p the pressure,ρthe density of the fluid, andμthe dynamic viscosity. The passively pitching motion of the plate with a torsion spring is governed by[8]

    whereθrepresents the pitching angle,k denotes the spring stiffness, andIand Trare the moment of inertia of plate and the fluid moment with respect to the edgeO . The natural frequency of the plate-spring system is described as

    Based on the non-dimensionalized analysis, the dimensionless parameters are given as follows: the flapping amplitude A=A/cwithc being the length of the plate, the Reynolds number Re=ρUc/μ, the linear density ratio of the plate and the fluid D=ρl/ ρc, and the frequency ratio of the natural frequency and the flapping frequency F=fn/f , which is associated with the plate torsional flexibility[8].

    2. Numerical method and validation

    The governing equations of the fluid-plate problem are solved numerically by a multiblock lattice Boltzmann method, which provides an alternative method for solving viscous fluid flows. Details of the numerical method and its validation have been given in our previous work[8,10].

    Based on a variety of examinations, the computational domain used in the present study is chosen as -30c≤x≤30cand -15c≤y≤15cwith the finest lattice spacing of 0.005c in the region around the plate and the coarsest spacing of0.04c near the far boundaries. The time step is 0.005T with the flapping periodT . It is confirmed that the computed results are independent of the lattice spacing and computational domain size.

    In addition, the method and code used for this work have been validated carefully in our previous work described as follows. The numerical method has been applied with success to a wide range of flows,such as the propulsion of fishlike tail fins[3,10], and the locomotion of a passively flapping flat plate[6,8].

    3. Results and discussion

    We here present some typical results for the flow dynamics and propulsive performance of a passively flapping plate due to the fluid-plate interaction and discuss the connection of the results to the flappingbased locomotion of swimming and flying animals. Some quantities, such as the forces on the plate, the power consumption, the propulsive efficiency, the pitching angle, and vortex structures, are analyzed. Based on the measurements of animal locomotion, the governing parameters used here are chosen as the Strouhal number St =0.15-0.5, the frequency ratio F =1-10, the flapping amplitude A =0.3-0.7, the Reynolds number Re =1000and the density ratio D =1.

    3.1Thrust force of the passively flapping plate

    For the lumped-torsional-flexibility model in Fig.1, the plate generates a passive pitching motion due to a complicated interaction of the plate with the surrounding fluid flow. The forces exerting on the plate are responsible for the dynamic responses of the plate due to the fluid-plate interaction and are directlyrelated to the propulsive properties of the passive pitching plate. Based on our calculations, time-dependent forces will reach periodic state after two or three flapping cycles for all the cases considered here.

    Fig.2 Time-dependent force coefficients and pitching angle of the flapping plate for A =0.5,St =0.3and F=2.5

    To elucidate the dynamic behavior and the passive pitching motion of the plate, Fig.2 typically shows the thrust and lift coefficients and the pitching angle θduring one cycle after reaching the periodic state. Here, the thrust and lift coefficients are defined as, respectively,

    where -Fxand Fyrepresent the time-dependent thrust and lift acting on the plate due to pressure and viscous friction. The thrust and lift coefficients are shown in Fig.2(a). The positiveCTon most part of the period is formed which plays an essential role for the propulsion of the passive pitching plate. The variation ofCLis exhibited with its mean value over one period vanishing. It is also identified that CLvaries with the vortex shedding frequency from the flapping plate.

    For the model considered here, the passive pitching motion can be characterized by the pitching angle θ(t)as shown in Fig.1. The phase shiftφbetween the leading-edge oscillationyb(t)in Eq.(1) and the pitching angleθ(t)is an important parameter to understand the propulsive behavior. The profiles of yb(t )and θ(t)during one cycle are shown in Fig.2(b)and the phase shiftφ=70oapproximately is obtained. Thus, an advanced phase shift ofθ(t)with respect to yb(t)occurs, which is associated with the locomotion of the passive flapping plate[1].

    Fig.3 Mean thrust coefficientversus the frequency ratio F for several pairs of the flapping amplitudeAand the Strouhal numberSt

    Fig.4 Mean thrust coefficientand propulsive efficiencyη

    Based on a variety of simulations in a wide range of the parameters, the features of the mean thrust, the pitching angle and the phase shift are further discussed. Figure 3 shows the mean thrust coefficientversus the frequency ratioF for several pairs of flapping amplitudeA and frequencySt. For each pair ofAandSt, theincreases to its maximum in the range of F=3-6approximately, and then decreases gradually with the further increase ofF. From the profiles of A =0.5and St =0.2-0.5, theis enhanced with the increase ofSt. From the results of St =0.3and A =0.3, 0.5 and 0.7, thedecreases essentially with the increase ofA. The behaviors of the thrust evolution are associated with the pitching angle and the phase shift due to the fluid-plate interaction. Figure 4 shows the mean thrust coefficientversus the pitching angle and the phase shift for the calculated cases in Fig.3. It is identified that the higher mean thrust coefficientcorresponds to the region of the pitching angle=10o-20oand the phase shiftφ=70o-90o.

    Fig.5 Mean power coefficientand propulsive efficiency η versus the frequency ratio

    3.2Power consumption and propulsive efficiency

    The propulsive property is investigated in terms of the propulsive efficiency. The power required to produce the passive pitching motion of plate is described as

    Fig.6 Propulsive efficiencyηas function of the phase shiftφ and the pitching angle θrms

    Figure 5 shows the mean power coefficient and the propulsive efficiency. For each pair ofAandSt,the mean power coefficientin Fig.5(a) increases to its maximum in the range of F=5-7and decreases slightly with the further increase ofF, which is essentially consistent with the mean thrust coefficientin Fig.3. It means that a larger production of thrust needs a higher consumption of power. As shown inFig.5(b) for the propulsive efficiency η, a higher propulsive efficiency lies in F=1.5-4, corresponding to the range adopted by swimming animals which will be discussed below.

    Fig.7 Instantaneous vorticity contours at t/T =0/4(left column) and 1/4 (right column) for A=0.5. Solid and dashed lines represent positive and negative values, respectively

    The increase ofFrepresents that the spring becomes stiffer in the plate-spring system in Eq.(4). Thus, the motion of the passive pitching plate tends to the rigid case at a large value ofF , such as F=10. As an example, considering the results forA=0.5 and St=0.3in Fig.5(b), the highest efficiency is about 0.44 atF=2.5and is enhanced by 267% with respect to the efficiency of the rigid model about 0.12. Thus, the torsional flexibility effect can remarkably improve the propulsive efficiency.

    The propulsive efficiency is associated with the phase shiftφand the pitching angle θrms[1]. Fig.6(a) shows the propulsive efficiencyηversus the phase shift φ. With the increase ofφ, the propulsive efficiencyηincreases to a peak and then decreases for a given pair ofAandSt . The higher efficiency is reached during φ=60o-80o. Moreover, Fig.6(b) shows the propulsive efficiencyηversus the pitching angle θrms. It is seen that high efficiency is generated for=10o-25oapproximately.

    3.3Vortex structures behind the flapping plate

    The vortex structure around the plate is closely associated with the dynamic characteristics of the plate[10,18]. We further discuss the vortex shedding to understand propulsive performance of the passive flapping plate. To neatly exhibit the flow patterns, Fig.7 shows the vorticity contours at instants t/T=0/4 and 1/4 forA =0.5with several pairs of StandF. The shear layer is generated along the surface and is gradually shed into the downstream of the plate to form concentrated vortices. As shown in Fig.7(a) forSt= 0.15, the separated shear layer due to its unstable character evolves into three positive and negative concen-trated vortices during one flapping cycle. With the increase ofSt , there exist two vortices with opposite sign shed downstream during one cycle as shown in Fig.7(d). Finally, a reverse von Kármán vortex street occurs in the wake of the plate, which induces a jetlike mean velocity profile in the wake and is of help in generation of the thrust.

    To analyze the effect of the frequency ratioF on the vortex structures, Figs.7(b)-7(d) show the vortex patterns for F =1.1, 2.5 and 4.0 with St=0.3. Usually, the lower frequency ratio means that the flexibility effect becomes more important. As shown in Fig.7(b)forF=1.1, the shear layer separated from the plate evolves into two positive and negative concentrated vortices during one flapping cycle. With the increase ofF, only two vortices with opposite sign are shed during one cycle in Fig.7(d) for F=4.0. In addition,with the evolution of the vortex structures forF=1.1,a reverse von Kármán vortex street is eventually formed in the somewhat far wake of the plate, which is responsible for the thrust generation.

    4. Concluding remarks

    The propulsive performance of a passively flapping plate in a uniform flow has been studied by means of a multiblock lattice Boltzmann method. We have investigated various mechanisms related to the dynamics of the flapping plate due to the fluid-plate interaction based on the results of the forces exerting on the plate, the power consumption, the propulsive efficiency, the pitching angle and vortex structures.

    Based on the simulations in a wide range of the parameters, the features of the mean thrust, the pitching angle and the phase shift are analyzed. It is found that the torsional flexibility of the passively pitching plat can improve the propulsive performance. The propulsive property is analyzed based on the propulsive efficiency. A larger production of thrust needs a higher consumption of power. In addition, the effects of the frequency ratio and Strouhal number on the vortex structure around the plate are investigated. The reverse von Kármán vortex street is closely associated with the propulsive behavior of the plate. The results obtained in this study can provide some physical insights into the understanding of the propulsive behaviors of swimming and flying animals.

    References

    [1]TRIANTAFYLLOU M. S., TRIANTA- FYLLOU G. S. and YUE D. K. P.Hydrodynamics of fishlike swimming[J]. Annual Review of Fluid Mechanics, 2000,32(1): 33-53.

    [2]WANG Z. J.Dissecting insect flight[J]. Annual Review of Fluid Mechanics, 2005, 37(1): 183-210.

    [3]LI Gao-jin, ZHU Luoding and LU Xi-yun. Numerical studies on locomotion performance of fishliketail fins[J]. Journal of Hydrodynamics, 2012, 24(4): 488-495.

    [4]COMBES S. A., DANIEL T. L. Flexural stiffness in insect wings. I. Scaling and the influence of wing venation[J]. Journal of Experimental Biology, 2003, 206:2979-2987.

    [5]COMBES S. A., DANIEL T. L. Flexural stiffness in insect wings. II. Spatial distribution and dynamic wing bending[J]. Journal of Experimental Biology, 2003,206: 2987-2997.

    [6]HUA R., ZHU L. and LU X.Locomotion of a flapping flexible plate[J]. Physics of Fluids, 2013, 25(12):121901.

    [7]HUA R., ZHU L. and LU X. Dynamics of fluid flow over a circular flexible plate[J]. Journal of Fluid Mechanics, 2014, 759: 56-72.

    [8]ZHANG J., LIU N. and LU X. Locomotion of a passively flapping flat plate[J]. Journal of Fluid Mechanics,2010, 659: 43-68.

    [9]BIRCH J. M.,DICKINSON M. H.Spanwise flow and the attachment of the leading-edge vortex on insect wings[J]. Nature, 2001, 412(6848): 729-733.

    [10]LI G., LU X. Force and power of flapping plates in a fluid[J]. Journal of Fluid Mechanics, 2012, 712: 598-613.

    [11]WANG Ya-yun, HU Wen-rong and ZHANG Shi-dong. Performance of the bio-inspired leading edge protuberances on a static wing and a pitching wing[J]. Journal of Hydrodynamics, 2014, 26(6): 912-920.

    [12]HEATHCOTE S., GURSUL I. Flexible flapping airfoil propulsion at low Reynolds numbers[J]. AIAA Journal,2007, 45(5): 1066-1079.

    [13]HEATHCOTE S., WANG Z. and GURSUL I.Effect of spanwise flexibility on flapping wing propulsion[J]. Journal of Fluids and Structures, 2008, 24(2): 183-199.

    [14]MICHELIN S., SMITH S. G. L.Resonance and propulsion performance of a heaving flexible wing[J]. Physics of Fluids, 2009, 21(7): 429-445.

    [15]ELDREDGE J. D., TOOMEY J.and MEDINA A. On the roles of chord-wise flexibility in a flapping wing with hovering kinematics[J]. Journal of Fluid Mechanics, 2010, 659: 94-115.

    [16]FERREIRA SOUSA P. J., ALLEN J. J.Thrust efficiency of harmonically oscillating flexible flat plates[J]. Journal of Fluid Mechanics, 2011, 674: 43-66.

    [17]KANG C., AONO H. and CESNIK C. E. S. et al. Effects of fiexibility on the aerodynamic performance of flapping wings[J]. Journal of Fluid Mechanics, 2011,689: 32-74.

    [18]WU J., LUX. and ZHUANG L. Integral force acting on a body due to local flow structures[J]. Journal of Fluid Mechanics, 2007, 576: 265-286.

    (November 9, 2014, Revised April 15, 2015)

    * Project supported by the Natural Science Foundation of China (Grant No. 11372304), the 111 Project (Grant No. B07033).

    Biography: HAN Rui (1986-), Female, Ph. D.

    LU Xi-yun, E-mail: xlu@ustc.edu.cn

    猜你喜歡
    張杰
    關(guān)于不等式選講中一道模擬題的多種解法探究
    張杰:架起北京與家鄉(xiāng)的橋梁
    這個(gè)老師有點(diǎn)“壞”
    Magnetohydrodynamic Kelvin–Helmholtz instability for finite-thickness fluid layers
    Analytical model for Rayleigh–Taylor instability in conical target conduction region
    張杰演唱功夫主題神曲《我是來(lái)揍你的》
    青年歌聲(2019年2期)2019-02-21 01:17:30
    張杰藝術(shù)作品
    從2015年高考題看能量復(fù)習(xí)
    謎語(yǔ)兩則
    Gust Front Statistical Characteristics and Automatic Identification Algorithm for CINRAD
    超碰成人久久| 亚洲国产av影院在线观看| 最近最新中文字幕大全免费视频| 亚洲国产看品久久| 99国产极品粉嫩在线观看| 波多野结衣av一区二区av| 捣出白浆h1v1| 亚洲一卡2卡3卡4卡5卡精品中文| 黑人欧美特级aaaaaa片| 在线观看66精品国产| 97在线人人人人妻| 女性生殖器流出的白浆| 少妇裸体淫交视频免费看高清 | 精品国产乱码久久久久久小说| 中文字幕人妻丝袜制服| 欧美日韩视频精品一区| 久久久精品国产亚洲av高清涩受| 99久久国产精品久久久| 国产又色又爽无遮挡免费看| 动漫黄色视频在线观看| 精品国内亚洲2022精品成人 | 在线看a的网站| 又大又爽又粗| 亚洲国产av影院在线观看| av一本久久久久| 老熟妇乱子伦视频在线观看| 久久精品国产亚洲av香蕉五月 | 亚洲精品国产一区二区精华液| 欧美乱码精品一区二区三区| 日本欧美视频一区| 国内毛片毛片毛片毛片毛片| 国产成人欧美在线观看 | videos熟女内射| 久久精品人人爽人人爽视色| 最新在线观看一区二区三区| 女性被躁到高潮视频| 国产野战对白在线观看| 免费观看av网站的网址| 十分钟在线观看高清视频www| 大片免费播放器 马上看| 老熟妇仑乱视频hdxx| 国产精品二区激情视频| 国产精品美女特级片免费视频播放器 | 欧美性长视频在线观看| 久久狼人影院| a级毛片在线看网站| 欧美另类亚洲清纯唯美| 亚洲五月色婷婷综合| 久久亚洲精品不卡| a在线观看视频网站| av一本久久久久| 女同久久另类99精品国产91| 国产欧美日韩精品亚洲av| 青草久久国产| 丁香六月欧美| 免费看a级黄色片| 露出奶头的视频| 人人妻人人澡人人看| av国产精品久久久久影院| 亚洲精品中文字幕在线视频| 91精品三级在线观看| 久久精品亚洲av国产电影网| 国精品久久久久久国模美| 12—13女人毛片做爰片一| 国产精品二区激情视频| 日本vs欧美在线观看视频| 99久久99久久久精品蜜桃| 国产深夜福利视频在线观看| 狠狠婷婷综合久久久久久88av| 国产区一区二久久| 曰老女人黄片| 精品乱码久久久久久99久播| 中文字幕人妻熟女乱码| 咕卡用的链子| avwww免费| 精品福利永久在线观看| 精品第一国产精品| 黄色 视频免费看| 精品乱码久久久久久99久播| 亚洲欧美一区二区三区黑人| 欧美精品人与动牲交sv欧美| 久久久久久久精品吃奶| 黄色视频,在线免费观看| 亚洲九九香蕉| 久久国产精品大桥未久av| 久久人妻熟女aⅴ| 一级,二级,三级黄色视频| 国产欧美日韩一区二区三区在线| 亚洲国产毛片av蜜桃av| 大型黄色视频在线免费观看| 三上悠亚av全集在线观看| 纯流量卡能插随身wifi吗| 天天躁夜夜躁狠狠躁躁| 在线观看人妻少妇| 91麻豆精品激情在线观看国产 | 色播在线永久视频| 成人永久免费在线观看视频 | 久久中文字幕人妻熟女| 国产亚洲精品久久久久5区| 黑丝袜美女国产一区| 女人久久www免费人成看片| 亚洲中文av在线| 欧美精品一区二区大全| 国产欧美日韩一区二区精品| 少妇的丰满在线观看| www.熟女人妻精品国产| 又黄又粗又硬又大视频| 女人高潮潮喷娇喘18禁视频| 亚洲久久久国产精品| 天堂中文最新版在线下载| 高清黄色对白视频在线免费看| 亚洲黑人精品在线| 国产有黄有色有爽视频| 久久天躁狠狠躁夜夜2o2o| 国产极品粉嫩免费观看在线| 人妻久久中文字幕网| 久久精品国产综合久久久| 纯流量卡能插随身wifi吗| 国产精品久久久人人做人人爽| 成年人免费黄色播放视频| 十八禁网站免费在线| 成人亚洲精品一区在线观看| 在线看a的网站| 欧美亚洲 丝袜 人妻 在线| 国产精品偷伦视频观看了| 国产激情久久老熟女| 在线十欧美十亚洲十日本专区| 午夜精品国产一区二区电影| 涩涩av久久男人的天堂| 亚洲精品中文字幕在线视频| 嫩草影视91久久| 国产不卡一卡二| 国产又爽黄色视频| 丁香欧美五月| 韩国精品一区二区三区| 91精品三级在线观看| 亚洲国产av新网站| 黄色成人免费大全| av有码第一页| 麻豆国产av国片精品| 多毛熟女@视频| 真人做人爱边吃奶动态| 咕卡用的链子| 精品少妇一区二区三区视频日本电影| 久久久精品区二区三区| 十八禁高潮呻吟视频| 国产精品免费一区二区三区在线 | 亚洲,欧美精品.| 亚洲性夜色夜夜综合| 电影成人av| 色精品久久人妻99蜜桃| 亚洲av国产av综合av卡| 中文字幕人妻熟女乱码| 一级毛片电影观看| 久久青草综合色| 一本久久精品| 18禁观看日本| 久久亚洲真实| 久久热在线av| 亚洲国产毛片av蜜桃av| 两性夫妻黄色片| 最新美女视频免费是黄的| 国产精品98久久久久久宅男小说| 亚洲国产成人一精品久久久| 大型黄色视频在线免费观看| 国产精品香港三级国产av潘金莲| 亚洲av美国av| 国产成人精品在线电影| 18在线观看网站| 黄色丝袜av网址大全| 国产欧美日韩一区二区三区在线| 99国产综合亚洲精品| aaaaa片日本免费| 黄片播放在线免费| 国产在视频线精品| 不卡av一区二区三区| 亚洲欧美激情在线| 免费看a级黄色片| 在线天堂中文资源库| 这个男人来自地球电影免费观看| 制服人妻中文乱码| 国产精品免费视频内射| av天堂在线播放| 久久国产精品男人的天堂亚洲| 日韩欧美一区二区三区在线观看 | 欧美大码av| 夜夜骑夜夜射夜夜干| 亚洲美女黄片视频| 视频在线观看一区二区三区| 中文字幕最新亚洲高清| 欧美日韩精品网址| 好男人电影高清在线观看| 日韩欧美一区视频在线观看| 亚洲av电影在线进入| 久久久久久久精品吃奶| 欧美日韩福利视频一区二区| 制服人妻中文乱码| 每晚都被弄得嗷嗷叫到高潮| 亚洲av日韩在线播放| 日韩中文字幕视频在线看片| 性高湖久久久久久久久免费观看| 搡老岳熟女国产| 成年人免费黄色播放视频| 一级,二级,三级黄色视频| 婷婷丁香在线五月| 日韩熟女老妇一区二区性免费视频| 久久天躁狠狠躁夜夜2o2o| 少妇的丰满在线观看| 69精品国产乱码久久久| 亚洲一卡2卡3卡4卡5卡精品中文| 丰满迷人的少妇在线观看| 亚洲午夜精品一区,二区,三区| av线在线观看网站| 日韩视频在线欧美| 精品国产乱码久久久久久男人| 最新的欧美精品一区二区| 18禁裸乳无遮挡动漫免费视频| 久久人妻av系列| 亚洲欧美精品综合一区二区三区| 免费在线观看完整版高清| 99久久精品国产亚洲精品| 一边摸一边做爽爽视频免费| 亚洲av电影在线进入| 一级片'在线观看视频| 欧美日韩精品网址| 80岁老熟妇乱子伦牲交| 最近最新中文字幕大全免费视频| 亚洲色图 男人天堂 中文字幕| av一本久久久久| 免费在线观看视频国产中文字幕亚洲| 国产野战对白在线观看| 女人久久www免费人成看片| 操出白浆在线播放| 国产老妇伦熟女老妇高清| 宅男免费午夜| 欧美乱妇无乱码| 久久国产亚洲av麻豆专区| 蜜桃国产av成人99| 在线观看免费视频网站a站| 亚洲精品美女久久av网站| 国产成人精品无人区| 99热网站在线观看| 丝袜美足系列| 天堂俺去俺来也www色官网| 欧美黑人精品巨大| 老司机午夜十八禁免费视频| 国产视频一区二区在线看| 久久久水蜜桃国产精品网| 成年人黄色毛片网站| 免费在线观看日本一区| 国产精品久久久久久精品电影小说| 丝袜在线中文字幕| 精品少妇黑人巨大在线播放| 国产精品偷伦视频观看了| 久久国产精品人妻蜜桃| 国产精品一区二区精品视频观看| 美女午夜性视频免费| 国产av又大| 欧美日韩精品网址| 国产亚洲精品久久久久5区| 18禁国产床啪视频网站| 精品国产一区二区三区久久久樱花| 高清毛片免费观看视频网站 | √禁漫天堂资源中文www| 欧美激情久久久久久爽电影 | 久久人妻av系列| 动漫黄色视频在线观看| 深夜精品福利| 亚洲一区二区三区欧美精品| 熟女少妇亚洲综合色aaa.| 老熟妇乱子伦视频在线观看| 国产免费av片在线观看野外av| 高清毛片免费观看视频网站 | 一夜夜www| 狂野欧美激情性xxxx| 热re99久久精品国产66热6| 十八禁网站网址无遮挡| 精品熟女少妇八av免费久了| av国产精品久久久久影院| 久久久精品区二区三区| 久久毛片免费看一区二区三区| 天天添夜夜摸| 免费在线观看黄色视频的| 国产99久久九九免费精品| 国产欧美日韩一区二区三区在线| 国产av精品麻豆| 久久久久久久久免费视频了| 成人国产一区最新在线观看| 欧美激情高清一区二区三区| 18禁裸乳无遮挡动漫免费视频| 亚洲国产欧美网| 亚洲伊人色综图| 国产一区二区三区综合在线观看| 99riav亚洲国产免费| 国产成人av激情在线播放| 激情视频va一区二区三区| 亚洲精品粉嫩美女一区| 国产一区二区在线观看av| 老司机靠b影院| 一边摸一边抽搐一进一小说 | 黄色丝袜av网址大全| 午夜激情av网站| 涩涩av久久男人的天堂| 国产伦人伦偷精品视频| 99热网站在线观看| 国产精品熟女久久久久浪| 久久精品国产亚洲av香蕉五月 | 久久人妻熟女aⅴ| 99国产精品99久久久久| 国产精品九九99| 久久ye,这里只有精品| 免费少妇av软件| 久久性视频一级片| 午夜福利影视在线免费观看| 精品人妻在线不人妻| 国产av又大| 成人永久免费在线观看视频 | 波多野结衣av一区二区av| av网站免费在线观看视频| 91大片在线观看| 老司机靠b影院| 国产精品自产拍在线观看55亚洲 | 亚洲avbb在线观看| 亚洲中文字幕日韩| 亚洲久久久国产精品| 国产精品美女特级片免费视频播放器 | 久久人人97超碰香蕉20202| 色94色欧美一区二区| 在线av久久热| 国产亚洲av高清不卡| 人成视频在线观看免费观看| 老司机在亚洲福利影院| 国产精品久久久久久人妻精品电影 | 日韩欧美一区视频在线观看| 国产精品 欧美亚洲| 国产日韩欧美在线精品| 国产黄频视频在线观看| 精品国产国语对白av| 精品一区二区三卡| 国产精品久久久久久人妻精品电影 | 国产精品一区二区免费欧美| 在线观看免费视频日本深夜| 亚洲久久久国产精品| 日本一区二区免费在线视频| 两性午夜刺激爽爽歪歪视频在线观看 | 这个男人来自地球电影免费观看| 国产日韩一区二区三区精品不卡| 国产精品1区2区在线观看. | 久久久久网色| 亚洲美女黄片视频| 国产精品久久久久久人妻精品电影 | 国产日韩欧美亚洲二区| 99久久精品国产亚洲精品| 少妇粗大呻吟视频| 纵有疾风起免费观看全集完整版| 日日夜夜操网爽| 丝袜在线中文字幕| 视频区欧美日本亚洲| 亚洲人成伊人成综合网2020| 欧美性长视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人精品无人区| 欧美久久黑人一区二区| 嫩草影视91久久| 最黄视频免费看| 亚洲专区国产一区二区| 黑丝袜美女国产一区| 欧美大码av| 日韩视频在线欧美| 美女主播在线视频| 一区二区三区乱码不卡18| 国产又色又爽无遮挡免费看| 亚洲欧美一区二区三区黑人| 高清在线国产一区| 飞空精品影院首页| 亚洲性夜色夜夜综合| √禁漫天堂资源中文www| 国产日韩欧美亚洲二区| 久久久久视频综合| 天天影视国产精品| 十分钟在线观看高清视频www| 婷婷成人精品国产| 久久99一区二区三区| 国产精品电影一区二区三区 | 在线观看免费视频日本深夜| 十八禁高潮呻吟视频| av网站免费在线观看视频| 天堂8中文在线网| tube8黄色片| 在线观看免费日韩欧美大片| 国产日韩欧美视频二区| 中文欧美无线码| 国产视频一区二区在线看| 久久精品国产亚洲av高清一级| 日日夜夜操网爽| 搡老岳熟女国产| 成人手机av| 国产免费视频播放在线视频| 国产真人三级小视频在线观看| 亚洲精华国产精华精| 久久 成人 亚洲| 男女午夜视频在线观看| 久久免费观看电影| 欧美日韩国产mv在线观看视频| 啦啦啦 在线观看视频| 久久青草综合色| 女性生殖器流出的白浆| 夜夜骑夜夜射夜夜干| 亚洲国产精品一区二区三区在线| 亚洲精品一卡2卡三卡4卡5卡| 国产精品 国内视频| 在线观看免费视频日本深夜| 久9热在线精品视频| 每晚都被弄得嗷嗷叫到高潮| 老司机午夜十八禁免费视频| 国产真人三级小视频在线观看| 法律面前人人平等表现在哪些方面| 国产欧美日韩一区二区三| 国产精品一区二区免费欧美| 亚洲av日韩精品久久久久久密| 怎么达到女性高潮| 久久天堂一区二区三区四区| 性少妇av在线| 国产亚洲av高清不卡| 90打野战视频偷拍视频| 18禁裸乳无遮挡动漫免费视频| 免费在线观看影片大全网站| 精品国产一区二区三区久久久樱花| 午夜成年电影在线免费观看| 黄网站色视频无遮挡免费观看| 俄罗斯特黄特色一大片| 亚洲色图综合在线观看| 欧美日本中文国产一区发布| 在线观看舔阴道视频| 男女免费视频国产| 两性午夜刺激爽爽歪歪视频在线观看 | 日韩免费av在线播放| 精品福利永久在线观看| 一区二区三区激情视频| 乱人伦中国视频| 这个男人来自地球电影免费观看| 99久久99久久久精品蜜桃| 国产av一区二区精品久久| av免费在线观看网站| 久久国产精品大桥未久av| 国产高清国产精品国产三级| 国产野战对白在线观看| 两性夫妻黄色片| 国产精品1区2区在线观看. | 久久人人97超碰香蕉20202| 精品国产乱码久久久久久男人| 黄色怎么调成土黄色| 久久精品熟女亚洲av麻豆精品| 国产极品粉嫩免费观看在线| 女同久久另类99精品国产91| 性色av乱码一区二区三区2| 免费在线观看日本一区| av欧美777| aaaaa片日本免费| 飞空精品影院首页| 在线观看免费日韩欧美大片| 不卡一级毛片| 亚洲国产av新网站| 十八禁高潮呻吟视频| 亚洲国产av影院在线观看| 午夜视频精品福利| 免费看十八禁软件| 欧美日韩国产mv在线观看视频| 日韩欧美一区二区三区在线观看 | 日韩视频在线欧美| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美国产精品va在线观看不卡| 亚洲精品美女久久av网站| 久久久久久久久免费视频了| 精品人妻熟女毛片av久久网站| 精品国产国语对白av| cao死你这个sao货| 在线观看www视频免费| 久久久精品国产亚洲av高清涩受| 国产不卡一卡二| 久久人人爽av亚洲精品天堂| 国产av精品麻豆| av免费在线观看网站| 久久久国产成人免费| 国产精品久久久久久精品古装| 美女主播在线视频| a级毛片黄视频| 水蜜桃什么品种好| 90打野战视频偷拍视频| 国产成人欧美在线观看 | 波多野结衣av一区二区av| 成人18禁在线播放| 午夜福利一区二区在线看| 国产精品久久电影中文字幕 | 国产一区二区三区在线臀色熟女 | 欧美激情 高清一区二区三区| 久久久久视频综合| 午夜精品国产一区二区电影| av网站免费在线观看视频| 欧美国产精品va在线观看不卡| 国产午夜精品久久久久久| 国产激情久久老熟女| 老熟妇仑乱视频hdxx| 亚洲熟女精品中文字幕| 国产精品98久久久久久宅男小说| 黑丝袜美女国产一区| 中文字幕最新亚洲高清| 乱人伦中国视频| 亚洲精品自拍成人| 欧美 亚洲 国产 日韩一| 亚洲精品国产精品久久久不卡| 老司机福利观看| 免费在线观看影片大全网站| 免费看十八禁软件| 国产精品99久久99久久久不卡| a级毛片在线看网站| 老熟妇仑乱视频hdxx| 色综合欧美亚洲国产小说| 一二三四社区在线视频社区8| 老司机深夜福利视频在线观看| 国产精品偷伦视频观看了| 新久久久久国产一级毛片| 久久ye,这里只有精品| 90打野战视频偷拍视频| 久久国产精品影院| 久久久国产成人免费| 韩国精品一区二区三区| 亚洲成a人片在线一区二区| 亚洲 国产 在线| 啪啪无遮挡十八禁网站| 国产免费视频播放在线视频| 国产91精品成人一区二区三区 | 丰满饥渴人妻一区二区三| 中亚洲国语对白在线视频| 国产精品熟女久久久久浪| 精品久久久久久久毛片微露脸| 国产精品电影一区二区三区 | 国产精品av久久久久免费| 国产亚洲av高清不卡| 操美女的视频在线观看| 久久久欧美国产精品| 人人妻人人添人人爽欧美一区卜| 99re6热这里在线精品视频| 伦理电影免费视频| 一个人免费看片子| 极品人妻少妇av视频| 不卡一级毛片| 18在线观看网站| 一级a爱视频在线免费观看| 久久人妻熟女aⅴ| 中文字幕精品免费在线观看视频| 成在线人永久免费视频| 亚洲成人手机| 久久精品人人爽人人爽视色| 9191精品国产免费久久| 亚洲一区二区三区欧美精品| 男女午夜视频在线观看| 欧美大码av| 19禁男女啪啪无遮挡网站| 99九九在线精品视频| 极品教师在线免费播放| 真人做人爱边吃奶动态| 亚洲中文av在线| 啦啦啦在线免费观看视频4| 精品少妇黑人巨大在线播放| 淫妇啪啪啪对白视频| a级片在线免费高清观看视频| 亚洲欧洲日产国产| 午夜福利欧美成人| av网站在线播放免费| 在线观看一区二区三区激情| 久久久久久亚洲精品国产蜜桃av| 成年动漫av网址| 亚洲中文日韩欧美视频| 久久精品91无色码中文字幕| 91成人精品电影| 久久人人爽av亚洲精品天堂| 亚洲国产精品一区二区三区在线| 18禁观看日本| 制服人妻中文乱码| 亚洲七黄色美女视频| 亚洲全国av大片| 男女高潮啪啪啪动态图| 国产午夜精品久久久久久| 变态另类成人亚洲欧美熟女 | 嫩草影视91久久| www.熟女人妻精品国产| 中文字幕人妻丝袜制服| 久久婷婷成人综合色麻豆| 国产精品久久电影中文字幕 | 一区福利在线观看| 2018国产大陆天天弄谢| 在线观看一区二区三区激情| 老司机午夜福利在线观看视频 | 岛国毛片在线播放| 久久影院123| 国产精品二区激情视频| 免费一级毛片在线播放高清视频 | 日本av免费视频播放| 国产不卡一卡二| 亚洲av成人一区二区三| 久久午夜亚洲精品久久| 久久精品aⅴ一区二区三区四区| 天天躁日日躁夜夜躁夜夜| 两性夫妻黄色片| 欧美黑人精品巨大| 香蕉久久夜色| 久久精品亚洲av国产电影网| 老熟女久久久| 婷婷丁香在线五月| 久久中文看片网| 国产免费视频播放在线视频| 中文字幕人妻丝袜制服| 下体分泌物呈黄色| 成年人黄色毛片网站|