• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Propulsive performance of a passively flapping plate in a uniform flow*

    2015-11-24 05:28:03HANRui韓瑞ZHANGJie張杰CAOLei曹壘LUXiyun陸夕云
    關(guān)鍵詞:張杰

    HAN Rui (韓瑞), ZHANG Jie (張杰), CAO Lei (曹壘), LU Xi-yun (陸夕云)

    1.State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences, Beijing 100085, China, E-mail: leicao@rcess.ac.cn

    2. Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, China

    Propulsive performance of a passively flapping plate in a uniform flow*

    HAN Rui (韓瑞)1, ZHANG Jie (張杰)2, CAO Lei (曹壘)1, LU Xi-yun (陸夕云)2

    1.State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences, Beijing 100085, China, E-mail: leicao@rcess.ac.cn

    2. Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, China

    Propulsive performance of a passively flapping plate in a uniform viscous flow has been studied numerically by means of a multiblock lattice Boltzmann method. The passively flapping plate is modeled by a rigid plate with a torsion spring acting about the pivot at the leading-edge of the plate, which is called a lumped-torsional-flexibility model. When the leading-edge is forced to take a vertical oscillation, the plate pitches passively due to the fluid-plate interaction. Based on our numerical simulations, various fundamental mechanisms dictating the propulsive performance, including the forces on the plate, power consumption, propulsive efficiency and vortical structures, have been studied. It is found that the torsional flexibility of the passively pitching plate can improve the propulsive performance. The results obtained in this study provide some physical insights into the understanding of the propulsive behaviors of swimming and flying animals.

    propulsive performance, passively flapping plate, flapping-based locomotion, flexibility effect, propulsive efficiency

    Introduction

    A common strategy of flying or swimming animals for locomotion through a fluid is to employ their wings or fins to perform flapping motions[1-3]. The wings and fins are flexible and usually can generate the deformations during their flapping motions[4,5]. The deformations in turn affect the fluid dynamic forces[6,7]. Thus it is worth to understand the influence of flexibility on the flapping-based locomotion adopted by the swimming and flying animals.

    The wings and fins have complex structural behaviors which are mainly related to the internal distribution of the compliant components. The wings and fins can be twisted easily to form a passive pitching motion. Because the large flexibility of wings or fins is mainly concentrated on the narrow and short root regions, the torsional flexibility can be assumed to be lumped together and be modeled by a torsion spring[8]. The lumped-torsional-flexibility model has been used to investigate the influence of flexibility on the locomotion of a passively flapping flat plate. The simplified model can reasonably predict the dynamics due to the fluid-plate interaction.

    The flapping-based locomotion has attracted much attention due to the fundamental principles relevant to the swimming and flying animals. Extensive investigations with prescribed flapping motions have been carried out experimentally[9]and numerically[10,11]. In these studies the foil-like structures for modeling wings or fins are rigid rather than flexible and the flapping motions are prescribed rather than being passive. Recently, some studies on flapping flexible bodies have also been performed to analyze the effect of flexibility on the dynamic behaviors of the fluid-solid system[12-17].

    In this study, the propulsive performance of a passively flapping plate in a uniform viscous flow is investigated by solving the Navier-Stokes equations using a multiblock lattice Boltzmann method[6-8]. The flexibility of the plate is modeled by a lumped-torsional-flexibility model. The purpose of this study is to achieve an improved understanding of the mechanisms relevant to the flapping-based locomotion.

    Fig.1 Sketch of a flapping and passive pitching plate

    1. Physical problem and mathematical formulation

    To investigate the flexibility effect of flapping wings and fins in animal locomotion, a lumped-torsional-flexibility model is used as shown in Fig.1 for the diagram. The flexibility of a plate is modeled by a torsion spring at the leading-edge of the plate O. When the edge is forced to take a vertical oscillation in a uniform viscous flow with the free-stream velocityU ,the plate pitches passively due to the fluid-plate interaction. Here, the oscillation of the edgeO is represented as

    The incompressible Navier-Stokes equations are used to describe the flow dynamics which are given as

    whereu is the velocity,p the pressure,ρthe density of the fluid, andμthe dynamic viscosity. The passively pitching motion of the plate with a torsion spring is governed by[8]

    whereθrepresents the pitching angle,k denotes the spring stiffness, andIand Trare the moment of inertia of plate and the fluid moment with respect to the edgeO . The natural frequency of the plate-spring system is described as

    Based on the non-dimensionalized analysis, the dimensionless parameters are given as follows: the flapping amplitude A=A/cwithc being the length of the plate, the Reynolds number Re=ρUc/μ, the linear density ratio of the plate and the fluid D=ρl/ ρc, and the frequency ratio of the natural frequency and the flapping frequency F=fn/f , which is associated with the plate torsional flexibility[8].

    2. Numerical method and validation

    The governing equations of the fluid-plate problem are solved numerically by a multiblock lattice Boltzmann method, which provides an alternative method for solving viscous fluid flows. Details of the numerical method and its validation have been given in our previous work[8,10].

    Based on a variety of examinations, the computational domain used in the present study is chosen as -30c≤x≤30cand -15c≤y≤15cwith the finest lattice spacing of 0.005c in the region around the plate and the coarsest spacing of0.04c near the far boundaries. The time step is 0.005T with the flapping periodT . It is confirmed that the computed results are independent of the lattice spacing and computational domain size.

    In addition, the method and code used for this work have been validated carefully in our previous work described as follows. The numerical method has been applied with success to a wide range of flows,such as the propulsion of fishlike tail fins[3,10], and the locomotion of a passively flapping flat plate[6,8].

    3. Results and discussion

    We here present some typical results for the flow dynamics and propulsive performance of a passively flapping plate due to the fluid-plate interaction and discuss the connection of the results to the flappingbased locomotion of swimming and flying animals. Some quantities, such as the forces on the plate, the power consumption, the propulsive efficiency, the pitching angle, and vortex structures, are analyzed. Based on the measurements of animal locomotion, the governing parameters used here are chosen as the Strouhal number St =0.15-0.5, the frequency ratio F =1-10, the flapping amplitude A =0.3-0.7, the Reynolds number Re =1000and the density ratio D =1.

    3.1Thrust force of the passively flapping plate

    For the lumped-torsional-flexibility model in Fig.1, the plate generates a passive pitching motion due to a complicated interaction of the plate with the surrounding fluid flow. The forces exerting on the plate are responsible for the dynamic responses of the plate due to the fluid-plate interaction and are directlyrelated to the propulsive properties of the passive pitching plate. Based on our calculations, time-dependent forces will reach periodic state after two or three flapping cycles for all the cases considered here.

    Fig.2 Time-dependent force coefficients and pitching angle of the flapping plate for A =0.5,St =0.3and F=2.5

    To elucidate the dynamic behavior and the passive pitching motion of the plate, Fig.2 typically shows the thrust and lift coefficients and the pitching angle θduring one cycle after reaching the periodic state. Here, the thrust and lift coefficients are defined as, respectively,

    where -Fxand Fyrepresent the time-dependent thrust and lift acting on the plate due to pressure and viscous friction. The thrust and lift coefficients are shown in Fig.2(a). The positiveCTon most part of the period is formed which plays an essential role for the propulsion of the passive pitching plate. The variation ofCLis exhibited with its mean value over one period vanishing. It is also identified that CLvaries with the vortex shedding frequency from the flapping plate.

    For the model considered here, the passive pitching motion can be characterized by the pitching angle θ(t)as shown in Fig.1. The phase shiftφbetween the leading-edge oscillationyb(t)in Eq.(1) and the pitching angleθ(t)is an important parameter to understand the propulsive behavior. The profiles of yb(t )and θ(t)during one cycle are shown in Fig.2(b)and the phase shiftφ=70oapproximately is obtained. Thus, an advanced phase shift ofθ(t)with respect to yb(t)occurs, which is associated with the locomotion of the passive flapping plate[1].

    Fig.3 Mean thrust coefficientversus the frequency ratio F for several pairs of the flapping amplitudeAand the Strouhal numberSt

    Fig.4 Mean thrust coefficientand propulsive efficiencyη

    Based on a variety of simulations in a wide range of the parameters, the features of the mean thrust, the pitching angle and the phase shift are further discussed. Figure 3 shows the mean thrust coefficientversus the frequency ratioF for several pairs of flapping amplitudeA and frequencySt. For each pair ofAandSt, theincreases to its maximum in the range of F=3-6approximately, and then decreases gradually with the further increase ofF. From the profiles of A =0.5and St =0.2-0.5, theis enhanced with the increase ofSt. From the results of St =0.3and A =0.3, 0.5 and 0.7, thedecreases essentially with the increase ofA. The behaviors of the thrust evolution are associated with the pitching angle and the phase shift due to the fluid-plate interaction. Figure 4 shows the mean thrust coefficientversus the pitching angle and the phase shift for the calculated cases in Fig.3. It is identified that the higher mean thrust coefficientcorresponds to the region of the pitching angle=10o-20oand the phase shiftφ=70o-90o.

    Fig.5 Mean power coefficientand propulsive efficiency η versus the frequency ratio

    3.2Power consumption and propulsive efficiency

    The propulsive property is investigated in terms of the propulsive efficiency. The power required to produce the passive pitching motion of plate is described as

    Fig.6 Propulsive efficiencyηas function of the phase shiftφ and the pitching angle θrms

    Figure 5 shows the mean power coefficient and the propulsive efficiency. For each pair ofAandSt,the mean power coefficientin Fig.5(a) increases to its maximum in the range of F=5-7and decreases slightly with the further increase ofF, which is essentially consistent with the mean thrust coefficientin Fig.3. It means that a larger production of thrust needs a higher consumption of power. As shown inFig.5(b) for the propulsive efficiency η, a higher propulsive efficiency lies in F=1.5-4, corresponding to the range adopted by swimming animals which will be discussed below.

    Fig.7 Instantaneous vorticity contours at t/T =0/4(left column) and 1/4 (right column) for A=0.5. Solid and dashed lines represent positive and negative values, respectively

    The increase ofFrepresents that the spring becomes stiffer in the plate-spring system in Eq.(4). Thus, the motion of the passive pitching plate tends to the rigid case at a large value ofF , such as F=10. As an example, considering the results forA=0.5 and St=0.3in Fig.5(b), the highest efficiency is about 0.44 atF=2.5and is enhanced by 267% with respect to the efficiency of the rigid model about 0.12. Thus, the torsional flexibility effect can remarkably improve the propulsive efficiency.

    The propulsive efficiency is associated with the phase shiftφand the pitching angle θrms[1]. Fig.6(a) shows the propulsive efficiencyηversus the phase shift φ. With the increase ofφ, the propulsive efficiencyηincreases to a peak and then decreases for a given pair ofAandSt . The higher efficiency is reached during φ=60o-80o. Moreover, Fig.6(b) shows the propulsive efficiencyηversus the pitching angle θrms. It is seen that high efficiency is generated for=10o-25oapproximately.

    3.3Vortex structures behind the flapping plate

    The vortex structure around the plate is closely associated with the dynamic characteristics of the plate[10,18]. We further discuss the vortex shedding to understand propulsive performance of the passive flapping plate. To neatly exhibit the flow patterns, Fig.7 shows the vorticity contours at instants t/T=0/4 and 1/4 forA =0.5with several pairs of StandF. The shear layer is generated along the surface and is gradually shed into the downstream of the plate to form concentrated vortices. As shown in Fig.7(a) forSt= 0.15, the separated shear layer due to its unstable character evolves into three positive and negative concen-trated vortices during one flapping cycle. With the increase ofSt , there exist two vortices with opposite sign shed downstream during one cycle as shown in Fig.7(d). Finally, a reverse von Kármán vortex street occurs in the wake of the plate, which induces a jetlike mean velocity profile in the wake and is of help in generation of the thrust.

    To analyze the effect of the frequency ratioF on the vortex structures, Figs.7(b)-7(d) show the vortex patterns for F =1.1, 2.5 and 4.0 with St=0.3. Usually, the lower frequency ratio means that the flexibility effect becomes more important. As shown in Fig.7(b)forF=1.1, the shear layer separated from the plate evolves into two positive and negative concentrated vortices during one flapping cycle. With the increase ofF, only two vortices with opposite sign are shed during one cycle in Fig.7(d) for F=4.0. In addition,with the evolution of the vortex structures forF=1.1,a reverse von Kármán vortex street is eventually formed in the somewhat far wake of the plate, which is responsible for the thrust generation.

    4. Concluding remarks

    The propulsive performance of a passively flapping plate in a uniform flow has been studied by means of a multiblock lattice Boltzmann method. We have investigated various mechanisms related to the dynamics of the flapping plate due to the fluid-plate interaction based on the results of the forces exerting on the plate, the power consumption, the propulsive efficiency, the pitching angle and vortex structures.

    Based on the simulations in a wide range of the parameters, the features of the mean thrust, the pitching angle and the phase shift are analyzed. It is found that the torsional flexibility of the passively pitching plat can improve the propulsive performance. The propulsive property is analyzed based on the propulsive efficiency. A larger production of thrust needs a higher consumption of power. In addition, the effects of the frequency ratio and Strouhal number on the vortex structure around the plate are investigated. The reverse von Kármán vortex street is closely associated with the propulsive behavior of the plate. The results obtained in this study can provide some physical insights into the understanding of the propulsive behaviors of swimming and flying animals.

    References

    [1]TRIANTAFYLLOU M. S., TRIANTA- FYLLOU G. S. and YUE D. K. P.Hydrodynamics of fishlike swimming[J]. Annual Review of Fluid Mechanics, 2000,32(1): 33-53.

    [2]WANG Z. J.Dissecting insect flight[J]. Annual Review of Fluid Mechanics, 2005, 37(1): 183-210.

    [3]LI Gao-jin, ZHU Luoding and LU Xi-yun. Numerical studies on locomotion performance of fishliketail fins[J]. Journal of Hydrodynamics, 2012, 24(4): 488-495.

    [4]COMBES S. A., DANIEL T. L. Flexural stiffness in insect wings. I. Scaling and the influence of wing venation[J]. Journal of Experimental Biology, 2003, 206:2979-2987.

    [5]COMBES S. A., DANIEL T. L. Flexural stiffness in insect wings. II. Spatial distribution and dynamic wing bending[J]. Journal of Experimental Biology, 2003,206: 2987-2997.

    [6]HUA R., ZHU L. and LU X.Locomotion of a flapping flexible plate[J]. Physics of Fluids, 2013, 25(12):121901.

    [7]HUA R., ZHU L. and LU X. Dynamics of fluid flow over a circular flexible plate[J]. Journal of Fluid Mechanics, 2014, 759: 56-72.

    [8]ZHANG J., LIU N. and LU X. Locomotion of a passively flapping flat plate[J]. Journal of Fluid Mechanics,2010, 659: 43-68.

    [9]BIRCH J. M.,DICKINSON M. H.Spanwise flow and the attachment of the leading-edge vortex on insect wings[J]. Nature, 2001, 412(6848): 729-733.

    [10]LI G., LU X. Force and power of flapping plates in a fluid[J]. Journal of Fluid Mechanics, 2012, 712: 598-613.

    [11]WANG Ya-yun, HU Wen-rong and ZHANG Shi-dong. Performance of the bio-inspired leading edge protuberances on a static wing and a pitching wing[J]. Journal of Hydrodynamics, 2014, 26(6): 912-920.

    [12]HEATHCOTE S., GURSUL I. Flexible flapping airfoil propulsion at low Reynolds numbers[J]. AIAA Journal,2007, 45(5): 1066-1079.

    [13]HEATHCOTE S., WANG Z. and GURSUL I.Effect of spanwise flexibility on flapping wing propulsion[J]. Journal of Fluids and Structures, 2008, 24(2): 183-199.

    [14]MICHELIN S., SMITH S. G. L.Resonance and propulsion performance of a heaving flexible wing[J]. Physics of Fluids, 2009, 21(7): 429-445.

    [15]ELDREDGE J. D., TOOMEY J.and MEDINA A. On the roles of chord-wise flexibility in a flapping wing with hovering kinematics[J]. Journal of Fluid Mechanics, 2010, 659: 94-115.

    [16]FERREIRA SOUSA P. J., ALLEN J. J.Thrust efficiency of harmonically oscillating flexible flat plates[J]. Journal of Fluid Mechanics, 2011, 674: 43-66.

    [17]KANG C., AONO H. and CESNIK C. E. S. et al. Effects of fiexibility on the aerodynamic performance of flapping wings[J]. Journal of Fluid Mechanics, 2011,689: 32-74.

    [18]WU J., LUX. and ZHUANG L. Integral force acting on a body due to local flow structures[J]. Journal of Fluid Mechanics, 2007, 576: 265-286.

    (November 9, 2014, Revised April 15, 2015)

    * Project supported by the Natural Science Foundation of China (Grant No. 11372304), the 111 Project (Grant No. B07033).

    Biography: HAN Rui (1986-), Female, Ph. D.

    LU Xi-yun, E-mail: xlu@ustc.edu.cn

    猜你喜歡
    張杰
    關(guān)于不等式選講中一道模擬題的多種解法探究
    張杰:架起北京與家鄉(xiāng)的橋梁
    這個(gè)老師有點(diǎn)“壞”
    Magnetohydrodynamic Kelvin–Helmholtz instability for finite-thickness fluid layers
    Analytical model for Rayleigh–Taylor instability in conical target conduction region
    張杰演唱功夫主題神曲《我是來(lái)揍你的》
    青年歌聲(2019年2期)2019-02-21 01:17:30
    張杰藝術(shù)作品
    從2015年高考題看能量復(fù)習(xí)
    謎語(yǔ)兩則
    Gust Front Statistical Characteristics and Automatic Identification Algorithm for CINRAD
    国产精品国产高清国产av| 成年人黄色毛片网站| 午夜福利在线观看吧| 亚洲人成电影免费在线| 最新在线观看一区二区三区| 久久久国产一区二区| 亚洲一区高清亚洲精品| 久久精品国产99精品国产亚洲性色 | 久久久久久久久久久久大奶| 亚洲色图av天堂| 亚洲中文av在线| av免费在线观看网站| 久久青草综合色| 99久久国产精品久久久| 国产一区二区激情短视频| 婷婷精品国产亚洲av在线| 久久久久国产精品人妻aⅴ院| 久久影院123| 国产区一区二久久| 这个男人来自地球电影免费观看| 久久久久久久午夜电影 | 国产免费现黄频在线看| 欧美黑人精品巨大| 久久精品91蜜桃| 久久久久久久久中文| 欧美另类亚洲清纯唯美| 男人操女人黄网站| 午夜福利免费观看在线| 男女下面进入的视频免费午夜 | 老司机靠b影院| 亚洲av成人一区二区三| 日本wwww免费看| 亚洲精华国产精华精| 欧美日本中文国产一区发布| 男女午夜视频在线观看| 国产成人精品久久二区二区免费| 久久久精品国产亚洲av高清涩受| 黄频高清免费视频| 在线观看一区二区三区| 一区二区三区激情视频| 男男h啪啪无遮挡| av片东京热男人的天堂| 一个人观看的视频www高清免费观看 | 欧美成狂野欧美在线观看| 国内毛片毛片毛片毛片毛片| 另类亚洲欧美激情| 欧美日韩黄片免| 亚洲av片天天在线观看| www.熟女人妻精品国产| 99在线视频只有这里精品首页| 久久中文字幕一级| 午夜免费观看网址| 999久久久国产精品视频| 中文字幕精品免费在线观看视频| 伦理电影免费视频| 欧美乱妇无乱码| 国产精品九九99| 午夜a级毛片| 日韩免费av在线播放| 岛国在线观看网站| 怎么达到女性高潮| 久久久久国产一级毛片高清牌| 99国产精品一区二区蜜桃av| 免费少妇av软件| 亚洲成人免费电影在线观看| av国产精品久久久久影院| 国产成人av教育| 亚洲九九香蕉| 国产成人系列免费观看| 亚洲精品中文字幕在线视频| 无限看片的www在线观看| 欧美中文综合在线视频| 一级片'在线观看视频| 成年女人毛片免费观看观看9| 免费看十八禁软件| 多毛熟女@视频| 日日干狠狠操夜夜爽| 国产一区二区激情短视频| 宅男免费午夜| 午夜a级毛片| 久久国产乱子伦精品免费另类| av天堂在线播放| 黑人巨大精品欧美一区二区蜜桃| 精品久久久久久,| 伊人久久大香线蕉亚洲五| 国产野战对白在线观看| 欧美日韩精品网址| 9191精品国产免费久久| 看免费av毛片| 精品高清国产在线一区| 丁香六月欧美| 黄片播放在线免费| 久久久久久久久免费视频了| 久久午夜综合久久蜜桃| 狂野欧美激情性xxxx| 色婷婷av一区二区三区视频| 日本vs欧美在线观看视频| 国产成人一区二区三区免费视频网站| 午夜精品久久久久久毛片777| 精品熟女少妇八av免费久了| 久久精品成人免费网站| 久久中文字幕人妻熟女| 免费高清视频大片| 亚洲成av片中文字幕在线观看| 黑人巨大精品欧美一区二区蜜桃| 夜夜爽天天搞| 中文字幕人妻熟女乱码| 香蕉国产在线看| 中文字幕人妻丝袜制服| 亚洲欧美日韩高清在线视频| 法律面前人人平等表现在哪些方面| 最新在线观看一区二区三区| 欧美日韩福利视频一区二区| a在线观看视频网站| www.www免费av| 母亲3免费完整高清在线观看| av在线天堂中文字幕 | 啪啪无遮挡十八禁网站| 露出奶头的视频| 成年人免费黄色播放视频| 99国产精品免费福利视频| 99re在线观看精品视频| 久久欧美精品欧美久久欧美| 伊人久久大香线蕉亚洲五| 亚洲三区欧美一区| 黄色成人免费大全| 欧美不卡视频在线免费观看 | 人人妻人人添人人爽欧美一区卜| 黄色丝袜av网址大全| 夫妻午夜视频| 亚洲精品国产色婷婷电影| 大码成人一级视频| 搡老乐熟女国产| 可以免费在线观看a视频的电影网站| 欧美日韩福利视频一区二区| 欧美色视频一区免费| 大香蕉久久成人网| 69av精品久久久久久| 日韩欧美免费精品| 亚洲中文av在线| 长腿黑丝高跟| 岛国视频午夜一区免费看| 无遮挡黄片免费观看| 成人国产一区最新在线观看| 成人av一区二区三区在线看| 免费日韩欧美在线观看| 丁香六月欧美| av国产精品久久久久影院| 精品一区二区三区av网在线观看| 最新在线观看一区二区三区| 国产单亲对白刺激| 色婷婷av一区二区三区视频| 麻豆av在线久日| 天堂中文最新版在线下载| 久久人妻福利社区极品人妻图片| 99国产综合亚洲精品| 午夜福利免费观看在线| 午夜福利免费观看在线| 精品国产乱码久久久久久男人| 亚洲性夜色夜夜综合| 91精品三级在线观看| 亚洲国产精品一区二区三区在线| 人成视频在线观看免费观看| 久久久水蜜桃国产精品网| 欧美性长视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 一边摸一边抽搐一进一小说| 一级片免费观看大全| 男女下面插进去视频免费观看| 91成年电影在线观看| 午夜福利免费观看在线| 免费高清视频大片| 91成年电影在线观看| 国产午夜精品久久久久久| 黄片小视频在线播放| 亚洲成av片中文字幕在线观看| a级片在线免费高清观看视频| 丰满的人妻完整版| 18禁美女被吸乳视频| 高清黄色对白视频在线免费看| 叶爱在线成人免费视频播放| 久久精品人人爽人人爽视色| 亚洲精品美女久久av网站| av视频免费观看在线观看| 80岁老熟妇乱子伦牲交| 他把我摸到了高潮在线观看| 国产精品日韩av在线免费观看 | 亚洲成人精品中文字幕电影 | 黄色视频,在线免费观看| 极品教师在线免费播放| 人成视频在线观看免费观看| 男人的好看免费观看在线视频 | 久久天躁狠狠躁夜夜2o2o| 一区在线观看完整版| 操出白浆在线播放| 97超级碰碰碰精品色视频在线观看| 国产单亲对白刺激| 男女高潮啪啪啪动态图| 成人18禁高潮啪啪吃奶动态图| 亚洲欧美日韩高清在线视频| 99久久99久久久精品蜜桃| 欧美性长视频在线观看| 日本黄色视频三级网站网址| 亚洲全国av大片| 亚洲美女黄片视频| 在线视频色国产色| 久久精品国产亚洲av香蕉五月| 美女高潮喷水抽搐中文字幕| 欧美黑人欧美精品刺激| av有码第一页| av网站免费在线观看视频| 一区在线观看完整版| 日本wwww免费看| 色综合欧美亚洲国产小说| 制服人妻中文乱码| 人人澡人人妻人| 精品卡一卡二卡四卡免费| 国产精品国产高清国产av| 国产99白浆流出| 亚洲美女黄片视频| 国产一卡二卡三卡精品| 成年人免费黄色播放视频| 国内毛片毛片毛片毛片毛片| 亚洲五月天丁香| 在线观看午夜福利视频| 亚洲一卡2卡3卡4卡5卡精品中文| av片东京热男人的天堂| 成人影院久久| 中文字幕高清在线视频| 成年版毛片免费区| 12—13女人毛片做爰片一| 国产在线观看jvid| 国产精品一区二区三区四区久久 | 黄片大片在线免费观看| 黄色片一级片一级黄色片| 亚洲第一欧美日韩一区二区三区| 国产av一区在线观看免费| 日日摸夜夜添夜夜添小说| 在线十欧美十亚洲十日本专区| 黄网站色视频无遮挡免费观看| 男女午夜视频在线观看| 午夜福利,免费看| 丝袜美腿诱惑在线| 午夜免费激情av| 别揉我奶头~嗯~啊~动态视频| 国产亚洲欧美98| 成人影院久久| 又黄又粗又硬又大视频| 女人被躁到高潮嗷嗷叫费观| 国产成人系列免费观看| 国产一区二区在线av高清观看| 亚洲aⅴ乱码一区二区在线播放 | www.www免费av| 首页视频小说图片口味搜索| av国产精品久久久久影院| 老熟妇乱子伦视频在线观看| ponron亚洲| 午夜福利,免费看| 国产精品久久久久久人妻精品电影| 一级作爱视频免费观看| 最近最新中文字幕大全电影3 | 色老头精品视频在线观看| 身体一侧抽搐| av在线播放免费不卡| 99在线人妻在线中文字幕| 日韩av在线大香蕉| 后天国语完整版免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 人人澡人人妻人| 手机成人av网站| 久久人人精品亚洲av| 一进一出好大好爽视频| 一个人免费在线观看的高清视频| 国产精品久久视频播放| 在线av久久热| 日日摸夜夜添夜夜添小说| 精品一区二区三区视频在线观看免费 | 精品高清国产在线一区| www.999成人在线观看| 12—13女人毛片做爰片一| 久久精品aⅴ一区二区三区四区| 欧美激情极品国产一区二区三区| 国产成人影院久久av| 亚洲成a人片在线一区二区| 一级毛片女人18水好多| 又紧又爽又黄一区二区| 国产男靠女视频免费网站| 免费高清视频大片| 一级,二级,三级黄色视频| 亚洲欧美精品综合久久99| 人人澡人人妻人| 侵犯人妻中文字幕一二三四区| 国产精品久久久av美女十八| 90打野战视频偷拍视频| 电影成人av| 桃色一区二区三区在线观看| 黄色怎么调成土黄色| 成年版毛片免费区| 一级a爱片免费观看的视频| 亚洲av电影在线进入| 国产成人一区二区三区免费视频网站| 久久人妻av系列| 亚洲欧美日韩另类电影网站| 国产真人三级小视频在线观看| 久久精品人人爽人人爽视色| 欧美成狂野欧美在线观看| 成熟少妇高潮喷水视频| 成人精品一区二区免费| 夜夜看夜夜爽夜夜摸 | 亚洲成av片中文字幕在线观看| 亚洲国产精品一区二区三区在线| 极品人妻少妇av视频| 久久久久久久久免费视频了| 午夜日韩欧美国产| 午夜两性在线视频| 天天影视国产精品| 香蕉丝袜av| aaaaa片日本免费| 日韩大尺度精品在线看网址 | 精品国产乱子伦一区二区三区| 很黄的视频免费| 在线观看一区二区三区激情| 日本wwww免费看| 亚洲av五月六月丁香网| 欧美激情极品国产一区二区三区| 交换朋友夫妻互换小说| 亚洲第一欧美日韩一区二区三区| 9191精品国产免费久久| 久久人人97超碰香蕉20202| 国产一区二区在线av高清观看| 亚洲一卡2卡3卡4卡5卡精品中文| 国产aⅴ精品一区二区三区波| 午夜激情av网站| 国产真人三级小视频在线观看| 99国产精品一区二区蜜桃av| 狂野欧美激情性xxxx| 午夜福利影视在线免费观看| 午夜影院日韩av| 男女之事视频高清在线观看| 亚洲欧美激情综合另类| 在线观看免费高清a一片| 色哟哟哟哟哟哟| 99精品欧美一区二区三区四区| 丝袜人妻中文字幕| 国产日韩一区二区三区精品不卡| 又黄又粗又硬又大视频| 亚洲伊人色综图| 国产成人精品在线电影| 一进一出抽搐动态| 色综合婷婷激情| 亚洲精品在线观看二区| av有码第一页| 久9热在线精品视频| 淫妇啪啪啪对白视频| 亚洲成人久久性| 国产成人精品在线电影| 精品一区二区三区四区五区乱码| 亚洲国产欧美网| 男女午夜视频在线观看| 一级,二级,三级黄色视频| 亚洲欧美日韩高清在线视频| 变态另类成人亚洲欧美熟女 | 国产成人啪精品午夜网站| 老熟妇乱子伦视频在线观看| 亚洲成av片中文字幕在线观看| 很黄的视频免费| 丰满饥渴人妻一区二区三| 成在线人永久免费视频| av天堂久久9| 在线视频色国产色| 国产av又大| 亚洲一区中文字幕在线| 五月开心婷婷网| 成人18禁在线播放| 三上悠亚av全集在线观看| 最近最新中文字幕大全免费视频| 91老司机精品| 无遮挡黄片免费观看| 真人一进一出gif抽搐免费| 中文字幕精品免费在线观看视频| 91精品三级在线观看| 国产激情久久老熟女| 伊人久久大香线蕉亚洲五| 十八禁人妻一区二区| 成年版毛片免费区| 国产精品爽爽va在线观看网站 | 80岁老熟妇乱子伦牲交| e午夜精品久久久久久久| ponron亚洲| 亚洲五月婷婷丁香| 曰老女人黄片| 国内毛片毛片毛片毛片毛片| 国产99久久九九免费精品| 久久人人精品亚洲av| 国产精华一区二区三区| www日本在线高清视频| 欧美日本中文国产一区发布| 午夜久久久在线观看| 精品人妻1区二区| tocl精华| 亚洲专区国产一区二区| 香蕉丝袜av| 亚洲精品av麻豆狂野| 亚洲国产看品久久| 亚洲人成伊人成综合网2020| 动漫黄色视频在线观看| 精品福利永久在线观看| 日日摸夜夜添夜夜添小说| 久久天堂一区二区三区四区| 91麻豆av在线| 99国产极品粉嫩在线观看| 欧美精品一区二区免费开放| 超碰成人久久| 岛国视频午夜一区免费看| 亚洲欧美日韩高清在线视频| 国产精品爽爽va在线观看网站 | 亚洲一区高清亚洲精品| 日韩精品免费视频一区二区三区| 夫妻午夜视频| www.999成人在线观看| 91精品国产国语对白视频| 国产成人精品在线电影| 老司机亚洲免费影院| 亚洲五月天丁香| 水蜜桃什么品种好| 后天国语完整版免费观看| 午夜精品国产一区二区电影| 亚洲免费av在线视频| 亚洲自拍偷在线| 成熟少妇高潮喷水视频| 1024香蕉在线观看| 国产99久久九九免费精品| 久久精品人人爽人人爽视色| 在线十欧美十亚洲十日本专区| 最近最新免费中文字幕在线| 久久精品91蜜桃| 国产极品粉嫩免费观看在线| 国产成人系列免费观看| 天堂影院成人在线观看| 中文字幕人妻丝袜一区二区| netflix在线观看网站| 日日干狠狠操夜夜爽| 少妇 在线观看| 波多野结衣一区麻豆| 乱人伦中国视频| 久99久视频精品免费| 波多野结衣高清无吗| 99久久综合精品五月天人人| 久久久精品国产亚洲av高清涩受| 午夜影院日韩av| www.精华液| 日本精品一区二区三区蜜桃| 久久精品国产综合久久久| 满18在线观看网站| 精品一区二区三区视频在线观看免费 | 老司机福利观看| 久久精品国产亚洲av香蕉五月| 精品久久久久久久久久免费视频 | 50天的宝宝边吃奶边哭怎么回事| 国产黄a三级三级三级人| 久久热在线av| 国产免费av片在线观看野外av| 自拍欧美九色日韩亚洲蝌蚪91| 欧美av亚洲av综合av国产av| 国产国语露脸激情在线看| 亚洲人成网站在线播放欧美日韩| 99国产精品一区二区蜜桃av| 国产精品久久久久成人av| 国产精品自产拍在线观看55亚洲| 久久 成人 亚洲| 中文字幕人妻丝袜一区二区| 欧美大码av| 少妇被粗大的猛进出69影院| 老司机午夜福利在线观看视频| 欧美日本亚洲视频在线播放| 极品人妻少妇av视频| 自线自在国产av| 99精品久久久久人妻精品| 日韩中文字幕欧美一区二区| 中国美女看黄片| 9热在线视频观看99| 高清黄色对白视频在线免费看| 亚洲自偷自拍图片 自拍| 国内毛片毛片毛片毛片毛片| 女性被躁到高潮视频| 超色免费av| 黑人巨大精品欧美一区二区蜜桃| 国产精品久久电影中文字幕| 啦啦啦 在线观看视频| 国产免费男女视频| 91国产中文字幕| 国产av在哪里看| 熟女少妇亚洲综合色aaa.| 1024香蕉在线观看| 黑人操中国人逼视频| 亚洲国产欧美一区二区综合| 亚洲国产欧美日韩在线播放| 亚洲第一欧美日韩一区二区三区| 欧美黑人欧美精品刺激| 亚洲专区字幕在线| 久久性视频一级片| 村上凉子中文字幕在线| 最新美女视频免费是黄的| 国产精品爽爽va在线观看网站 | 欧美黄色淫秽网站| 免费av毛片视频| 中文字幕高清在线视频| a级毛片在线看网站| 日韩免费av在线播放| 免费在线观看亚洲国产| 国产野战对白在线观看| 成年女人毛片免费观看观看9| 亚洲伊人色综图| 国产成人av教育| 日韩免费av在线播放| 女警被强在线播放| 久久久久久人人人人人| 99热国产这里只有精品6| 91字幕亚洲| 老司机午夜十八禁免费视频| 97碰自拍视频| 性少妇av在线| 亚洲美女黄片视频| 狂野欧美激情性xxxx| 免费少妇av软件| 亚洲精品国产一区二区精华液| 日韩 欧美 亚洲 中文字幕| 亚洲色图 男人天堂 中文字幕| 成人特级黄色片久久久久久久| 青草久久国产| 99久久久亚洲精品蜜臀av| 三级毛片av免费| 精品人妻1区二区| 首页视频小说图片口味搜索| 啦啦啦免费观看视频1| 法律面前人人平等表现在哪些方面| 亚洲精品一二三| 久久久久精品国产欧美久久久| 午夜福利,免费看| 黄色毛片三级朝国网站| 91精品三级在线观看| 久久青草综合色| 亚洲中文av在线| 97人妻天天添夜夜摸| 无人区码免费观看不卡| 丰满的人妻完整版| 国产亚洲精品综合一区在线观看 | 成人国产一区最新在线观看| 国内久久婷婷六月综合欲色啪| 国产精品九九99| 97人妻天天添夜夜摸| 精品国产一区二区久久| 久久精品国产清高在天天线| 女人爽到高潮嗷嗷叫在线视频| 色精品久久人妻99蜜桃| 午夜免费成人在线视频| 久久人人爽av亚洲精品天堂| 日日干狠狠操夜夜爽| 午夜精品国产一区二区电影| 黑人猛操日本美女一级片| 亚洲av日韩精品久久久久久密| 亚洲专区国产一区二区| e午夜精品久久久久久久| 午夜福利,免费看| 久久精品亚洲熟妇少妇任你| 男人操女人黄网站| 亚洲片人在线观看| 亚洲午夜理论影院| 久久精品亚洲av国产电影网| 天天影视国产精品| 国产1区2区3区精品| 夜夜爽天天搞| 亚洲少妇的诱惑av| 精品久久久久久久久久免费视频 | 咕卡用的链子| 欧美在线一区亚洲| 精品电影一区二区在线| 亚洲欧洲精品一区二区精品久久久| 嫩草影院精品99| 精品一区二区三区视频在线观看免费 | 国产精品美女特级片免费视频播放器 | 午夜精品久久久久久毛片777| 乱人伦中国视频| 熟女少妇亚洲综合色aaa.| 亚洲久久久国产精品| 亚洲欧美一区二区三区久久| 国产精品久久久久久人妻精品电影| 黑人巨大精品欧美一区二区mp4| 操出白浆在线播放| 亚洲视频免费观看视频| 超碰成人久久| 99久久国产精品久久久| 精品国产美女av久久久久小说| 欧美乱色亚洲激情| 波多野结衣一区麻豆| 久久精品国产亚洲av香蕉五月| 亚洲一区二区三区不卡视频| 欧美成狂野欧美在线观看| av欧美777| 在线国产一区二区在线| www.www免费av| 啦啦啦免费观看视频1| 国产成人精品久久二区二区免费| 91国产中文字幕| 日本 av在线| 色播在线永久视频| 如日韩欧美国产精品一区二区三区| 99re在线观看精品视频| 99久久99久久久精品蜜桃| 国产av又大| 国产免费av片在线观看野外av| 久久精品亚洲精品国产色婷小说| av福利片在线| 国产精品免费一区二区三区在线| 又黄又爽又免费观看的视频|