• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prediction of quantum anomalous Hall effect in CrI3/ScCl2 bilayer heterostructure

    2022-10-26 09:52:28YuanGao高源HuipingLi李慧平andWenguangZhu朱文光
    Chinese Physics B 2022年10期
    關(guān)鍵詞:朱文

    Yuan Gao(高源) Huiping Li(李慧平) and Wenguang Zhu(朱文光)

    1International Center for Quantum Design of Functional Materials(ICQD),Hefei National Laboratory for Physical Sciences at the Microscale,University of Science and Technology of China,Hefei 230026,China

    2Department of Physics,University of Science and Technology of China,Hefei 230026,China

    Keywords: quantum anomalous Hall effect,two-dimensional heterostructure

    1. Introduction

    The quantum anomalous Hall effect (QAHE)[1]is the manifestation of topological electronic structure characterized by a nonzero Chern number (CN) and chiral edge electronic states. Aside from fundamental interest, the QAHE also has great promise in development of low-power-consumption spintronic devices for practical applications owing to its dissipationless transport nature, which has stimulated tremendous efforts for its experimental realization since the first theoretical model was proposed by Haldane in 1998.[1]Following a theoretical recipe,[2]the experimental realization was first achieved in magnetically doped three-dimensional topological insulators in the family of Bi2Se3,[3–8]while the highest temperature achieved so far is only 2 K,[8]due to inevitable degradation of sample quality with the complexity caused by the magnetic doping. More recently, the QAHE was realized in a layered compound MnBi2Te4[9–11]with a record temperature of 13 K and an external magnetic field required to align the intrinsically antiferromagnetically coupled MnBi2Te4layers to be ferromagnetic (FM).[11]In addition, twisted bilayer graphene was also recently reported to achieve the QAHE experimentally at 1.6 K.[12]However,searching for new QAHE systems particularly with substantially enhanced the critical temperature is highly demanded for practical applications but still a grant challenge in this field.

    Recent discovery of two-dimensional (2D) ferromagnetic materials provides new opportunities for this endeavor.By constructing multilayer van der Waals heterostructures,several new QAHE systems were theoretically proposed, including the ones consisting of a layered topological insulator and a 2D ferromagnetic layer, e.g., arranged by publishing time,graphene/BiFeO3,[13]graphene/RbMnCl3,[14]graphene/Cr2Ge2Te6,[15]MnBi2Te4/GeBi2Te4,[16]MnBi2Se4/Bi2Se3,[17]CrI3/Bi2Se3,[18]CrBi2Se4/Bi2Se3,[18]germanene/Cr2Ge2Te6,[19,20]graphene/CrBr3,[21]MnBi2Te4/ Sb2Te3,[22]MnBi2Te4/CrI3,[23]graphene/MnPSe3,[24]graphene/NiI2,[25]MnBi2Te4/VBi2Te4[26]or MnBi2Te4/Bi2Te3[27]and the ones consisting of two ferromagnetic layers MnNF/MnNCl.[28]

    In this work, we propose a 2D van der Waals (vdW) bilayer heterostructure constructed by stacking two topologically trivial ferromagnetic(FM)monolayers CrI3and ScCl2to realize the QAHE state. Based on first-principles calculations within the framework of density functional theory(DFT),the topological nature of the heterostructure is revealed to be attributed to an interlayer band inversion between the monolayers,and it critically depends on the structural symmetry of the stacking configuration. Our calculation shows that the pristine bilayer heterostructure has a sizable topologically nontrivial band gap of 4.5 meV.We further demonstrate that the band gap can be increased nearly linearly by the application of a perpendicular external pressure and reaches 8.1 meV at 2.7 GPa,and the application of an external out-of-plane electric field can also modulate the band gap and convert the system back to being topologically trivial via eliminating the band inversion.An effective model is developed to describe the evolution of

    the topological phases observed in this bilayer system.

    2. Computational methods

    The first-principles DFT calculations were performed based on the projector augmented wave(PAW)formalisms[29]with the exchange and correlation functional in the form of PBEsol[30]as implemented in the Viennaab initiosimulation package (VASP).[31,32]A plane wave basis cutoff of 400 eV was used. To model the 2D heterostructure,the supercell contains a monolayer of an 1×1 CrI3stacking with a monolayer of a 2×2 ScCl2with a vacuum region of 30 ?A.AΓ-centered 8×8×1 mesh was used fork-point sampling.[33]HubbardU= 3 eV and 1 eV were added to the partially filled 3d transition-metal elements Cr and Sc, respectively, to capture the local Coulomb interaction. The van der Waals corrections as parameterized in the semiempirical DFT-D3 method[34]were included. The electronic convergence criterion was set to 10-6eV,and atomic structures were fully relaxed until the forces on all atom were smaller than 0.005 eV/?A.The Hamiltonian matrixes in the Wannier function basis were calculated by Wannier90,[35]which served as an input of PythTB to calculate the Berry curvature as well as the CN and the surface states with WannierTools.[36]To verify the dynamical stability of 2D monolayer ScCl2, phonon dispersion analysis was performed using VASP and phonopy,[37]in which the structure was fully relaxed until the energy and the forces were converged to 10-8eV and 10-6eV/?A,respectively.

    3. Results and discussion

    3.1. Atomic structure and magnetism of monolayer CrI3 and ScCl2

    CrI3is a 2D vdW stacked layered material,and its monolayer has been experimentally demonstrated to be an FM insulator with a Curie temperature of 45 K.[38]As shown in Fig. 1(a), each unit cell of monolayer CrI3contains two Cr atoms, forming a honeycomb lattice, and each Cr atom covalently bonds with six neighboring I atoms, with a space group ofPˉ31m. Monolayer ScCl2was also predicted to be an FM insulator.[39,40]As shown in Fig.1(b),each monolayer of ScCl2is composed of three atomic layers,and the atoms in each atomic layer contain only one element forming a triangular lattice, among which the Sc layer is sandwiched between the two Cl layers and the three atomic layers follow an ABA stacking sequence with the whole structure possessing a space group ofPˉ6m2. The absence of imaginary frequency in the calculated phonon spectra of monolayer ScCl2,as indicated in Fig.A1,confirms the dynamical stability of the structure. The optimized in-plane lattice constants of monolayer ScCl2and CrI3are 3.474 ?A and 6.900 ?A,respectively. Thus a 2×2 unit cell of ScCl2can perfectly match with a 1×1 unit cell of CrI3with a mismatch of merely 0.7%.

    Figures 1(c) and 1(d) show the calculated band structures of monolayer CrI3and ScCl2in the FM phase, indicating that they are both FM insulators with band gaps of 1.12 eV and 0.15 eV for CrI3and ScCl2and Cr and Sc atoms carry magnetic moments of 3μBand 1μB, respectively. For CrI3, the magnetization of the whole layer prefers out-ofplane orientation with a magnetic anisotropy energy (MAE)of 1.61 meV/unit cell relative to the in-plane magnetization,while the magnetization of monolayer ScCl2slightly favors in-plane orientation with an MAE of 0.01 meV/unit cell.Band structures of monolayer CrI3and ScCl2with spin orbital coupling(SOC)are shown in Fig.B1.

    Fig.1. Atomic structure and magnetism of monolayer CrI3 and ScCl2.(a)Top view and side view of CrI3. The black solid line on the top view shows the unit cell. (b) Top view and side view of ScCl2. The blue dashed line and the black solid line on the top view show the unit cell and the 2×2 unit cells,respectively. (c)and(d)The band structures of monolayer CrI3 and monolayer ScCl2,respectively,without SOC.

    3.2. Stacking structure and magnetism of CrI3/ScCl2 heterobilayer

    Before investigating its electronic structure,we first identify the most stable stacking configuration of an FM-coupled CrI3/ScCl2bilayer (Fig. 2(a)) by mapping out the whole 2D energy landscape (Fig. 2(b)) of the stacking registry space of the two layers sliding relative to each other. Figures 2(c)and 2(d)show the stacking configurations with the lowest and highest energies,respectively.In the highest energy configuration,Cr atoms in one of the Cr sublattices in the CrI3layer are vertically aligned with Sc atoms in the ScCl2layer and the rest Cr atoms in another Cr sublattice is aligned with the hollow sites of the ScCl2layer. In the most stable configuration with optimized in-plane lattice constant 6.937 ?A,one of the Cr sublattices is still aligned with the hollow sites of the ScCl2layer,while another Cr sublattice is aligned with the Cl atoms of the ScCl2layer. The energy difference between the highest and the lowest energy configurations is 58.05 meV/cell. The calculations with considering different interlayer magnetic structures and magnetization orientations indicate that the CrI3and ScCl2layers always favor FM coupling with the magnetization of both layers along the out-of-plane orientation,independent of the stacking configuration. For the most stable configuration, the energy of the FM state is lower than that of the interlayer antiferromagnetic(AFM)state by 5.75 meV/cell. Detailed calculation results are summarized in Table 1.

    Fig. 2. Stacking structure of CrI3/ScCl2 bilayer. (a) The side view of CrI3/ScCl2 heterostructure. (b)The contour map showing the stacking energy as a function of lateral shift with respect to the highest energy stacking. The scale of axes means the relative translation fraction of the two monolayers. (c) and (d) Top views of the lowest energy stacking and the highest energy stacking,respectivley.

    Table 1.Space groups,and magnetic properties of monolayer CrCl3,monolayer ScCl2 and bilayer heterostructure CrI3/ScCl2 with different stacking configurations. The second column shows the space groups of those systems. The third and fourth columns show relative MAE of different magnetic structures. We list stacking(1/6,1/3),stacking(1/3,1/6),stacking(1/3,1/3),and stacking(1/2,1/6)for example.For each cell discussed in this table,there are two Cr atoms and/or four Sc atoms.

    3.3. Topological property of CrI3/ScCl2 heterobilayer

    Figure 3(a) shows the calculated band structure of the most stable stacking configuration of the FM-coupled CrI3/ScCl2bilayer with SOC. It clearly reveals that there is indeed band inversion between the valance band of the ScCl2layer and the conduction band of the CrI3layer in the vicinity of theΓpoint. The zoomed-in band structure plot indicates a sizable band gap of~4.5 meV opened in the overlapped bands, which implies the emergence of potential topological non-trivial band structure. Detailed atomic orbital projection analysis further reveals that the inverted valence band and conduction band are both spin polarized and contributed by Sc dz2orbital of the ScCl2layer and Cr dxz+dyzorbitals of the CrI3layer, respectively. In addition, the most stable stacking configuration belongs to space groupP3, which is associated with point groupC3,and the irreducible representations of the two inverted bands atΓpoint belong to the irreducible representations table of the little co-groupGΓ ≈C3as listed in Table 2,suggesting that the two inverted bands at theΓpoint have different symmetries and thus it is expected to induce a topological phase transition.[41,42]

    We calculated the CN of the most stable stacking configuration of the FM-coupled CrI3/ScCl2bilayer from firstprinciples in reciprocal space[43]with

    wherenis the band index,Enkandψnkare the eigenvalue and eigenstate of bandnrespectively,vx/yis the velocity operator,andfn=1 for the occupied band. The reciprocal space distribution of the Berry curvatureΩ(k) of all occupied bands as shown in Fig.3(b)suggests a nonzero integration over the whole Brillouin zone, and the calculation indeed confirms a CN of-1, indicating that the stacking of the CrI3/ScCl2bilayer in the most stable configuration makes the system undergo a topological phase transition to the QAHE state.

    Fig. 3. Band structure and topological property of CrI3/ScCl2 bilayer.(a)Band structure of 2D bilayer heterostructure CrI3/ScCl2 with SOC.There is band inversion between dz2 orbital of Sc atom and dxz+dyz orbital of Cr atom.The irreducible representations of the two states of two inverted bands at Γ point is shown.The inset is the enlarged view of the bands near Fermi level at Γ point. The band inversion leaves band gap of 4.5 meV.(b)The distribution of Berry curvature in reciprocal space for the lowest energy stacking.

    Table 2. The irreducible representations table of the little co-group GΓ ≈C3 of the Γ point,where ω =exp(2π i/3).

    For vdW heterostructures,interlayer sliding may serve as a possible tuning method, due to the relatively weak vdW,to alter the topological nature of the vdW heterostructures,as previously predicted in transition metal dichalcogenide heterobilayers.[44]In this regard, we investigate the topological nature of the FM-coupled CrI3/ScCl2bilayer at other stacking configurations. The band structures and the reciprocal space distribution of the Berry curvature of several representative stacking configurations are provided in Fig.C1. The results,as indicated by the stars and dots in the energy landscape contour map of Fig.2(b),reveal that high-symmetry stacking configurations with space groupP3 lead to a CN of-1,while the other stacking configurations with low symmetry space groupP1 are topological trivial with a CN of 0 due to fact that the symmetries of the two inverted bands at theΓpoint become the same and thus the band inversion does not make topological transition.

    As a manifestation of the QAHE,the edges of a nonzero CN insulator always possess topologically protected gapless chiral edge states within the energy gap of the bulk bands.To examine the presence of the topological edge states of the most stable configuration of the FM-coupled CrI3/ScCl2bilayer, we constructed a CrI3/ScCl2bilayer ribbon (shown in Fig. 4(a)) cut along the zigzag edges of the ScCl2layer with delicately designed edge termination to avoid trivial edge states. By using Green’s function method based on the tightbinding Hamiltonian generated by the Wannier functions obtained from the first-principles calculation,[36]the band structures of the two edges of the ribbon are obtained. As revealed in Figs. 4(b) and 4(c), there indeed exists a nontrivial edge state connecting the conduction band and valence band on each edge,and the two edge states on the two different edges have opposite group velocities as expected for the QAHE.

    Fig.4. Edge states of CrI3/ScCl2 bilayer. (a)Ribbon cut from the 2D bilayer heterostructure CrI3/ScCl2 along the zigzag direction of the Cr honeycomb lattice. Two edge states of this ribbon are shown in(b)and(c),respectively.

    3.4. Effective model to describe the QAHE state of

    CrI3/ScCl2heterobilayer

    We develop an effective model to reveal the topological origin of the proposed CrI3/ScCl2heterobilayer. According to the first-principles calculation revealed orbital contributions of the two inverted bands,an effective Hamiltonian without considering spin-polarization can be constructed as whereσdenotes the Pauli matrices for orbital andsdenotes the Pauli matrices for spin. The symmetry-allowed SOC Hamiltonian can be found.

    As the heterostructure holding interlayer FM interaction,the bases can be chosen as (|1,↑〉,|2,↑〉) and the effective Hamiltonian reminds

    without any contribution of the SOC Hamiltonian as the first order approximation,where the parametersαis related to the strength of the splitting at the crossing point of the two inverted bands,while the parameterμindicates the strength of the band inversion. It is suitable to setα2=1 meV and the meaningful range ofμcan be chosen from 5 meV to 2 meV.As shown in Fig.5,for a given value ofα,the band structure can be clearly differentiated into the case with the band inversion forμ <0 and the case without the band inversion forμ >0.

    Using the TKNN formula,[43]the eigenvalue, Berry curvature and the CN of the effective Hamiltonian in Eq.(6)can be calculated one by one as

    For the case ofμ <0 with the band inversion, CNFM=-1, while for the case ofμ >0 without the band inversion,CNFM=0.

    Fig. 5. For the given α satisfied α2 = 1 meV, band structures calculated from the effective Hamiltonian with μ =-5 meV, μ =0 meV and μ =2 meV,respectively.

    3.5. External pressure and electric field tuning of the QAHE state of CrI3/ScCl2 bilayer

    Since the topological band gap in the CrI3/ScCl2bilayer is the result of the hybridization between the energy bands of the two layers,one possible approach to increase the band gap is to apply an external pressure perpendicular to the 2D plane to reduce the distance between the two layers and to enhance the hybridization of their energy bands.

    Fig. 6. External pressure and electric field tuning of the QAHE state in CrI3/ScCl2 heterostructure. The result of band gap g is shown as a function of external pressure P(a)or electric field E (b). The positive direction of the electric field is defined from the CrI3 layer to the ScCl2 layer. (c)The elimination of band inversion as well as QAHE from electric field from-0.26 V/?A to-0.28 V/?A.

    To test this effect, we perform first-principles calculation for the most stable configuration of the FM-coupled CrI3/ScCl2bilayer at a series of perpendicular compressive pressure while fixing the in-plane lattice constant of the bilayer. The results, as illustrated in Fig. 6(a), indicate that the topological band gap increases linearly as the increase of the pressure and the band gap can be enlarged to 8.1 meV at a pressure of 2.7 GPa with-6% strain along the out-ofplane direction. Calculation shows the out-of-plane FM state is still the magnetic ground state. The out-of-plane AFM state is 14.1 meV higher while the CrI3(out-of-plane)/ScCl2(inplane)state 7.06 meV is higher of one cell.

    The application of an external electric field perpendicular to the 2D plane is expected to induce an electric potential difference between the two layers, which would affect the overlapping of the two inverted bands and thus may change the topological nature of the heterostructure. Our first-principles calculation results,as shown in Fig.6(c),indicate that the band inversion can be eliminated as an external electrical field applied along the direction from the ScCl2layer to the CrI3layer larger than 0.27 V/?A and the heterobilayer becomes topological trivial. In addition, upon the application of an external electrical field along the opposite direction, the heterobilayer is still topologically non-trivial and the topological band gap is slightly enlarged,as shown in Fig.6(b).

    4. Conclusions

    In summary, we have demonstrated, based on firstprinciples calculation, that the QAHE can be robustly realized in the 2D bilayer heterostructure CrI3/ScCl2with a sizable band gap of 4.5 meV and its topological nature and the topologically nontrivial band gap can be effectively tuned by interlayer sliding, the application of a perpendicular external pressure or an electric field. This work provides a new candidate system based on 2D vdW materials for the realization of potential high-temperature QAHE with considerable controllability.

    Acknowledgements

    We thanks Jiabin Yu and Qingrui Cao for helpful discussion.

    Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0204904 and 2019YFA0210004), the National Natural Science Foundation of China (Grant No. 11634011), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No.XDB30000000),and the Fundamental Research Funds for the Central Universities (Grant No. WK2340000082). Computational support was provided by National Supercomputing Center in Tianjin.

    Appendix A

    The phonon spectra of ScCl2with out-of-plane and inplane magnetic moments are shown in Fig. A1. The absence of imaginary phonon frequency in both phonon spectra indicates that the ferromagnetic phase of monolayer ScCl2is dynamically stable.

    Fig.A1.The phonon spectra of ScCl2 with out-of-plane(a)and in-plane(b)magnetic moments,respectively.

    Appendix B

    Band structures of monolayer CrI3and monolayer ScCl2with spin orbital coupling are shown in Fig. B1. The band gaps are 0.724 eV (CrI3) and 0.145 eV (ScCl2), respectively.The conduction band minimum(CBM)of CrI3is made by the combination of dxzand dyzorbitals of the Cr atom while the valence band maximum (VBM) of ScCl2is made by dz2orbital of the Sc atom. Both of those two-band extrema locate at the sameΓpoint of the reciprocal space and this makes it possible to generate band inversion and leave a global band gap after the inversion.

    Fig. B1. Band structures of monolayer CrI3 (a) and monolayer ScCl2(b),with spin orbital coupling.

    Appendix C

    As the supercell of ScCl2is a 2×2 unit cell, as shown in Fig. 2(b) in 2×2 periods. Except for stacking (1/6,1/3),whose band structure and distribution of Berry curvature are shown in Figs.3(a)and 3(b),respectively. Here we only give the band structures and the distributions of Berry curvature of stacking (1/3,1/6), stacking (1/2,1/2) with space group ofP3 and CN of-1,and of stacking(1/2,1/6)with space group ofP1 and CN of 0 in Fig. C1. As the band structures do not change so much, the distributions of Berry curvature change significantly.

    Fig.C1. (a)and(b)The band structures and the distributions of Berry curvature of stacking (1/3,1/6) and stacking (1/3,1/3) with space group of P3 and CN of -1. (c) The band structures and the distributions of Berry curvature stacking(1/2,1/6)with space group of P1 and CN of 0.

    猜你喜歡
    朱文
    Machine learning potential aided structure search for low-lying candidates of Au clusters
    Modeling the heterogeneous traffic flow considering the effect of self-stabilizing and autonomous vehicles
    Metal substrates-induced phase transformation of monolayer transition metal dichalcogenides for hydrogen evolution catalysis*
    走三邊
    秦川好
    唱起號(hào)子走漢江
    Interaction Solutions for Kadomtsev-Petviashvili Equation with Variable Coefficients?
    熱鬧的大山
    Teacher:Teacher—dominant or Student—centered
    西部論叢(2017年3期)2017-09-11 06:21:44
    朱文韜 平凡之中展現(xiàn)別樣風(fēng)采
    北方人(2017年12期)2017-07-25 09:17:06
    国产精品香港三级国产av潘金莲| 精品国产亚洲在线| 美女免费视频网站| 国产精品自产拍在线观看55亚洲| 99久久无色码亚洲精品果冻| 精品日产1卡2卡| 欧美日本视频| 亚洲真实伦在线观看| 国产精品一及| 一本一本综合久久| 天堂影院成人在线观看| 变态另类成人亚洲欧美熟女| 在线观看66精品国产| 小说图片视频综合网站| 色吧在线观看| 亚洲成av人片免费观看| 久久久精品大字幕| 久久久久久人人人人人| 亚洲精品国产精品久久久不卡| 91在线精品国自产拍蜜月 | 91麻豆av在线| 搡老熟女国产l中国老女人| 亚洲 国产 在线| 97超视频在线观看视频| 真人一进一出gif抽搐免费| 伦理电影免费视频| 麻豆成人av在线观看| 在线观看一区二区三区| 欧美成人一区二区免费高清观看 | 久久亚洲精品不卡| 麻豆av在线久日| 亚洲国产中文字幕在线视频| 在线观看免费视频日本深夜| 深夜精品福利| 亚洲成人久久爱视频| 成人一区二区视频在线观看| 国产三级中文精品| 色综合站精品国产| 国产成人av教育| 看片在线看免费视频| av在线蜜桃| 色吧在线观看| 最近在线观看免费完整版| 久久久久精品国产欧美久久久| 香蕉久久夜色| 国产精品久久久久久亚洲av鲁大| 99久久精品热视频| 夜夜爽天天搞| www.熟女人妻精品国产| 免费av不卡在线播放| 男人舔女人下体高潮全视频| 色播亚洲综合网| 色av中文字幕| 免费看光身美女| 免费在线观看影片大全网站| 国产成人系列免费观看| 99在线人妻在线中文字幕| 天天添夜夜摸| 一本久久中文字幕| x7x7x7水蜜桃| 亚洲欧洲精品一区二区精品久久久| 91麻豆av在线| 国内久久婷婷六月综合欲色啪| 中文字幕最新亚洲高清| 看片在线看免费视频| 国产精品99久久久久久久久| 又紧又爽又黄一区二区| 成人av一区二区三区在线看| 国产精品永久免费网站| 法律面前人人平等表现在哪些方面| 高清在线国产一区| 国产伦一二天堂av在线观看| 757午夜福利合集在线观看| 中文亚洲av片在线观看爽| 亚洲一区二区三区色噜噜| 精品人妻1区二区| 搡老岳熟女国产| 男人舔女人下体高潮全视频| 国产亚洲欧美在线一区二区| 一夜夜www| 99国产精品一区二区蜜桃av| 久久九九热精品免费| 夜夜夜夜夜久久久久| 男女那种视频在线观看| 韩国av一区二区三区四区| 免费无遮挡裸体视频| 日韩人妻高清精品专区| 91麻豆精品激情在线观看国产| 97超视频在线观看视频| 亚洲欧美激情综合另类| 国产乱人伦免费视频| 久久这里只有精品中国| 久久性视频一级片| 亚洲国产欧美网| 2021天堂中文幕一二区在线观| 国产av不卡久久| 午夜精品久久久久久毛片777| 亚洲欧洲精品一区二区精品久久久| 国产精品99久久99久久久不卡| 色噜噜av男人的天堂激情| 色精品久久人妻99蜜桃| 成人一区二区视频在线观看| 精品久久久久久,| 香蕉丝袜av| 又爽又黄无遮挡网站| 国产精品一区二区三区四区免费观看 | 看黄色毛片网站| 国产av在哪里看| 一夜夜www| 欧洲精品卡2卡3卡4卡5卡区| 悠悠久久av| 九九热线精品视视频播放| 亚洲成a人片在线一区二区| 日韩国内少妇激情av| 国产又色又爽无遮挡免费看| a在线观看视频网站| 亚洲在线观看片| 日韩免费av在线播放| 精品久久久久久久毛片微露脸| 69av精品久久久久久| 亚洲成a人片在线一区二区| 国产伦精品一区二区三区四那| 午夜精品一区二区三区免费看| 国模一区二区三区四区视频 | 性色avwww在线观看| 村上凉子中文字幕在线| 女人高潮潮喷娇喘18禁视频| 一级a爱片免费观看的视频| 身体一侧抽搐| 国产精品香港三级国产av潘金莲| 色吧在线观看| 国产成人精品无人区| x7x7x7水蜜桃| 中文字幕久久专区| 亚洲专区国产一区二区| 成人三级黄色视频| 成在线人永久免费视频| 可以在线观看的亚洲视频| 老司机午夜福利在线观看视频| 日韩欧美国产在线观看| 91在线观看av| 久久99热这里只有精品18| 久久九九热精品免费| 精品国内亚洲2022精品成人| 97人妻精品一区二区三区麻豆| а√天堂www在线а√下载| 日本三级黄在线观看| 日韩中文字幕欧美一区二区| 久久中文字幕一级| 欧美极品一区二区三区四区| 午夜视频精品福利| 男女视频在线观看网站免费| 国产伦精品一区二区三区四那| 男人舔奶头视频| 91在线精品国自产拍蜜月 | 国产精品电影一区二区三区| 99re在线观看精品视频| 一本一本综合久久| 国内精品一区二区在线观看| 久久精品影院6| xxxwww97欧美| 全区人妻精品视频| 免费看美女性在线毛片视频| 两个人看的免费小视频| 午夜福利18| 老鸭窝网址在线观看| 国内精品久久久久精免费| 99国产极品粉嫩在线观看| 日韩av在线大香蕉| 国产伦精品一区二区三区四那| 男人舔奶头视频| 亚洲aⅴ乱码一区二区在线播放| 高清在线国产一区| 男女午夜视频在线观看| 青草久久国产| 9191精品国产免费久久| 88av欧美| 亚洲成a人片在线一区二区| 一区二区三区国产精品乱码| 波多野结衣高清无吗| 最近最新中文字幕大全免费视频| 一级作爱视频免费观看| 无限看片的www在线观看| 黄色女人牲交| x7x7x7水蜜桃| 亚洲国产高清在线一区二区三| 床上黄色一级片| 首页视频小说图片口味搜索| 国产一区二区三区视频了| 最近视频中文字幕2019在线8| e午夜精品久久久久久久| 国产黄片美女视频| 嫩草影院精品99| 亚洲国产精品久久男人天堂| 婷婷精品国产亚洲av在线| 男女视频在线观看网站免费| 国产亚洲精品综合一区在线观看| 国产伦精品一区二区三区视频9 | 人妻久久中文字幕网| 欧美日韩黄片免| 在线观看美女被高潮喷水网站 | 精品久久久久久久末码| 韩国av一区二区三区四区| 91麻豆精品激情在线观看国产| 亚洲人成电影免费在线| h日本视频在线播放| 久久香蕉国产精品| 亚洲第一电影网av| 美女大奶头视频| 日韩高清综合在线| 美女被艹到高潮喷水动态| 国产三级在线视频| 国产真实乱freesex| 免费看光身美女| 97超视频在线观看视频| 亚洲欧美精品综合久久99| 国产视频一区二区在线看| 久久久精品欧美日韩精品| 级片在线观看| 人人妻人人澡欧美一区二区| 欧美色视频一区免费| 特级一级黄色大片| 琪琪午夜伦伦电影理论片6080| 国产69精品久久久久777片 | 久99久视频精品免费| 成年版毛片免费区| 叶爱在线成人免费视频播放| 国产探花在线观看一区二区| 国产91精品成人一区二区三区| 国产精品美女特级片免费视频播放器 | 中文字幕人成人乱码亚洲影| 无人区码免费观看不卡| 国产一区二区三区视频了| 国产高清有码在线观看视频| 91九色精品人成在线观看| 宅男免费午夜| 欧美日韩亚洲国产一区二区在线观看| 大型黄色视频在线免费观看| 禁无遮挡网站| av天堂中文字幕网| а√天堂www在线а√下载| 窝窝影院91人妻| 热99在线观看视频| 成人鲁丝片一二三区免费| 国产一级毛片七仙女欲春2| 男女之事视频高清在线观看| 在线国产一区二区在线| 床上黄色一级片| 久久伊人香网站| 日本五十路高清| 男人的好看免费观看在线视频| 亚洲成av人片在线播放无| 18禁国产床啪视频网站| 欧美另类亚洲清纯唯美| 亚洲国产精品999在线| 两性夫妻黄色片| 亚洲欧美日韩东京热| 亚洲中文av在线| 国产精品永久免费网站| 亚洲欧美日韩无卡精品| 久久这里只有精品19| 国产精品亚洲一级av第二区| 亚洲欧美一区二区三区黑人| 色综合婷婷激情| 国产精品久久久人人做人人爽| 亚洲人成电影免费在线| 在线a可以看的网站| 女生性感内裤真人,穿戴方法视频| 熟女人妻精品中文字幕| 日韩国内少妇激情av| 草草在线视频免费看| 日本一二三区视频观看| 人人妻人人看人人澡| 黄色女人牲交| 午夜成年电影在线免费观看| 国产精品久久久av美女十八| 国产毛片a区久久久久| 天堂动漫精品| 一本精品99久久精品77| 久久精品夜夜夜夜夜久久蜜豆| 亚洲国产色片| 国产极品精品免费视频能看的| 日本a在线网址| 日日摸夜夜添夜夜添小说| 欧美午夜高清在线| 国产成人啪精品午夜网站| 亚洲自拍偷在线| 一进一出抽搐动态| 一区二区三区高清视频在线| 两性夫妻黄色片| 亚洲专区国产一区二区| 日本 欧美在线| 免费在线观看视频国产中文字幕亚洲| 国产精品日韩av在线免费观看| 国产激情久久老熟女| 99国产极品粉嫩在线观看| 国产欧美日韩一区二区精品| 欧美三级亚洲精品| 听说在线观看完整版免费高清| 精品久久久久久久久久免费视频| 国产精品香港三级国产av潘金莲| xxxwww97欧美| 午夜免费成人在线视频| 美女 人体艺术 gogo| 国产午夜福利久久久久久| 成人午夜高清在线视频| 脱女人内裤的视频| 日韩免费av在线播放| www.www免费av| 色老头精品视频在线观看| 俄罗斯特黄特色一大片| 国产午夜精品论理片| 欧美日韩中文字幕国产精品一区二区三区| 久久久精品大字幕| 宅男免费午夜| 国产又黄又爽又无遮挡在线| 免费av毛片视频| 99久国产av精品| 午夜福利在线在线| 非洲黑人性xxxx精品又粗又长| 一个人看的www免费观看视频| 精品乱码久久久久久99久播| 精品久久久久久久久久久久久| 婷婷精品国产亚洲av在线| 中亚洲国语对白在线视频| 欧美激情久久久久久爽电影| 亚洲av熟女| 亚洲专区字幕在线| 少妇裸体淫交视频免费看高清| 中文字幕久久专区| 99在线人妻在线中文字幕| 九色国产91popny在线| 男女做爰动态图高潮gif福利片| 在线免费观看不下载黄p国产 | 操出白浆在线播放| 国产爱豆传媒在线观看| 亚洲成人久久爱视频| 亚洲成人久久性| 青草久久国产| 我的老师免费观看完整版| 美女cb高潮喷水在线观看 | 最近在线观看免费完整版| 亚洲电影在线观看av| 这个男人来自地球电影免费观看| 一个人看的www免费观看视频| 国内毛片毛片毛片毛片毛片| 国产免费男女视频| 亚洲av熟女| 在线十欧美十亚洲十日本专区| 露出奶头的视频| 天堂av国产一区二区熟女人妻| 欧美午夜高清在线| 黑人欧美特级aaaaaa片| 亚洲,欧美精品.| 97超级碰碰碰精品色视频在线观看| 久久国产精品影院| 国产精品一区二区三区四区久久| 色av中文字幕| 最新中文字幕久久久久 | 国产精品国产高清国产av| 少妇裸体淫交视频免费看高清| 小蜜桃在线观看免费完整版高清| 女生性感内裤真人,穿戴方法视频| 亚洲人成网站高清观看| 亚洲精品美女久久av网站| 一级毛片女人18水好多| 久久香蕉国产精品| 国产亚洲精品综合一区在线观看| 久久精品综合一区二区三区| 亚洲午夜理论影院| 俄罗斯特黄特色一大片| 超碰成人久久| 成人午夜高清在线视频| 在线观看66精品国产| 色精品久久人妻99蜜桃| 中文亚洲av片在线观看爽| 一边摸一边抽搐一进一小说| 精品国产亚洲在线| 成人av在线播放网站| 日本免费一区二区三区高清不卡| 在线观看日韩欧美| 亚洲精品在线观看二区| 亚洲第一欧美日韩一区二区三区| 精品人妻1区二区| xxxwww97欧美| 欧美在线黄色| 日韩欧美在线二视频| 精品国产三级普通话版| 午夜久久久久精精品| 国产精品,欧美在线| 久久久久久久久免费视频了| 久久香蕉国产精品| 国产熟女xx| 叶爱在线成人免费视频播放| 日韩精品中文字幕看吧| 麻豆av在线久日| 亚洲成人免费电影在线观看| 毛片女人毛片| 国产精品综合久久久久久久免费| 欧美日韩福利视频一区二区| 亚洲 国产 在线| 欧美色欧美亚洲另类二区| 精品久久久久久,| 成人三级做爰电影| 国产免费av片在线观看野外av| 国产久久久一区二区三区| 一进一出好大好爽视频| 脱女人内裤的视频| 一个人免费在线观看的高清视频| 看黄色毛片网站| 舔av片在线| 成人永久免费在线观看视频| 亚洲国产精品成人综合色| 老司机在亚洲福利影院| 午夜福利视频1000在线观看| 日本免费一区二区三区高清不卡| 午夜激情欧美在线| 少妇人妻一区二区三区视频| 亚洲国产精品久久男人天堂| 亚洲18禁久久av| 一级毛片精品| a级毛片a级免费在线| 亚洲av片天天在线观看| а√天堂www在线а√下载| h日本视频在线播放| 性色avwww在线观看| 欧美日韩黄片免| 别揉我奶头~嗯~啊~动态视频| 黄色 视频免费看| 亚洲欧美日韩高清专用| 我的老师免费观看完整版| 精品熟女少妇八av免费久了| 亚洲真实伦在线观看| 欧美一级毛片孕妇| 精品国产美女av久久久久小说| 在线播放国产精品三级| 国产91精品成人一区二区三区| 国产精品 欧美亚洲| 黄片小视频在线播放| 国产成人av激情在线播放| 久久久久久久午夜电影| 亚洲专区字幕在线| 欧美xxxx黑人xx丫x性爽| 日本黄大片高清| 在线免费观看不下载黄p国产 | 免费在线观看亚洲国产| 日韩欧美精品v在线| 欧美极品一区二区三区四区| 女人高潮潮喷娇喘18禁视频| 韩国av一区二区三区四区| 成人午夜高清在线视频| 99精品在免费线老司机午夜| 欧美在线黄色| 国产视频内射| 亚洲 国产 在线| 欧美日韩福利视频一区二区| 欧美激情久久久久久爽电影| 亚洲七黄色美女视频| 搞女人的毛片| 床上黄色一级片| 日韩大尺度精品在线看网址| 国产精品一及| 99久久成人亚洲精品观看| 国产欧美日韩精品亚洲av| 午夜日韩欧美国产| 国产成人精品无人区| 中文亚洲av片在线观看爽| 日韩有码中文字幕| 亚洲国产精品999在线| svipshipincom国产片| 亚洲av成人av| 欧美日本视频| 久久精品91无色码中文字幕| 成人av一区二区三区在线看| 狂野欧美激情性xxxx| 国产免费av片在线观看野外av| 色视频www国产| 中文字幕人成人乱码亚洲影| 国产在线精品亚洲第一网站| 俄罗斯特黄特色一大片| av福利片在线观看| 别揉我奶头~嗯~啊~动态视频| 亚洲专区中文字幕在线| 久久精品国产99精品国产亚洲性色| 美女午夜性视频免费| av黄色大香蕉| 露出奶头的视频| 成人国产综合亚洲| 日本一二三区视频观看| 亚洲精品一区av在线观看| 精品99又大又爽又粗少妇毛片 | 亚洲人成网站高清观看| 成在线人永久免费视频| 在线观看66精品国产| 一级作爱视频免费观看| www日本黄色视频网| 亚洲天堂国产精品一区在线| 欧美日韩中文字幕国产精品一区二区三区| 特级一级黄色大片| a在线观看视频网站| 午夜福利在线观看免费完整高清在 | 一级a爱片免费观看的视频| 免费看日本二区| 香蕉av资源在线| 亚洲中文日韩欧美视频| 叶爱在线成人免费视频播放| 一本综合久久免费| 亚洲性夜色夜夜综合| 一区二区三区国产精品乱码| 国产精品日韩av在线免费观看| 日韩欧美在线二视频| 免费av毛片视频| 国产激情偷乱视频一区二区| 18禁美女被吸乳视频| 亚洲电影在线观看av| 国产成人一区二区三区免费视频网站| 精品久久久久久,| 级片在线观看| 嫩草影院精品99| 免费av不卡在线播放| 在线观看日韩欧美| 国产一区二区在线观看日韩 | 黑人欧美特级aaaaaa片| 国产精品精品国产色婷婷| 免费av不卡在线播放| 操出白浆在线播放| 午夜福利欧美成人| 日日夜夜操网爽| 亚洲欧美一区二区三区黑人| 国产一级毛片七仙女欲春2| 国产亚洲欧美98| 1024香蕉在线观看| 99久久99久久久精品蜜桃| 成人无遮挡网站| 国内少妇人妻偷人精品xxx网站 | 精品乱码久久久久久99久播| 国产亚洲精品av在线| 亚洲五月天丁香| 日韩免费av在线播放| 亚洲精品乱码久久久v下载方式 | 又大又爽又粗| 大型黄色视频在线免费观看| www.熟女人妻精品国产| 国产亚洲欧美在线一区二区| av福利片在线观看| 无人区码免费观看不卡| 国产精品久久久人人做人人爽| 人妻丰满熟妇av一区二区三区| 淫秽高清视频在线观看| 久久国产精品影院| 中文字幕精品亚洲无线码一区| 国产成人系列免费观看| 久久国产精品人妻蜜桃| 少妇裸体淫交视频免费看高清| 国产精品1区2区在线观看.| 三级毛片av免费| 99久久精品热视频| 亚洲av成人一区二区三| 俺也久久电影网| 午夜福利18| 国产成人av激情在线播放| 男女之事视频高清在线观看| 国产高潮美女av| 欧美成人免费av一区二区三区| 亚洲精品色激情综合| 国产伦一二天堂av在线观看| 好男人在线观看高清免费视频| 日韩精品青青久久久久久| 少妇的丰满在线观看| 美女高潮喷水抽搐中文字幕| 两性午夜刺激爽爽歪歪视频在线观看| 十八禁人妻一区二区| 婷婷精品国产亚洲av在线| xxx96com| 观看美女的网站| 三级国产精品欧美在线观看 | 国产免费av片在线观看野外av| 精品国产乱子伦一区二区三区| 亚洲av电影在线进入| 小说图片视频综合网站| 国产视频内射| www.999成人在线观看| 少妇熟女aⅴ在线视频| 亚洲人成电影免费在线| 在线永久观看黄色视频| 国产熟女xx| 最近在线观看免费完整版| 最新中文字幕久久久久 | 亚洲,欧美精品.| 熟妇人妻久久中文字幕3abv| 两性夫妻黄色片| 男女下面进入的视频免费午夜| 天堂影院成人在线观看| 国产精品av久久久久免费| 女同久久另类99精品国产91| 成年免费大片在线观看| 哪里可以看免费的av片| 亚洲欧美日韩东京热| 热99re8久久精品国产| 最新中文字幕久久久久 | 在线免费观看的www视频| 搞女人的毛片| 国产精品美女特级片免费视频播放器 | 欧美色视频一区免费| 国产主播在线观看一区二区| 亚洲午夜理论影院| 精品欧美国产一区二区三| 亚洲国产看品久久| 日韩欧美在线乱码| 午夜福利视频1000在线观看| 男女下面进入的视频免费午夜| 啦啦啦韩国在线观看视频| 国模一区二区三区四区视频 | 国产成人啪精品午夜网站| 天天添夜夜摸|