• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Metal substrates-induced phase transformation of monolayer transition metal dichalcogenides for hydrogen evolution catalysis*

    2021-11-23 07:29:48ZheWang王喆andWenguangZhu朱文光
    Chinese Physics B 2021年11期
    關(guān)鍵詞:朱文

    Zhe Wang(王喆) and Wenguang Zhu(朱文光)

    1Department of Physics,University of Science and Technology of China,Hefei 230026,China

    2International Center for Quantum Design of Functional Materials(ICQD),Hefei National Laboratory for Physical Sciences at the Microscale,and Synergetic Innovation Center of Quantum Information and Quantum Physics,University of Science and Technology of China,Hefei 230026,China

    3Key Laboratory of Strongly-Coupled Quantum Matter Physics,Chinese Academy of Sciences,School of Physical Sciences,University of Science and Technology of China,Hefei 230026,China

    Keywords: transition metal dichalcogenides,phase transformation,hydrogen evolution reaction,density functional theory

    1. Introduction

    Transition metal dichalcogenides (TMDs), as a class of representative layered materials,received tremendous research attention in recent years owing to their rich electronic, optical, and catalytic properties.[1-5]In the atomic structures of TMDs,each monolayer contains a transition-metal layer sandwiched between two chalcogenide layers. The variation in the stacking geometry of the three atomic layers may leads to different phases, typically a trigonal prismatic phase (1H) and an octahedral phase(1T).An intriguing feature of monolayer TMDs is their electronic structures critically depending on the atomic-layer stacking geometry. For group-VI-element TMDs MoS2, its trigonal prismatic phase is a good semiconductor with a sizable bandgap,whereas its octahedral phase becomes metallic. This transition can be qualitatively understood as the difference in the splitting and filling of the transitionmetal d-orbital dominated energy bands due to the different crystal symmetries and coordination environments of the two phases.[6]Such distinct electronic structures may in turn lead to disparate physical and chemical properties,such as catalytic activity. Although both 1H- and 1T-MoS2has shown to be catalytic for the hydrogen evolution reaction(HER),the active sites are solely limited at the edges in the 1H phase[7,8]but include the whole basal plane of the 1T phase.[9-14]However,for pristine MoS2,the 1T phase is energetically less stable than the 1H phase. Therefore,to enhance the catalytic performance of MoS2, it is highly desirable to increase the ratio of the 1T phase via tuning the relative stability of the two phases.

    In this effort, there have been extensive attempts to induce structural phase transformation of group-VI elements Mo- and W-based TMDs and stabilize the 1T phase.[15-18]The main strategy of these research is to dope extra electrons into the TMDs via, for example, Re doping[19]and alkali ion intercalation.[20-23]Some other approaches including mechanical stress[24]and metal substrates[25-27]have also been reported. However, the stability of the obtained 1T phase still needs to be improved.[28,29]In addition, for the catalytic purpose, it is also vitally important to leave the active sites open for chemical reaction.

    In this work, we use first-principles density functional theory (DFT) calculations to investigate the effects of three low-work-function metal substrates including Ti, Zr, and Hf on the structural,electronic,and catalytic properties of monolayer MoS2and WS2. A distorted 1T phase,named 1T'phase,is identified to become energetically most stable in the presence of the metal substrates. The electronic structure analysis indicates that the metal substrates donate electrons to the MoS2and WS2monolayers,leading to the phase transformation. Meanwhile, the presence of the substrates also significantly reduces the kinetic barriers of the phase transformation. In addition, Gibbs free energy calculations suggest that the HER catalytic activity on the top surface of the 1T'-MoS2monolayers is still largely preserved as placed on the Zr or Hf substrate.

    2. Computational methods

    The first-principles DFT calculations were performed using the Viennaab initiosimulation package(VASP).[30]Core and valence electrons were described using the projectoraugmented wave (PAW) method.[31,32]The exchange and correlation functional was treated using the Perdew-Burke-Ernzerhof (PBE) parametrization of generalized gradient approximation(GGA)for structural relaxations and total energy calculations.[33]The energy cut-off of the plane wave basis was set to 300 eV. Electronic minimization was performed with a tolerance of 10?4eV, and ionic relaxation was performed with a force tolerance of 0.01 eV/?A on each ion. A vacuum region more than 15 ?A was used to ensure decoupling between neighboring slabs. AΓ-centered 18×18×1 Monkhorst-Pack[34]k-mesh was used fork-point sampling.The climbing image nudged elastic band(CI-NEB)method[35]was used to determine the minimum energy pathways of the various kinetic processes and their transition states with five intermediate geometries(images)interpolated between the initial and the final states, and the transition states were finally achieved by the optimized central image. In addition,the van der Waals corrections was included as parameterized in the semiempirical DFT-D3(BJ)method.[36,37]

    3. Results and discussion

    3.1. Structures and structural stability of TMDs with substrates

    Monolayer 1H-and 1T-MoS2(WS2),as shown in Fig.1,are both composed of three layers of atoms, and each atomic layer contains only one element stacking in a sequence of SMo(W)-S.All the atoms in each atomic layer are arranged into a close-packed triangular lattice. The difference between the two phases is their vertical stacking geometries. As shown in Figs.1(b)and 1(d),respectively,the 1H phase follows an ABA stacking sequence,while the 1T phase forms an ABC stacking sequence. For freestanding MoS2and WS2monolayers, the 1H phase is energetically most stable with total energy differences of approximately 0.8 eV from the DFT calculations. In addition, the freestanding 1T-MoS2and 1T-WS2monolayers are metastable. A more stable phase,named 1T'phase,can be derived from the high-symmetry 1T phase via local structural distortion, ending up with a 2×1 superstructure and a small band gap opening(Figs.1(e)and 1(f)).The calculated total energy of the 1T'phase is 0.25 eV/MoS2(0.32 eV/WS2) lower than that of the 1T phase,whereas it is still higher than that of 1H phase by around 0.6 eV for monolayer MoS2(WS2).

    Threehcpmetals, Ti, Zr, and Hf, are chosen to investigate the effects of low-work-function metal substrates on the structural stability and catalytic activity of monolayer MoS2and WS2. The lattices of the (0001) surface of these metals(Figs. 1(g) and 1(h)) can nicely match with the in-plane lattices of MoS2and WS2. The calculated lattice constants of MoS2and WS2in different phases and the metals along with their lattice mismatches are summarized in Table 1. The lattice mismatches between MoS2(WS2)and Ti,Zr,and Hf are~7.8%,~1.5%,and~0.4%,respectively.In the calculations of the combined systems, the lattices of MoS2and WS2are adjusted to match the optimal lattices of the metal substrates,unless otherwise specified.

    Table 1. Calculated lattice constants of MoS2 and WS2 in different phases and the metal substrates along with their lattice mismatches.

    Fig.1. Atomic structures of monolayer MoS2 (WS2),with Mo(W)atoms in red and S atoms in yellow,and the metal substrates,with the metal atoms in blue. (a)-(b)1H phase. (c)-(d)1T phase. (e)-(f)1T' phase. (g)-(h)Ti,Zr or Hf substrate. The sites of the metal atoms on the surface and second layer,and the hollow site are defined as A,B,and C,respectively.

    To determine the most favorable stacking structures of the monolayer MoS2and WS2on the metal substrates, various possible high-symmetry stacking configurations are considered.For the(0001)surface terminated slabs of hcp metals,the atoms in each layer also form a triangular lattice, and the vertical stacking follows an ABAB sequence. To label different stacking configurations of the TMDs monolayers on the metal substrates,we denote the surface layer of the metal substrates as site A and the second layer as site B. The stacking configurations of the TMDs monolayers, as shown in Fig. 2,can be labeled asXY(X,Y=A,B,C),whereXandYcorrespond to the positions of the bottom S layer and the Mo atom with respect to the underlying metal substrate, respectively.The calculation results of the MoS2/Hf system are summarized in the table of Fig.2, which shows that for the 1H phase, the most favorable stacking configuration is BA, while it is CA for the 1T and 1T'phases. More importantly, in contrast to the freestanding monolayer,the most stable structure of MoS2becomes the 1T'phase in the presence of the Hf substrate.

    To further examine the validity of our calculations, we thoroughly investigated the relative stability of various structural phases of MoS2and WS2on Ti, Zr, and Hf substrates with different settings of the lattice parameters using the optimal lattice constant of the metal substrate or the 1H-or 1TTMDs monolayers. The calculated relative energies of different phases of MoS2and WS2in the two most likely configurations CA and BA on the metal substrates are summarized in Table 2. The results clearly confirm the above conclusion.The 1T'/1T phase of MoS2and WS2monolayers are always energetically more favorable than the 1H phase on these metal substrates. In the cases of using Ti as the substrate, the 1T'phase becomes unstable exclusively as the lattice parameter is set to the lattice constant of Ti,because of a large compressive strain imposed on the TMDs monolayers. Instead, the structures were stabilized into the 1T phase,which still have lower energies than the 1H phase. Therefore, the proposed metal substrates can effectively reverse the relative thermaldynamic stability of monolayer MoS2and WS2from the 1H phase for the freestanding case to the 1T'/1T phase.

    Fig.2. Atomic structures of various possible high-symmetry stacking configurations and their relative energies in the MoS2/Hf system. The different stacking configurations are labeled as XY (X,Y =A, B, C), where X and Y correspond to the positions of the bottom S layer and the Mo atom with respect to the underlying metal substrate,respectively. All data are the energies per MoS2.

    Table 2. Relative energies of various structural phases of MoS2 and WS2 with and without the metal substrates. The combined systems with different settings of the lattice parameters using the optimal lattice constant of the metal substrate or the 1H- or 1T-TMDs. The energies of each row are relative to the energy of the most stable structure in this row. All data are the energy per MoS2 or WS2.

    Fig.3. Band structures of(a)1H-MoS2 and(b)1T'-MoS2 with and without the metal substrates,where the MoS2 derived energy bands in the combined systems are highlighted in red.

    The underlying mechanism of the metal substrateinduced phase stability reversal can be revealed from electronic structure analysis. Figure 3 shows the calculated band structures of 1H-and 1T'-MoS2monolayers on the three metal substrates,respectively,where the MoS2derived energy bands are highlighted in red. For comparison, the calculated band structures of freestanding MoS2monolayers in the 1H and 1T'phases are also illustrated in Fig.3.Although the energy bands of MoS2are modified to a certain extent in the combined systems due to the hybridization with the metal substrates, the positions of the original band edges of freestanding MoS2can still be identified. From these plots,it can be seen that for both 1H and 1T'phases,the Fermi levels of the combined systems were always moved up into the original conduction bands of MoS2, indicating the existence of effective electron transfer from the metal substrates to the MoS2monolayers. This observation is also consistent with our initial design of taking advantage of a low-work-function metal substrate to donate electrons into TMDs so as to reverse the relative stability from the 1H phase to the 1T'/1T phase.

    3.2. Kinetics of phase transformation

    Kinetics is also a key factor for the feasibility of phase transformation. In this regard,we investigated the kinetic processes and calculated the energy barriers of MoS2and WS2monolayers transforming from the 1H phase to the 1T phase in the presence of the metal substrates. Since the rate-limiting processes for the 1H phase to the 1T and 1T'phases are essentially the same,[39]we use the 1T phase as the final state to simplify the calculation. The difference between 1H and 1T phases is the vertical alignment of the two chalcogen layers. The phase transformation thus can be achieved by simply moving one of the chalcogen layers collectively with respect to the other two atomic layers. However, when the TMDs monolayers placed on the metal substrates, the top and the bottom chalcogen layers become inequivalent, and thus there are two possible phase transformation pathways from the 1H phase to the 1T phase. For the 1H phase, the positions of the top and bottom S layer are both at the site B (defined in Fig. 1) with respect to the underlying metal substrate. The phase transformation from the 1H phase to the 1T phase can be achieved by simply moving the top or the bottom S layer from the site B to the site C. Figures 4(a) and 4(c) show the calculated energy profiles of the kinetic processes involving the moving of the top S layer. Compared with the cases of freestanding monolayers, the energy barriers are effectively reduced from~1.6 eV to~1.2 eV.More interestingly,in the kinetic process involving the moving of the bottom S layer as shown in Figs. 4(b) and 4(d), the energy barriers are further substantially reduced to~0.7 eV. For both cases, the optimized transition states correspond to the moving S atoms located nearly at the bridge sites of the central Mo/W layer.The energy barriers to move the bottom S layer are smaller than the barrier of a freestanding monolayer MoS2transforming from the 1T'phase to the 1H phase (~0.9 eV).[39]Such a 1T'to 1H phase transformation has been demonstrated to be experimentally accessible for MoS2.[28,29]All these results indicate that the proposed metal substrates can effectively facilitate the phase transformation of adsorbed MoS2and WS2monolayers from the 1H phase to the 1T'/1T phase.

    Fig.4. Two possible phase transformation pathways from the 1H phase to the 1T phase. (a)MoS2 with the moving of the top S layer,(b)MoS2 with the moving of the bottom S layer,(c)WS2 with the moving of the top S layer,(d)WS2 with the moving of the bottom S layer. In all plots,the green circles and arrows attached to S atoms indicate the moving atom and the direction of atomic motion during the process of the phase transformation.

    3.3. Substrate effects on the hydrogen evolution reaction

    We next investigate the catalytic activity of the 1T'-MoS2and 1T'-WS2monolayers with the support of the metal substrates. Different from the 1T'phase achieved by ion intercalation, the top surface of the TMDs monolayers is still freely exposed for the chemical reaction. In addition,the metal substrates can be used directly as an electrode. Therefore, such a combined system is an ideal setup for the electrocatalytic HER.

    It has been commonly recognized that the catalytic performance of an HER is essentially dictated by the Gibbs free energy (?GH) of H adsorption on the catalysts with a value around zero being optimal.[40]For this reason and simplicity,we calculated the Gibbs free energies of atomic hydrogen adsorption on the metal substrate supported MoS2and WS2monolayers with 4×4 supercells as a measure. The calculation results are summarized in Table 3. For freestanding MoS2, the basal plane of the 1H phase is catalytically inert,?GH=1.92 eV, while the 1T'phase is active, with a ?GHof 0.19 eV. In the presence of the metal substrates, the ?GHof 1H-MoS2is reduced to~1.5 eV, but still too large for the HER.For 1T'-MoS2,although their ?GHare generally increased by the metal substrates, the ?GHof 1T'-MoS2with Zr and Hf substrates are 0.48 eV and 0.56 eV, respectively,which are still comparable to the ?GHof Au (~0.5 eV).[41]For the case of 1T'-MoS2/Ti, the ?GHincreases to 1.30 eV,which may be related to the large lattice mismatch. For the cases of 1T'-WS2, their ?GHare always larger than those of 1T'-MoS2on the same metal substrate,among which the 1T'-WS2/Zr system has the lowest ?GHas large as 0.75 eV.To sum up,MoS2with Zr or Hf as the substrate may be considered as a promising HER catalyst.

    Table 3. The Gibbs free energy(?GH)of the hydrogen evolution reaction for 4×4 TMDs supercell with and without the metal substrates at 1/16 H coverage.

    Overall, the metal substrates reduced the ?GHof the 1H phase and increased the ?GHof the 1T'phase. According to previous studies on freestanding TMDs,[42,43]the strength of H adsorption on the surface of TMDs is determined by the ability of the surface chalcogen atoms to attract electrons from H, and ?GHclosely correlates to the position of the lowest unoccupied state of the catalyst (the conduction band minimum for semiconductors or the Fermi level for metals) with respect to the vacuum level. To examine its validity in our systems,we plot ?GHversusthe lowest unoccupied state positionεLUS, which is calculated as the energy difference of the vacuum level and the conduction band minimum for freestanding MoS2(WS2) or the Fermi level for MoS2(WS2) in the presence of the metal substrates. As shown in Fig. 5, an obvious linear correlation is revealed, which in consistent with the previous work,[42,43]and also indicates thatεLUSis still a significant determinant for the HER of MoS2(WS2)on the metal substrates. In addition,compared with the freestanding monolayer MoS2(WS2), the values ofεLUSincrease for the 1T'phase and decrease for the 1H phase in the presence of the metal substrates,which can be attributed to the interaction and charge transfer between the MoS2(WS2) and the metal substrates.

    Fig.5.Correlation between the Gibbs free energy ?GH and the lowest unoccupied state εLUS,which is calculated as the energy difference of the vacuum level and the conduction band minimum for freestanding MoS2(WS2)or the Fermi level for MoS2 (WS2)in the presence of the metal substrates.

    4. Conclusions

    In summary,we have demonstrated from both energetics and kinetics aspects that low-work-function metals Ti,Zr,and Hf can be used as a functional substrate to effectively make monolayer MoS2and WS2undergo structural transformation from the 1H phase to the 1T'/1T phase,based on DFT calculations. In addition,1T'-MoS2with Zr or Hf as a substrate may function as a potential catalyst for the HER.

    Acknowledgment

    Computational support was provided by National Supercomputing Center in Tianjin.

    猜你喜歡
    朱文
    Prediction of quantum anomalous Hall effect in CrI3/ScCl2 bilayer heterostructure
    Machine learning potential aided structure search for low-lying candidates of Au clusters
    Modeling the heterogeneous traffic flow considering the effect of self-stabilizing and autonomous vehicles
    走三邊
    秦川好
    唱起號子走漢江
    熱鬧的大山
    Teacher:Teacher—dominant or Student—centered
    西部論叢(2017年3期)2017-09-11 06:21:44
    朱文韜 平凡之中展現(xiàn)別樣風(fēng)采
    北方人(2017年12期)2017-07-25 09:17:06
    Imaging complex near-surface structures in Yumen oil field by joint seismic traveltime and waveform inversion
    石油物探(2017年1期)2017-03-15 10:46:51
    国产免费av片在线观看野外av| 亚洲国产色片| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 搞女人的毛片| 2021天堂中文幕一二区在线观| 五月玫瑰六月丁香| 给我免费播放毛片高清在线观看| 国产成人啪精品午夜网站| 欧美高清成人免费视频www| 我的老师免费观看完整版| 久久中文看片网| 久久6这里有精品| 又爽又黄无遮挡网站| 国产激情偷乱视频一区二区| 国内少妇人妻偷人精品xxx网站| 香蕉av资源在线| 国产精品久久久久久人妻精品电影| 色视频www国产| 真人做人爱边吃奶动态| 在线十欧美十亚洲十日本专区| 成人精品一区二区免费| 高清毛片免费观看视频网站| 深夜精品福利| 免费人成在线观看视频色| 一区二区三区国产精品乱码| 一级毛片女人18水好多| 欧美乱码精品一区二区三区| 激情在线观看视频在线高清| 国产午夜福利久久久久久| 国产三级中文精品| 国产欧美日韩一区二区三| 99精品欧美一区二区三区四区| 国产欧美日韩精品亚洲av| 天天添夜夜摸| 亚洲av免费在线观看| 哪里可以看免费的av片| 性色av乱码一区二区三区2| 国产精品一区二区三区四区免费观看 | 久久久久久久久中文| 伊人久久精品亚洲午夜| 成人av一区二区三区在线看| 精品国产美女av久久久久小说| 欧美日韩乱码在线| 熟女人妻精品中文字幕| 国产色爽女视频免费观看| 欧美最新免费一区二区三区 | 波多野结衣高清无吗| 男人舔奶头视频| 最好的美女福利视频网| 宅男免费午夜| 久久亚洲真实| 欧美中文综合在线视频| 亚洲在线自拍视频| 国产精品国产高清国产av| 在线观看av片永久免费下载| 亚洲精品一区av在线观看| 亚洲精品美女久久久久99蜜臀| 69av精品久久久久久| 久久九九热精品免费| 一级作爱视频免费观看| 午夜激情福利司机影院| 18禁裸乳无遮挡免费网站照片| 欧美色欧美亚洲另类二区| 老司机午夜十八禁免费视频| 国产精品久久久久久久久免 | 成人无遮挡网站| 午夜免费激情av| 国产单亲对白刺激| 国产在线精品亚洲第一网站| 亚洲国产日韩欧美精品在线观看 | 人人妻,人人澡人人爽秒播| 亚洲成人久久性| 人人妻,人人澡人人爽秒播| 男女下面进入的视频免费午夜| 十八禁网站免费在线| 麻豆国产97在线/欧美| 免费大片18禁| 一区二区三区免费毛片| 欧美日韩一级在线毛片| 人妻久久中文字幕网| 免费在线观看日本一区| 国产精品国产高清国产av| 国产三级中文精品| 精品国产美女av久久久久小说| 色综合站精品国产| 搡老妇女老女人老熟妇| 国产麻豆成人av免费视频| 夜夜夜夜夜久久久久| 欧美乱色亚洲激情| 久久99热这里只有精品18| 18美女黄网站色大片免费观看| 欧美中文综合在线视频| 免费在线观看影片大全网站| 国产精品精品国产色婷婷| xxxwww97欧美| 欧美绝顶高潮抽搐喷水| 九九久久精品国产亚洲av麻豆| 中国美女看黄片| 男女那种视频在线观看| 欧美+亚洲+日韩+国产| 九九热线精品视视频播放| 99久久精品国产亚洲精品| 好看av亚洲va欧美ⅴa在| 村上凉子中文字幕在线| 狠狠狠狠99中文字幕| 校园春色视频在线观看| 动漫黄色视频在线观看| 久久久久久大精品| 一卡2卡三卡四卡精品乱码亚洲| 白带黄色成豆腐渣| 亚洲18禁久久av| 成人av在线播放网站| 一级毛片高清免费大全| 欧美在线黄色| 午夜福利视频1000在线观看| netflix在线观看网站| 亚洲乱码一区二区免费版| 变态另类丝袜制服| 国产成人欧美在线观看| 久久国产精品影院| 女生性感内裤真人,穿戴方法视频| 黄色片一级片一级黄色片| 9191精品国产免费久久| 男女做爰动态图高潮gif福利片| 精品久久久久久久末码| 可以在线观看毛片的网站| 久久久久亚洲av毛片大全| 叶爱在线成人免费视频播放| 国产精品永久免费网站| 国产爱豆传媒在线观看| 亚洲av熟女| 久久久久精品国产欧美久久久| 999久久久精品免费观看国产| 哪里可以看免费的av片| 特大巨黑吊av在线直播| 又紧又爽又黄一区二区| 欧美日韩中文字幕国产精品一区二区三区| 免费看日本二区| 婷婷精品国产亚洲av| 亚洲,欧美精品.| bbb黄色大片| 熟妇人妻久久中文字幕3abv| 亚洲精品色激情综合| 亚洲成人久久爱视频| 国产精品99久久久久久久久| 在线免费观看的www视频| 国产真实乱freesex| 亚洲成av人片在线播放无| www日本黄色视频网| 亚洲精品影视一区二区三区av| 两个人看的免费小视频| 男女午夜视频在线观看| 桃红色精品国产亚洲av| 一本综合久久免费| 男女床上黄色一级片免费看| 国产单亲对白刺激| 人妻夜夜爽99麻豆av| 成年免费大片在线观看| 又紧又爽又黄一区二区| 99国产综合亚洲精品| 欧美中文日本在线观看视频| 亚洲精品在线美女| 少妇裸体淫交视频免费看高清| 亚洲久久久久久中文字幕| 成年女人看的毛片在线观看| 搡老妇女老女人老熟妇| 成人一区二区视频在线观看| 国产高清激情床上av| 久久久色成人| 757午夜福利合集在线观看| 国内揄拍国产精品人妻在线| 美女 人体艺术 gogo| 国产成+人综合+亚洲专区| 一进一出好大好爽视频| 亚洲一区高清亚洲精品| 国产午夜福利久久久久久| 天天添夜夜摸| 精品一区二区三区av网在线观看| 亚洲国产精品sss在线观看| 中亚洲国语对白在线视频| 亚洲av成人精品一区久久| 日本五十路高清| 精品久久久久久久末码| 国产伦一二天堂av在线观看| 亚洲熟妇中文字幕五十中出| 内地一区二区视频在线| 此物有八面人人有两片| 中亚洲国语对白在线视频| 国产精品野战在线观看| 亚洲激情在线av| 一进一出抽搐动态| av福利片在线观看| 免费看美女性在线毛片视频| 日本一本二区三区精品| av国产免费在线观看| 久久久久久大精品| 精品99又大又爽又粗少妇毛片 | 岛国在线观看网站| 色综合站精品国产| 两个人看的免费小视频| avwww免费| 国产淫片久久久久久久久 | 亚洲中文字幕日韩| 最近最新中文字幕大全免费视频| 真人做人爱边吃奶动态| 最新中文字幕久久久久| 成年免费大片在线观看| 日韩欧美 国产精品| 深爱激情五月婷婷| 啦啦啦观看免费观看视频高清| 亚洲自拍偷在线| 日本一二三区视频观看| 国产精品亚洲美女久久久| 丰满的人妻完整版| 性欧美人与动物交配| 夜夜看夜夜爽夜夜摸| 乱人视频在线观看| 精品人妻一区二区三区麻豆 | 免费看光身美女| 两人在一起打扑克的视频| 欧美中文综合在线视频| 国内精品一区二区在线观看| eeuss影院久久| 欧美日韩乱码在线| 国产精品久久久久久久久免 | 国产精品久久久久久久久免 | 看免费av毛片| 日本免费一区二区三区高清不卡| 亚洲无线在线观看| 成人鲁丝片一二三区免费| 国产免费男女视频| 热99在线观看视频| 最后的刺客免费高清国语| 午夜精品一区二区三区免费看| 麻豆久久精品国产亚洲av| 国产一区二区亚洲精品在线观看| 熟女人妻精品中文字幕| 亚洲午夜理论影院| 无遮挡黄片免费观看| 亚洲av第一区精品v没综合| 亚洲在线自拍视频| 婷婷六月久久综合丁香| 男人和女人高潮做爰伦理| 国产毛片a区久久久久| 国产一区二区在线av高清观看| 亚洲久久久久久中文字幕| 久久精品人妻少妇| 一级作爱视频免费观看| 国产99白浆流出| 欧美成人性av电影在线观看| 国产伦精品一区二区三区四那| av国产免费在线观看| bbb黄色大片| 亚洲中文字幕日韩| 国模一区二区三区四区视频| 又黄又爽又免费观看的视频| 亚洲av日韩精品久久久久久密| 欧美国产日韩亚洲一区| 99国产极品粉嫩在线观看| 男人的好看免费观看在线视频| 伊人久久精品亚洲午夜| 极品教师在线免费播放| 国产伦精品一区二区三区四那| 91麻豆精品激情在线观看国产| 亚洲精品456在线播放app | 亚洲电影在线观看av| av视频在线观看入口| 少妇的逼水好多| 宅男免费午夜| 亚洲avbb在线观看| 欧美在线黄色| 蜜桃亚洲精品一区二区三区| 精品久久久久久,| 成人性生交大片免费视频hd| 黄色日韩在线| 欧美成人性av电影在线观看| 日韩国内少妇激情av| 长腿黑丝高跟| 亚洲在线自拍视频| 久久婷婷人人爽人人干人人爱| 99热6这里只有精品| 午夜两性在线视频| 亚洲aⅴ乱码一区二区在线播放| 丁香六月欧美| 哪里可以看免费的av片| 人妻丰满熟妇av一区二区三区| 搡女人真爽免费视频火全软件 | 国产亚洲精品久久久久久毛片| 性色av乱码一区二区三区2| 啦啦啦韩国在线观看视频| 亚洲激情在线av| 老司机午夜福利在线观看视频| 此物有八面人人有两片| 三级毛片av免费| 日本黄大片高清| 亚洲精品久久国产高清桃花| 国产精品98久久久久久宅男小说| 亚洲国产精品成人综合色| 无限看片的www在线观看| 琪琪午夜伦伦电影理论片6080| 亚洲av成人精品一区久久| 色综合亚洲欧美另类图片| 欧美成人免费av一区二区三区| 男女午夜视频在线观看| 色视频www国产| 男人舔奶头视频| 国产淫片久久久久久久久 | 久久人人精品亚洲av| 一级作爱视频免费观看| 两个人的视频大全免费| 99在线视频只有这里精品首页| 亚洲专区国产一区二区| 精品久久久久久久末码| 一级黄色大片毛片| 午夜老司机福利剧场| 国产毛片a区久久久久| 免费观看人在逋| 少妇的逼水好多| 国产一区二区在线av高清观看| 亚洲av成人精品一区久久| 国产蜜桃级精品一区二区三区| 欧美日韩亚洲国产一区二区在线观看| av国产免费在线观看| 欧美黄色淫秽网站| 亚洲国产精品999在线| 美女 人体艺术 gogo| 日韩免费av在线播放| 青草久久国产| 午夜福利在线观看免费完整高清在 | 欧美黑人巨大hd| 国产探花极品一区二区| 欧美日韩乱码在线| 757午夜福利合集在线观看| 性色av乱码一区二区三区2| 国产午夜精品论理片| or卡值多少钱| 久久精品亚洲精品国产色婷小说| 搡老妇女老女人老熟妇| 又黄又爽又免费观看的视频| 免费搜索国产男女视频| 国语自产精品视频在线第100页| 亚洲av第一区精品v没综合| 无限看片的www在线观看| 俄罗斯特黄特色一大片| 欧美绝顶高潮抽搐喷水| 性色av乱码一区二区三区2| 国产精品亚洲美女久久久| av在线天堂中文字幕| 久久精品国产亚洲av香蕉五月| 熟女少妇亚洲综合色aaa.| 精品久久久久久,| 欧美黄色淫秽网站| 欧美在线黄色| 国产精品 欧美亚洲| 亚洲美女视频黄频| 尤物成人国产欧美一区二区三区| 色吧在线观看| 亚洲人成网站高清观看| 少妇的逼好多水| 国产色婷婷99| 天堂√8在线中文| 人妻丰满熟妇av一区二区三区| 亚洲18禁久久av| 精品久久久久久久久久免费视频| 免费高清视频大片| 国产精品一区二区免费欧美| 亚洲成人精品中文字幕电影| 久久天躁狠狠躁夜夜2o2o| a级一级毛片免费在线观看| 婷婷精品国产亚洲av在线| 亚洲七黄色美女视频| 国产久久久一区二区三区| 99国产极品粉嫩在线观看| 深爱激情五月婷婷| 欧美高清成人免费视频www| 日本精品一区二区三区蜜桃| 美女高潮的动态| 亚洲精品亚洲一区二区| 夜夜爽天天搞| 在线播放无遮挡| 久久久久久久午夜电影| 久久人妻av系列| avwww免费| 精品无人区乱码1区二区| 免费在线观看影片大全网站| 欧美成人一区二区免费高清观看| 国产亚洲精品综合一区在线观看| www.色视频.com| 国产69精品久久久久777片| 免费在线观看影片大全网站| 夜夜爽天天搞| 亚洲无线观看免费| 国产国拍精品亚洲av在线观看 | 小蜜桃在线观看免费完整版高清| 国产伦精品一区二区三区视频9 | 日日夜夜操网爽| 精华霜和精华液先用哪个| 亚洲av熟女| 国产伦精品一区二区三区四那| 成人国产一区最新在线观看| 男人和女人高潮做爰伦理| 夜夜看夜夜爽夜夜摸| 国产精品久久久久久人妻精品电影| 看免费av毛片| 每晚都被弄得嗷嗷叫到高潮| 成人无遮挡网站| 欧美一级a爱片免费观看看| 欧美区成人在线视频| 欧美成人性av电影在线观看| 中文字幕久久专区| 国产精品香港三级国产av潘金莲| 亚洲最大成人手机在线| 免费av观看视频| 国产私拍福利视频在线观看| 成年免费大片在线观看| 亚洲电影在线观看av| av视频在线观看入口| 亚洲成av人片在线播放无| 十八禁网站免费在线| 国产av一区在线观看免费| 国产成人系列免费观看| 欧美日韩一级在线毛片| 国产精品久久久久久久电影 | 在线观看舔阴道视频| 中文字幕人妻丝袜一区二区| 法律面前人人平等表现在哪些方面| 日韩欧美国产一区二区入口| 久久九九热精品免费| 亚洲专区国产一区二区| 两个人视频免费观看高清| 韩国av一区二区三区四区| 亚洲精品美女久久久久99蜜臀| av黄色大香蕉| 在线观看一区二区三区| 亚洲一区高清亚洲精品| 日韩精品青青久久久久久| 禁无遮挡网站| 日本成人三级电影网站| 18禁在线播放成人免费| 亚洲av成人精品一区久久| 亚洲美女视频黄频| 非洲黑人性xxxx精品又粗又长| 在线免费观看的www视频| av视频在线观看入口| 91在线观看av| 天堂√8在线中文| 国产 一区 欧美 日韩| 91av网一区二区| 麻豆国产av国片精品| 欧美日韩精品网址| 我要搜黄色片| 久久久久免费精品人妻一区二区| 99精品欧美一区二区三区四区| 中出人妻视频一区二区| 久久久久久九九精品二区国产| 精品一区二区三区视频在线 | 国产精品精品国产色婷婷| 久久精品国产综合久久久| 成年女人永久免费观看视频| 国产成人a区在线观看| 色吧在线观看| 在线播放国产精品三级| av天堂在线播放| 久99久视频精品免费| 老汉色∧v一级毛片| 老鸭窝网址在线观看| 又黄又粗又硬又大视频| 亚洲国产欧美人成| 色综合欧美亚洲国产小说| 亚洲国产精品999在线| 亚洲av免费高清在线观看| 国产乱人伦免费视频| 天天添夜夜摸| 看免费av毛片| 久久久久久久久久黄片| 精品久久久久久成人av| 国产一级毛片七仙女欲春2| 最后的刺客免费高清国语| 色老头精品视频在线观看| 90打野战视频偷拍视频| 黑人欧美特级aaaaaa片| 国产三级中文精品| 成人av在线播放网站| h日本视频在线播放| 18禁在线播放成人免费| 国产欧美日韩精品一区二区| 美女高潮喷水抽搐中文字幕| 欧美一级毛片孕妇| 国产三级在线视频| 别揉我奶头~嗯~啊~动态视频| 老司机深夜福利视频在线观看| 老汉色av国产亚洲站长工具| 欧美一级毛片孕妇| 欧美一区二区精品小视频在线| 亚洲狠狠婷婷综合久久图片| 欧美丝袜亚洲另类 | 中文字幕av成人在线电影| 男人的好看免费观看在线视频| 手机成人av网站| 免费看美女性在线毛片视频| 久久久久性生活片| av在线蜜桃| 高清毛片免费观看视频网站| 99久久99久久久精品蜜桃| 最近视频中文字幕2019在线8| 亚洲人成网站高清观看| 他把我摸到了高潮在线观看| 国产又黄又爽又无遮挡在线| 一进一出好大好爽视频| 国产av一区在线观看免费| 国产蜜桃级精品一区二区三区| 亚洲国产精品久久男人天堂| 欧美av亚洲av综合av国产av| 日本撒尿小便嘘嘘汇集6| 波野结衣二区三区在线 | 91在线精品国自产拍蜜月 | 国产一区二区在线av高清观看| tocl精华| 熟妇人妻久久中文字幕3abv| 叶爱在线成人免费视频播放| 国产亚洲av嫩草精品影院| 在线十欧美十亚洲十日本专区| 18禁在线播放成人免费| 亚洲成av人片在线播放无| 久久久久久国产a免费观看| 人妻丰满熟妇av一区二区三区| 亚洲精品美女久久久久99蜜臀| 天堂网av新在线| 香蕉av资源在线| 欧美日韩亚洲国产一区二区在线观看| 少妇丰满av| 亚洲不卡免费看| 国产精品久久久人人做人人爽| 亚洲第一欧美日韩一区二区三区| 无遮挡黄片免费观看| 一级黄片播放器| 国产av在哪里看| 成年免费大片在线观看| 亚洲国产精品999在线| 国产麻豆成人av免费视频| 97碰自拍视频| 99热6这里只有精品| 男女午夜视频在线观看| www国产在线视频色| 欧美bdsm另类| 欧洲精品卡2卡3卡4卡5卡区| 国产精品香港三级国产av潘金莲| 欧洲精品卡2卡3卡4卡5卡区| 精品国产美女av久久久久小说| 最近最新中文字幕大全电影3| 黄片小视频在线播放| 亚洲av成人精品一区久久| 亚洲精品粉嫩美女一区| 人人妻人人看人人澡| 亚洲av一区综合| 国产乱人伦免费视频| 午夜免费激情av| 一进一出抽搐gif免费好疼| 在线看三级毛片| 啦啦啦免费观看视频1| 久久伊人香网站| 国产精品免费一区二区三区在线| 国产探花在线观看一区二区| 中文字幕熟女人妻在线| 在线十欧美十亚洲十日本专区| 一边摸一边抽搐一进一小说| 三级国产精品欧美在线观看| 亚洲人成伊人成综合网2020| 亚洲国产精品999在线| 国产久久久一区二区三区| 精品乱码久久久久久99久播| 国产激情欧美一区二区| 黄色视频,在线免费观看| 成人国产综合亚洲| 性色avwww在线观看| av在线蜜桃| av片东京热男人的天堂| 亚洲成人中文字幕在线播放| 法律面前人人平等表现在哪些方面| 日韩欧美精品v在线| 成年女人毛片免费观看观看9| 国产一区在线观看成人免费| 国内久久婷婷六月综合欲色啪| www.色视频.com| 国产色爽女视频免费观看| 99热只有精品国产| 精品人妻一区二区三区麻豆 | 亚洲欧美日韩东京热| 亚洲av一区综合| 亚洲国产精品合色在线| 精品久久久久久久末码| 身体一侧抽搐| xxxwww97欧美| 搡女人真爽免费视频火全软件 | 亚洲在线自拍视频| 国产一区二区在线av高清观看| 欧美日韩国产亚洲二区| 亚洲国产精品成人综合色| 亚洲电影在线观看av| 少妇人妻精品综合一区二区 | 国产 一区 欧美 日韩| 黄片小视频在线播放| 一区二区三区国产精品乱码| 亚洲七黄色美女视频| 久久精品91蜜桃| 18禁黄网站禁片午夜丰满| eeuss影院久久| 国产亚洲精品综合一区在线观看| 欧美乱妇无乱码| 男女做爰动态图高潮gif福利片| 成人永久免费在线观看视频| 久久午夜亚洲精品久久| 色在线成人网| 国产又黄又爽又无遮挡在线| 亚洲无线在线观看|