• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Parametric decay instabilities of lower hybrid waves on CFETR

    2022-09-24 08:00:32TaotaoZhou周濤濤NongXiang項農(nóng)ChunyunGan甘春蕓GuozhangJia賈國章andJialeChen陳佳樂
    Chinese Physics B 2022年9期
    關(guān)鍵詞:傳統(tǒng)觀念拓寬礦山

    Taotao Zhou(周濤濤) Nong Xiang(項農(nóng)) Chunyun Gan(甘春蕓)Guozhang Jia(賈國章) and Jiale Chen(陳佳樂)

    1Institute of Plasma Physics,Hefei Institutes of Physical Science,Chinese Academy of Sciences,Hefei 230031,China

    2University of Science and Technology of China,Hefei 230026,China

    3Centre of Magnetic Fusion Theory,Chinese Academy of Sciences,Hefei 230031,China

    Keywords: lower hybrid,parametric instability,CFETR

    1. Introduction

    In order to maintain the steady-state operation in a tokamak,a substantial net toroidal plasma current is required.[1,2]Besides the bootstrap current, additional currents should be driven for the flexible control of the current profile.[3]The lower hybrid current drive (LHCD) system has been widely adopted in tokamak due to its high efficiency since the first successful demonstration in the PLT tokamak.[4]Recently,it also became a candidate for sustaining plasma current in operation scenarios of China Fusion Engineering Test Reactor (CFETR), a future bridging device between ITER and DEMO.[5,6]However,in some pioneering LHCD experiments with high densities(ne>0.8×1020m-3),sudden loss of fast electrons and current drive efficiency was detected,[7-9]which may also happen on CFETR with higher densities. The phenomenon results from the power depletion at the plasma edge induced by the nonlinear effects of the injected lower-hybrid(LH)wave.[10]One of the most promising mechanisms is the parameter instability(PI).[11]

    The PI process describes that a pump wave delivers its energy to two child waves when the pump power exceeds its nonlinear threshold.[10]It has been widely studied since 1970s when it was used to explain the power coupling failure in the LH heating experiments.[12-15]By solving the Vlasov equation under a dipole electric field approximation near the LH frequency, the nonlinear dispersion relation describing the PI process was first established by Porkolab.[16]Based on the results of the dispersion relation and other contemporaneous approaches, various possible decay channels were discussed in different parameter limits.[17]For the LHCD experiments in tokamaks, only two of the decay channels are found to be important.[11]One refers to the child-mode combination of a low-frequency ion cyclotron quasi-mode (ICQM) and an LH sideband with a small frequency shift. It is a possible reason for the observed non-monotonic envelope in the frequency spectra.[18,19]The other is the combination of an ion sound quasi-mode (ISQM) and an LH sideband, which causes the frequency broadening.[10]In the critical work of Cesarioet al.,[20]the ISQM-type PI was also found to be able to affect the LH deposition process through the spectral broadening on the parallel refractive indexn‖.

    Since an increased temperature or a decreased density was found to be able to reduce PIs of the two decay channels,[21,22]inspiring progress has been made in recovering the LHCD efficiency by mitigating PI in recent high-density experiments. Frascati Tokamak Upgrade (FTU) is the first tokamak achieving high-efficiency LHCD in a line-averaged density of 1.5×1020m-3with PIs suppressed through increasing the edgeTe.[23]In EAST,the LHCD efficiency is recovered by decreasing edge density with strong wall lithiation.[24]In experiments of Alactor-C Mod, efficient LHCD was realized with reduced density shoulders.[25,26]

    Fig. 1. The ne-Te distribution of SOL plasma in Alactor-C Mod,[25]CFETR,[28] DEMO,[27] EAST,[30] FTU,[23] ITER,[27] and JET.[29]These SOL ne-Te lines start from the antenna grill and end up at their own separatrix.

    To learn the nature of PI in CFETR or other situations with unforeseen parameter sets, understanding the parameter dependence is crucial. Besides a lowerneand a higherTe, a lower PI has also been found to be related to a higher magnetic fieldB0, a higher pump frequencyω0, and a higher ion mass based on numerical parameter scanning.[21,22]However,it is still hard to apply the existing conclusion to CFETR as the change of the parameter regime can also affect the parameter dependence. For example,the ICQM growth rate for JET-like parameters increases linearly withne,[22,31]while for FT parameters it increases withneat a weakening speed.[11]For the density range in the edge regions of JET, EAST and C-Mod, the ISQM growth rate decreases withneat low densities (<2.0×1018m-3) but increases at high densities.[22]As for the dependence onn‖of the child mode, the growth rate increases withn‖at a low density (2.5×1017m-3), but decreases at a high density (1.0×1018m-3).[29]Therefore,analytical analysis is required for determining the division of parameter regimes. As will be seen in this paper, a key parameter dividing the regimes will be found by analyzing the dispersion relation of the low-frequency mode. The characteristic of each regime will be studied, as well as some possible new decay channels and parameter dependence.

    The rest of the paper is organized as follows. The nonlinear dispersion relation we solved is introduced in Section 2.In Section 3,the PI decay channels and parameter dependence in different parameter limits are discussed by analyzing the PI growth rates, while the numerical solutions are also given to verify the validity. In Section 4, the analytical formula is further applied to investigate the PIs on CFETR. Finally, the summary is presented in Section 5.

    2. Physical model

    The widely used nonlinear dispersion relation,derived by Porkolab in the electrostatic framework with full-kinetic ions and drift-kinetic electrons,[16,18]is applied in this paper to describe the PI process of an LH pump. Here, a homogeneous and collisionless plasma is considered with a magnetic fieldB0in thezdirection of Cartesian coordinates. For simplicity, the density and temperature of ions and electrons can be assumed to be the same (ni?ne,Ti?Te). An LH eigenmode (ω0,k0) with a high amplitude electric fieldE0oscillates in the plasma as the pump wave,whereω0is the angular frequency andk0is the wave number. The pump wave decays into a low-frequency mode (ω,k) and an LH sideband(ω1,k1)or(ω2,k2),where the selection rulesω1,2=ω ?ω0,k1,2=k ?k0are satisfied. When the LH sideband(ω1,k1)is resonant, the sideband(ω2,k2)becomes non-resonant and its contribution is negligible as compared to the resonant one.[32]The dispersion relation based on the above assumptions takes the form

    Here,εis the linear dispersion relation of the low-frequency mode and takes the form

    withωcebeing the electron cyclotron frequency.

    The coupling coefficientα1corresponds to the pumpsideband quasi-linear coupling, whileα3andβ3denote the quasi-linear and nonlinear coupling,respectively,between the pump and low-frequency mode.[17,31]These coefficients are

    3. PI in different parameter regimes

    3.1. Key parameter determining the characteristics of PI

    The left and right exponential terms in the square bracket correspond to ISQM withωr≈kzvtiand ICQM withωr≈ωci+kzvti, respectively. Here, the ISQM term is in the order of 1, and the ICQM term is in the order ofλi, suggesting that the ISQM is much stronger than ICQM in this limit.

    由于受到傳統(tǒng)觀念的影響,以往在進(jìn)行礦山資源的開采時本著“先開發(fā)、后治理”的原則,久而久之,造成了礦山地質(zhì)環(huán)境的嚴(yán)重惡化。為了改變這一現(xiàn)狀,需要加強對礦山地質(zhì)環(huán)境保護與治理工作的研究,不斷完善監(jiān)測方案,積極拓寬資金渠道,針對地質(zhì)環(huán)境破壞狀況采取可行、合理的綜合性保護與治理措施。

    Forλi≥1,the Im(κi)can be derived using the expression ofκifrom Brambilla,[34]

    Fig. 2. Normalized numerical growth rate γ/ω0 (black solid lines) versus the normalized real frequency of the low frequency mode ωr/ωci with typical parameter sets for different λi limits: (a)λi=0.024;(b)λi=0.99,kzρi=0.26;(c)λi=8.0,kzρi=0.6. The blue dashed line in(c)notes the peak location derived from Eq.(15).

    To understand these expressions in different limits ofλimore intuitively,especially the unclear decay channel implied by Eq. (15), numerical studies are also performed by solving Eq. (1). The detailed solving process for accessing the numerical PI growth rates in this paper follows Ref. [22]. Figure 2 shows theωrspectra of the numerical PI growth rates under three differentλilimits. For the case ofλi?1 shown by Fig. 2(a), two unstable regions are found. They locate atωr?ωciandωr≈ωci, which obviously correspond to the ISQM and ICQM, respectively. ISQM here is much stronger than ICQM.In Fig.2(b)(λi~1),up to 4 unstable modes are found, which are actually ISQM and ICQM harmonics. ICQMs here are much stronger than ISQM. In Fig. 2(c), whenλi?1 andkzρiapproaches 1, the ICQM harmonics can be still observed from the peaks nearωr≈nωci. Compared with Fig.2(b),these ICQMs overlap seriously,and look rather like a single peak with maximum value atωr=kvti.In this sense,the decay channel seems to be a special form of the ICQMs. From the analysis of Eqs. (14) and (15), it should also be noticed that the ion damping has changed from the cyclotron damping to the Landau damping during the overlapping. Therefore,we should regard the peak as a new decay channel driven by the nonlinear ion Landau damping(NILD)rather than the simple overlapping of the ICQMs.

    wherepB=B20/2μ0is the magnetic pressure(μ0is the permeability of the free space).

    Essentially,it is the plasma pressurepdetermining the PI decay channels,andpwill be the key parameter in the following discussion on PI parameter dependence. To give a clear division of different pressure regimes, a critical pressurepcritis defined usingλi=1,and

    The dependence on pressure can then be concluded as follows.Whenp ?pcrit, it is the low-pressure regime and there are only ISQM and fundamental ICQM.Whenp ?pcrit,it is the high-pressure regime and the NILD decay channel takes effect. For the intermediate regime, i.e.,p~pcrit, decay channels of multiple ICQM harmonics are found.

    3.2. Low-pressure regime

    As mentioned in the last subsection, ISQM and fundamental ICQM are the main decay channels of this regime. By substituting the corresponding characteristic real frequencies(ωr=kzvtifor ISQM,ωr=ωci+kzvtifor ICQM)into Eqs.(10)and(13),we can obtain the analytical growth rates of the two decay channels. For clarity and direct use,they are written in explicit forms with respect to the parameters.

    The terms in the first bracket of Eqs. (18) and (19) result from the susceptibility terms,which depend heavily on the pressure. According to Eq. (18), a higher pressure can stabilize ISQM.SinceFin Eq.(19)is an increasing function with respect top/pcrit, higher pressure may lead to higher ICQM growth rate. In the low-pressure limit,clear parameter dependence can be obtained by rewriting Eqs. (18) and (19) to the lowest order ofp/pcrit.

    Fig.3. The trends of ISQM and ICQM growth rates(purple dashed lines)on ne[(a),(c)]and Te[(b),(d)]predicted by Eqs.(20)and(21). Here p/pcrit is in the range of 0.01-0.2, a typical value for the low-pressure regime. In(a)and(c), the ^ne is the normalized to the critical densityB0ω0 to show whether the range is in the low density or high density limit. Here, the effects of both density limits are included since ^ne is 0.15-1.8. As verification, the corresponding numerical parameter dependence of ISQM and ICQM growth rates (black solid lines) is also plotted. For better comparison,the constants of the analytical lines(C in the legends)are chosen as the mean values of the numerical lines.

    In a qualitative aspect, the dependence in this regime agrees well with the published works.[21,22]Quantitatively,the present results can additionally show the sensitivities to the parameter through their powers in the equations. For example,ISQM is more sensitive toTethan ICQM in both density limits. In the high density limit,ISQM also increases withne,but with a rather slower speed than ICQM.

    In Fig. 3, the dependence of growth rates predicted by Eqs. (20) and (21) onneandTeare plotted, together with the corresponding numerical growth rates as verification. The numerical growth rate of a decay channel indicates the peak growth rate of the corresponding unstable region similar to that shown in Fig.2. Consequently,most of the numerical growth rates agree with the analytical trends. In Fig.3(a),the analytical trend of ISQM grows slightly slower than the numerical growth rate because the finite effect of the term 1-1.89p/pcritin Eq.(18)not included.

    3.3. High-pressure regime

    In the high density regime,only the NILD decay channel can be found. As illustrated in Eq.(13),the ion susceptibility here is independent ofp/pcrit. The characteristic frequency of NILD isωr=1.17kzvti, where susceptibility term reaches its maximum value. Therefore, the growth rate of NILD can be derived as

    The expression can also be used for quick estimation on growth rate like Eqs. (18) and (19). In the high density limit for the high pressure,the parameter dependence is

    It can be easily seen that the parameter dependence of NILD is the same as the ISQM in the low-pressure limit, because both of their susceptibility terms are almost irrelevant to the ion cyclotron motion and then contribute nothing to the dependence. For ISQM,only the ion motion parallel toB0is considered.For NILD,the ions move approximately in a straight line within a wavelength of the low-frequency mode as it is much shorter than the Larmor radius.

    Fig.4. Similar to Fig.3,the analytical trends(purple dashed lines)on ne and Te predicted by Eqs.(27)and(28),compared with the corresponding numerical NILD growth rates(black lines).Here,p/pcrit is in the range of 6-20;kzρi is in the range of 0.6-1.9,typical for the high-pressure regime. [(a),(b)]Dependence on ne in the low and high density limits,respectively. (c)Dependence on Te.

    For the high-pressure regime, the trend predictions from Eqs. (27) and (28) are also compared with the numerical parameter dependence in Fig. 4. It can be seen that the trends agree with the numerical results,except for some subtle jitters on the numerical lines in Fig.4(c). The jitters are attributed to insufficient overlapping of the ICQM harmonics as shown by Fig.2(c). They will vanish whenTefurther rises.

    3.4. Intermediate regime

    The dependences onneandB0shown in Eq. (30) are quite different from the present knowledge. Under the effect ofE0zcoupling term, an increasingneor a decreasingB0no longer strengthens the growth rates of the ICQMs but decreases them instead. Actually, such a trend holds in a very finite parameter range. As the density increases further, the effect of theE0⊥×B0term will take in charge,and the dependences onneandB0are then recovered as described by Eq.(31).

    Fig. 5. The susceptibility term Imversus λi. Here, κi is in a complete form of Eq.(12),kzρi is fixed at a typical value of 0.3.

    Fig.6. Similar to Fig.3, the analytical trends of ICQM and its secondary harmonic(ICQM2)predicted by the middle parts of Eqs.(30)and(31)are shown as purple dashed lines,while the relevant numerical growth rates are shown as black solid lines for comparison. All the scans are performed around p/pcrit =1 for ICQM, and p/pcrit =2 for ICQM2, referring to the parameter range of the intermediate regime. The positions with the critical pressure pcrit (2pcrit for ICQM2) are labeled with blue dot-dashed lines. The dependence on ne in the low density limit is shown in(a)and(d),while in the high density limit shown in(b)and(e). [(c),(f)]The trends on Te.

    Table 1. Summary of the parameter dependence of PI growth rates in different density limits and pressure regimes.

    In the next section, the theory is applied in PI estimation for the typical profile of CFETR hybrid scenario. The radial profile will be divided into regimes representing different dominant decay channels and parameter dependence. To observe the validity of the analytical descriptions, numerical growth rates will also be calculated by scanning with pointby-point parameters.

    4. PIs in the hybrid scenario of CFETR

    4.1. Division of pressure regimes on the CFETR profile

    Here,a typical set of CFETR edge parameters is studied.The density and temperature distributions along the radial direction are shown in Fig.7(a). These data are extracted from a set of typical CFETR edge data for the hybrid scenario,which is provided by Chenet al.[28]The toroidal magnetic field at the plasma core isBt=6.5 T, and the magnetic field at the lowfield-side edge is around 5 T.As for the ions,pure deuterium gas is used for the numerical setup(mi/me=3672). Following the last section, the density and temperature of ions are assumed the same as electrons. A 4.6 GHz 10 MW LH pump is injected into the plasma with a nominaln0zat 1.7.[36]The antenna cross section is set perpendicular to the radial axis. Its areaSis assumed to be 1 m2.

    Fig.7. (a)The plasma density(blue solid line)and temperature(green dashed line)distribution near the separatrix at the outer mid-plane. The radial position xs is the distance from the separatrix. Negative values of xs are inside the separatrix. (b)The radial profile of the normalized pressure p/pcrit and the division of the pressure regimes.The green area is the low-pressure regime,while the yellow area refers to the intermediate regime and the red area is the high-pressure regime. The blue dot-dashed line corresponds to the critical pressure. The red dashed line marks where the values of E0⊥×B0 term and E0z term are equal,ne=B0ω0,and neither of them could be neglected in the vicinity.

    Considering a smooth convective growth in the inhomogeneous plasma,[29,37]the parallel refractive index of the sidebandn1zis chosen as a low value of 3. Then in Fig.7(b),the corresponding pressure distribution of CFETR in shown. It can be seen that the critical pressure locates just near the separatrix. Hence, the outer part of the SOL corresponds to the low-pressure regime. The region ofxs=-1~3 cm belongs to the intermediate regime,while the high-pressure regime distributes inside the separatrix.

    Fig.9. The growth rates versus xs,showing the comparison between the numerical growth rates extracted from Fig.8 and the corresponding analytical approximations. (a)Comparison between the numerical ISQM growth rate and Eq.(18). (b)Numerical ICQM growth rate compared with Eq.(19). (c)Numerical NILD growth rate compared with Eq.(26).

    4.2. Growth rates as functions of radial positions

    In Fig.8, numerical growth rates of various decay channels are shown as a function ofxs. We can see that from the outside of the separatrix to the inside of the separatrix, the most unstable decay channel changes in the order of ISQM,ICQM,ICQM2,and finally NILD.ISQM is the strongest decay channel at the far edge ofxs>4.5 cm, while ICQM dominates at most parts of the SOL (xs=0~4.5 cm). The ICQM2 dominates within a centimeter inside the separatrix(xs=-1~0 cm),and NILD becomes the major decay channel atxs=-4~-1 cm. The radial distributions of the dominant decay channels agree with the division of the parameter regimes shown in Fig. 7(b). Among the shown decay channels, the ICQM has the maximum growth rate near the position where thepcritlocates. The maximum growth rate is 1.6×10-3ω0,which is a value slightly lower than the growth rates found in conventional tokamaks,[24,25,29]implying that comparable PI can also be found in a CFETR-like plasma edge.

    Fig. 8. The distribution of the numerical growth rates on the radial profile for different decay channels, including ISQM(black dot-dash),ICQM (blue solid), ICQM2 (brown dot-dash) and NILD (red-solid).The growth rate of a decay channel is the maximum growth rate scanning the vicinity of the characteristic frequency.

    Notice that Eqs. (18), (19) and (26) are explicit expressions of growth rates,which can be used for PI estimation by directly substituting the parameters. In Fig.9, the applicability of these equations are checked by comparing their results on the profile with the numerical ones which have been shown in Fig. 8. In Figs. 9(a) and 9(b), the analytical growth rates of ISQM and ICQM in the low-pressure regime are checked.It can be found that Eqs. (18) and (19) agree well with the numerical black line atxs>3 cm, and fail whenxsis lower than 3 cm. Similarly, in Fig. 9(c), the NILD growth rate in the high-pressure regime is checked. It is almost valid at-4 cm<xs<-1 cm,and fails elsewhere. The disagreement atxs<-4 cm is attributed to electron absorption in highTe,which is not included in the analytical growth rates.

    4.3. Effects of Nz,B0,and ω0

    Fig.10. The division of the parameter regimes and the corresponding numerical growth rates affected by[(a),(d)]a higher N1z at 6,[(b),(e)]a higher B0 at 9 T and[(c),(f)]a higher ω0 at 8 GHz. Parameters used here are the same as those in Fig.7 except the changed one. The gray zones found in(a)refer to stable regions where the sidebands are strongly damped by electrons.

    In Figs.10(d)-10(f),the radial distribution of the numerical growth rates is plotted correspondingly. The distribution of dominant decay channels almost follows the division of parameter regime shown in Figs. 10(a)-10(c). Furthermore,comparing the numerical results in Fig. 10 with the original results in Fig. 8, we can see that the change in the numerical growth rates also follows the analytical predictions. Since the ISQM growth rate in the low-pressure regime can hardly be affected by neitherNzandB0norω0, their results in all subfigures are almost unchanged. According to Eq. (21), ICQM growth rate in the low-pressure regime increases withNzand decreases withB0andω0. Correspondingly, it is stronger in Fig.10(d)and stabilized in Figs.10(e)and 10(f).

    5. Discussion and conclusions

    PI is a ubiquitous phenomenon found in LHCD process near plasma edge with low electron temperature. For a reactor level tokamak like CFETR, the onset of PI may be a serious issue affecting the LHCD efficiency as it has higher edge densities and higher pump LH power. In this paper,the nonlinear dispersion relation is analytically and numerically solved to understand the PI effects in CFETR and in further wide parameter ranges.

    By analyzing the susceptibility terms of the PI growth rate, the pressure is found to be an important parameter determining the PI decay channels. In the low-pressure regime,ISQM is the dominant decay channel. It decreases rapidly with pressure and is eventually overtaken by the ICQM and its harmonics in the intermediate regime. In the high-pressure regime,only NILD decay channel is found.

    Explicit forms of PI parameter dependence in each pressure regime are obtained by further analysis, which has been summarized in Table 1. The parameter dependence found in the low-pressure regime shows a good agreement with the published work.[21,22]In the intermediate regime,ICQMs display a quite different dependence from that in the low pressure due to the cyclotron motion of ions. For example, they may stop from increasing withneand even decrease if the density is low enough. In the high-pressure regime,where the perpendicular ion orbit is almost a straight line just like the parallel motion,the parameter dependence recovers to the same as ISQM.

    PIs in CFETR are investigated by applying the above analytical results to a typical set of parameters of the hybrid scenario. Numerical calculations are also performed to verify and replenish the analytical conclusions. Along such anne-Tecoupled profile,all the three pressure regimes are found successively. The ISQM-dominant low-pressure regime occupies the outer half of SOL, while the inner half of SOL and the separatrix belong to the intermediate regime. The highpressure regime occupies the region several centimeters inside the separatrix. As a result, the fundamental ICQM in the intermediate regime is the most unstable PI decay channel of the profile, with a maximum growth rate comparable to the maximum growth rates in conventional tokamaks. Increasing parameters likeB0orω0can help reduce the dominant ICQMtype PI and the low growth rate of NILD,but has little effect on ISQM-type PI.

    Through this work, the present understanding of PI parameter dependence is rearranged in the clue of pressure. For investigating PI in a certain position, we can now understand its decay channel and parameter dependence just by determining which pressure regime it locates.Sensitivities of parameter dependence are now clarified through the analytical expressions. For example,in the past,we only knew that the PI decays with an increasingTe. Now we realize that for ICQM,the growth rate decays fastest withTein the intermediate regime and slowest in the low-pressure regime. This work also shows some situations with unforeseen parameter dependence. For instance, if the density of the intermediate regime is sufficiently low, the ICQM growth rate may stop from increasing withneand even decrease.

    It should be noticed that the additional effects on sidebands such as plasma inhomogeneity and finite pump width may strongly limit the growth of sideband with highN1zor aδ1nearπ/2, whereδ1is the angle betweenk0⊥andk1⊥.[37,38]These effects are not considered here because this paper mainly focuses on the analysis of the PI growth rate.Since a rather traditional version of PI model is used for the simplicity of the analysis, effects mentioned in the recent PI models such as collision and electromagnetic pumps could not be included.[39,40]The former can inhibit PIs near the antenna mouth, while the latter reduces PIs at high densities. In the future,more efforts on these issues will be made to refine the present results.

    Appendix A:Derivation to an explicit form of the PI growth rate

    To give an explicit form ofγNL, the coefficients ofμ1,shown as Eqs.(7)-(9),aresimplifiedto

    To make the parameter dependence ofγNLmore clear,we transform the pump potentialφ0into a realistic parameter such as the pump powerP0. The relation between them is approximately

    where the angleδ1has been set asπ/2 to seek the maximum growth rate.

    Acknowledgements

    Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFE0300406 and 2019YFE00308050) and the National Natural Science Foundation of China (Grant Nos. 11975272, 12175274,12005258, and 11705236). We sincerely appreciate the data support from the CFETR physics team.

    猜你喜歡
    傳統(tǒng)觀念拓寬礦山
    小小羊肚菌 拓寬致富路
    城市道路拓寬改造設(shè)計探討
    四大“礦山修復(fù)”方法
    在礦山里耕耘(國畫)
    神劍(2021年3期)2021-08-14 02:30:08
    智能化礦山建設(shè)在中小型礦山的應(yīng)用探討
    昆鋼科技(2021年2期)2021-07-22 07:47:06
    我國礦企海外十大礦山簡介
    我省拓寬企業(yè)“混改”——不搞“一刀切”、不搞“拉郎配”
    傳統(tǒng)觀念與民法結(jié)構(gòu):再論中國古代民法的價值
    法制博覽(2017年1期)2017-02-14 14:31:03
    電視廣告中女性模式化形象分析
    改變傳統(tǒng)教學(xué)觀念 培養(yǎng)數(shù)學(xué)閱讀能力
    東方教育(2016年6期)2017-01-16 22:35:10
    有码 亚洲区| 别揉我奶头 嗯啊视频| 午夜免费男女啪啪视频观看| 97超碰精品成人国产| 黄色一级大片看看| 男女下面进入的视频免费午夜| 亚洲熟妇中文字幕五十中出| 人妻系列 视频| 我要看日韩黄色一级片| 中国美女看黄片| av在线天堂中文字幕| 国国产精品蜜臀av免费| 最近中文字幕高清免费大全6| 亚洲av免费高清在线观看| 国产精品永久免费网站| 看十八女毛片水多多多| 久久婷婷人人爽人人干人人爱| 我要看日韩黄色一级片| 国产精品伦人一区二区| 国产精品一区二区三区四区免费观看| 自拍偷自拍亚洲精品老妇| АⅤ资源中文在线天堂| 成人性生交大片免费视频hd| 国产大屁股一区二区在线视频| www.av在线官网国产| 美女大奶头视频| 中文字幕熟女人妻在线| 美女高潮的动态| 欧美潮喷喷水| 日本免费一区二区三区高清不卡| 国产av不卡久久| 一本久久中文字幕| 亚洲三级黄色毛片| 欧美+亚洲+日韩+国产| 色哟哟·www| 国产老妇伦熟女老妇高清| 国产大屁股一区二区在线视频| 国语自产精品视频在线第100页| 婷婷色综合大香蕉| 一个人免费在线观看电影| 午夜激情欧美在线| 成人永久免费在线观看视频| 亚洲欧美日韩无卡精品| 国产高清有码在线观看视频| 女的被弄到高潮叫床怎么办| 国内精品一区二区在线观看| 日韩中字成人| 听说在线观看完整版免费高清| 精品人妻熟女av久视频| 亚洲欧美成人精品一区二区| 只有这里有精品99| 乱人视频在线观看| 久久草成人影院| 精品少妇黑人巨大在线播放 | 国产一区二区在线av高清观看| 久久久色成人| 国产成人精品一,二区 | 亚洲精品456在线播放app| 亚洲国产日韩欧美精品在线观看| 免费看a级黄色片| 久久久精品欧美日韩精品| 午夜激情欧美在线| 成人高潮视频无遮挡免费网站| 亚洲自拍偷在线| 免费无遮挡裸体视频| 丝袜喷水一区| 亚洲第一区二区三区不卡| 亚洲av熟女| 日本一二三区视频观看| 国产探花在线观看一区二区| 又粗又爽又猛毛片免费看| 国产一区二区激情短视频| 亚洲国产精品成人久久小说 | 偷拍熟女少妇极品色| 麻豆国产av国片精品| 久久久精品大字幕| 久久欧美精品欧美久久欧美| 在线观看美女被高潮喷水网站| 成人二区视频| 国产高清不卡午夜福利| АⅤ资源中文在线天堂| 成人鲁丝片一二三区免费| 久久精品国产亚洲av涩爱 | 一本精品99久久精品77| 12—13女人毛片做爰片一| 床上黄色一级片| 久99久视频精品免费| 欧美变态另类bdsm刘玥| 亚洲国产精品sss在线观看| 精品国产三级普通话版| 国产一区二区三区av在线 | 成人高潮视频无遮挡免费网站| 欧美bdsm另类| 一本久久中文字幕| 18+在线观看网站| 国产亚洲5aaaaa淫片| 最近视频中文字幕2019在线8| 韩国av在线不卡| 欧美日韩国产亚洲二区| 精品一区二区免费观看| 久久久国产成人免费| 国产精品野战在线观看| 亚洲国产精品sss在线观看| 一区二区三区四区激情视频 | 99在线人妻在线中文字幕| 一进一出抽搐动态| 欧美日本视频| 蜜臀久久99精品久久宅男| 久久综合国产亚洲精品| 如何舔出高潮| 午夜福利在线观看免费完整高清在 | 亚洲国产精品成人久久小说 | 99国产精品一区二区蜜桃av| 老师上课跳d突然被开到最大视频| 日本-黄色视频高清免费观看| 又粗又硬又长又爽又黄的视频 | 人体艺术视频欧美日本| 国产亚洲91精品色在线| 久久99热6这里只有精品| 国产免费男女视频| 亚洲欧美成人综合另类久久久 | 国产色爽女视频免费观看| 精品一区二区三区人妻视频| 青春草亚洲视频在线观看| 免费看av在线观看网站| 婷婷亚洲欧美| 国产黄a三级三级三级人| 午夜激情福利司机影院| 亚洲最大成人中文| 国产精品人妻久久久影院| 成人性生交大片免费视频hd| 日韩国内少妇激情av| 一区福利在线观看| 精品欧美国产一区二区三| 波多野结衣巨乳人妻| 村上凉子中文字幕在线| 插阴视频在线观看视频| 91精品一卡2卡3卡4卡| 国产 一区精品| 少妇猛男粗大的猛烈进出视频 | 日韩强制内射视频| 国内久久婷婷六月综合欲色啪| 日本黄色视频三级网站网址| 我要看日韩黄色一级片| 一本精品99久久精品77| 久久人人精品亚洲av| 国产成人a∨麻豆精品| 国产亚洲av片在线观看秒播厂 | 99热精品在线国产| 亚洲精品成人久久久久久| av卡一久久| 又黄又爽又刺激的免费视频.| 国产高潮美女av| 激情 狠狠 欧美| 亚洲欧美精品综合久久99| 变态另类成人亚洲欧美熟女| 丰满乱子伦码专区| 日本在线视频免费播放| 国产精品一区二区性色av| 听说在线观看完整版免费高清| 亚洲久久久久久中文字幕| 全区人妻精品视频| 我要搜黄色片| 日韩欧美国产在线观看| 国产三级在线视频| 国产亚洲av嫩草精品影院| 日本三级黄在线观看| 欧美激情国产日韩精品一区| 91麻豆精品激情在线观看国产| 日韩 亚洲 欧美在线| 天天一区二区日本电影三级| АⅤ资源中文在线天堂| 日本三级黄在线观看| 91久久精品电影网| 欧美成人a在线观看| 联通29元200g的流量卡| 在线观看一区二区三区| 久久久色成人| 婷婷精品国产亚洲av| 哪里可以看免费的av片| 久久精品国产鲁丝片午夜精品| 成人毛片60女人毛片免费| 青青草视频在线视频观看| 蜜桃久久精品国产亚洲av| 不卡一级毛片| 国产高清有码在线观看视频| av专区在线播放| av国产免费在线观看| 亚洲欧美清纯卡通| 国产伦在线观看视频一区| 日韩中字成人| 99热全是精品| 国产精品一区二区性色av| 少妇裸体淫交视频免费看高清| 尤物成人国产欧美一区二区三区| 久久99精品国语久久久| 欧美xxxx黑人xx丫x性爽| 国产探花在线观看一区二区| 看非洲黑人一级黄片| 久久久久网色| 久久鲁丝午夜福利片| 爱豆传媒免费全集在线观看| 99久国产av精品| 三级男女做爰猛烈吃奶摸视频| 少妇的逼好多水| 中文字幕制服av| 我的老师免费观看完整版| 国产黄色小视频在线观看| 精品人妻一区二区三区麻豆| 波多野结衣高清无吗| 美女内射精品一级片tv| 人人妻人人看人人澡| 成人国产麻豆网| 可以在线观看的亚洲视频| 岛国毛片在线播放| 欧美性感艳星| 国内精品久久久久精免费| 婷婷色综合大香蕉| 国产视频内射| 日韩欧美 国产精品| 狠狠狠狠99中文字幕| 啦啦啦观看免费观看视频高清| 国产一区二区三区av在线 | 日韩欧美精品v在线| 99久国产av精品国产电影| 内射极品少妇av片p| 深夜精品福利| 直男gayav资源| 此物有八面人人有两片| 99久久精品国产国产毛片| 国产精品乱码一区二三区的特点| 五月玫瑰六月丁香| 尤物成人国产欧美一区二区三区| 哪个播放器可以免费观看大片| 国产淫片久久久久久久久| 黄色一级大片看看| 欧美日韩乱码在线| 欧美高清成人免费视频www| 久久久久久伊人网av| 成人鲁丝片一二三区免费| 国产精品一区二区性色av| 99国产精品一区二区蜜桃av| av在线亚洲专区| 亚洲精品色激情综合| 中出人妻视频一区二区| 久久热精品热| 国内精品宾馆在线| 小说图片视频综合网站| 国产成人a∨麻豆精品| kizo精华| 久久久久久久久大av| 亚洲高清免费不卡视频| 少妇的逼水好多| 丰满的人妻完整版| 亚洲久久久久久中文字幕| 国产女主播在线喷水免费视频网站 | a级一级毛片免费在线观看| 91久久精品电影网| 一本久久精品| 欧美激情久久久久久爽电影| 偷拍熟女少妇极品色| 青春草视频在线免费观看| 久久这里只有精品中国| 午夜福利成人在线免费观看| 国产三级在线视频| 秋霞在线观看毛片| 午夜福利高清视频| 久久九九热精品免费| 亚洲最大成人中文| 在线观看美女被高潮喷水网站| 欧美最黄视频在线播放免费| 99久久中文字幕三级久久日本| 91精品国产九色| 亚洲精品乱码久久久久久按摩| 一级毛片我不卡| 久久精品国产亚洲av涩爱 | 大香蕉久久网| а√天堂www在线а√下载| 成人午夜精彩视频在线观看| 国产一区亚洲一区在线观看| 亚洲天堂国产精品一区在线| 婷婷六月久久综合丁香| 极品教师在线视频| 国产精品无大码| 最近2019中文字幕mv第一页| 成人毛片60女人毛片免费| 一区二区三区免费毛片| 99久久九九国产精品国产免费| 九九热线精品视视频播放| 十八禁国产超污无遮挡网站| 美女国产视频在线观看| 亚洲久久久久久中文字幕| 久久99精品国语久久久| 久久精品国产亚洲网站| 天天躁夜夜躁狠狠久久av| 日韩高清综合在线| av天堂中文字幕网| 精品久久久久久久末码| 亚洲色图av天堂| 日本免费a在线| a级一级毛片免费在线观看| 亚州av有码| 99久久人妻综合| 国产 一区精品| 少妇熟女欧美另类| 国产三级中文精品| 在线免费观看不下载黄p国产| 日本黄大片高清| 亚洲精品久久国产高清桃花| 黄色日韩在线| 欧美成人a在线观看| 天天一区二区日本电影三级| 校园人妻丝袜中文字幕| 搞女人的毛片| 国产黄片视频在线免费观看| 国产伦理片在线播放av一区 | 亚洲在线自拍视频| 97超视频在线观看视频| 又黄又爽又刺激的免费视频.| 国产伦精品一区二区三区视频9| 国产精品久久久久久久久免| 精华霜和精华液先用哪个| 日本撒尿小便嘘嘘汇集6| 12—13女人毛片做爰片一| 美女cb高潮喷水在线观看| 夫妻性生交免费视频一级片| 亚洲五月天丁香| 不卡视频在线观看欧美| 狠狠狠狠99中文字幕| 伦精品一区二区三区| or卡值多少钱| 久久亚洲国产成人精品v| 久久久久久国产a免费观看| 国产色婷婷99| 亚洲国产欧洲综合997久久,| 免费观看精品视频网站| 九色成人免费人妻av| 真实男女啪啪啪动态图| 丰满的人妻完整版| 观看免费一级毛片| 97超视频在线观看视频| 亚洲在线自拍视频| 哪里可以看免费的av片| a级一级毛片免费在线观看| 国产av不卡久久| 久久久精品大字幕| АⅤ资源中文在线天堂| 国产激情偷乱视频一区二区| 国产一区二区亚洲精品在线观看| 天堂av国产一区二区熟女人妻| 国产一区亚洲一区在线观看| 大又大粗又爽又黄少妇毛片口| 在线免费观看的www视频| 99久久成人亚洲精品观看| 亚洲欧美成人综合另类久久久 | 黄色日韩在线| 午夜老司机福利剧场| 波野结衣二区三区在线| 亚洲va在线va天堂va国产| 一级黄色大片毛片| 午夜福利视频1000在线观看| 日本黄大片高清| 日本欧美国产在线视频| 人妻夜夜爽99麻豆av| 国产精品国产高清国产av| 99久久中文字幕三级久久日本| 精品无人区乱码1区二区| 黄色日韩在线| 激情 狠狠 欧美| 免费黄网站久久成人精品| 大型黄色视频在线免费观看| 美女内射精品一级片tv| 国产精品不卡视频一区二区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 一级黄片播放器| 亚洲中文字幕日韩| 91在线精品国自产拍蜜月| 久久久久久久久中文| 日韩欧美三级三区| 老司机福利观看| 91久久精品电影网| 日韩欧美精品免费久久| 搞女人的毛片| 欧美性猛交黑人性爽| 久久人妻av系列| 久久精品久久久久久噜噜老黄 | 男人狂女人下面高潮的视频| 亚洲国产高清在线一区二区三| 国产一区二区三区在线臀色熟女| 欧美高清性xxxxhd video| 亚洲精品乱码久久久久久按摩| 18禁在线无遮挡免费观看视频| 国产精品蜜桃在线观看 | 免费电影在线观看免费观看| a级毛色黄片| 全区人妻精品视频| 国产高清有码在线观看视频| 一级毛片aaaaaa免费看小| 亚洲欧洲国产日韩| 午夜激情欧美在线| 99国产极品粉嫩在线观看| 少妇猛男粗大的猛烈进出视频 | 成人av在线播放网站| 国产爱豆传媒在线观看| 99热这里只有是精品在线观看| 黄片无遮挡物在线观看| 内地一区二区视频在线| 色吧在线观看| 久久这里有精品视频免费| 久久精品综合一区二区三区| 色5月婷婷丁香| 一夜夜www| 国产精品一区二区三区四区免费观看| 午夜老司机福利剧场| 国产一级毛片七仙女欲春2| 国产真实乱freesex| 在线观看av片永久免费下载| 最近的中文字幕免费完整| 国产亚洲5aaaaa淫片| 久久草成人影院| 国内揄拍国产精品人妻在线| 日本一本二区三区精品| 国产精品三级大全| 国产伦在线观看视频一区| 亚洲欧美日韩卡通动漫| 亚洲中文字幕日韩| 欧美xxxx性猛交bbbb| 日本与韩国留学比较| 99久国产av精品| 国产蜜桃级精品一区二区三区| 国产色爽女视频免费观看| 国产黄a三级三级三级人| 97超碰精品成人国产| 精品免费久久久久久久清纯| 精品不卡国产一区二区三区| 简卡轻食公司| 深夜a级毛片| 一卡2卡三卡四卡精品乱码亚洲| eeuss影院久久| 高清毛片免费看| 深夜精品福利| 亚洲欧美成人精品一区二区| 色播亚洲综合网| 高清午夜精品一区二区三区 | 中文欧美无线码| 99热这里只有精品一区| 亚洲自偷自拍三级| 日韩在线高清观看一区二区三区| 丝袜美腿在线中文| 日本-黄色视频高清免费观看| 国产精品美女特级片免费视频播放器| 看非洲黑人一级黄片| 校园春色视频在线观看| 国产成年人精品一区二区| 小蜜桃在线观看免费完整版高清| 舔av片在线| 国产精品一区二区三区四区免费观看| 99久久精品国产国产毛片| 男女啪啪激烈高潮av片| 中文字幕制服av| 免费不卡的大黄色大毛片视频在线观看 | 亚洲最大成人手机在线| 亚洲激情五月婷婷啪啪| 晚上一个人看的免费电影| 亚洲综合色惰| 国产在线男女| 一区二区三区四区激情视频 | 少妇熟女欧美另类| 久久精品夜夜夜夜夜久久蜜豆| 乱码一卡2卡4卡精品| 久久久久久久午夜电影| 黄色一级大片看看| 精品欧美国产一区二区三| 99国产极品粉嫩在线观看| 校园春色视频在线观看| 久久人人爽人人爽人人片va| 特级一级黄色大片| 午夜免费激情av| 中文字幕av成人在线电影| 久久草成人影院| 久久99热这里只有精品18| 99精品在免费线老司机午夜| 一夜夜www| 国产亚洲精品久久久久久毛片| 国产精品久久久久久精品电影小说 | 在线观看一区二区三区| 日韩视频在线欧美| 亚洲av一区综合| 国产老妇女一区| 日韩 亚洲 欧美在线| 哪个播放器可以免费观看大片| 国产乱人偷精品视频| 有码 亚洲区| 国产精品乱码一区二三区的特点| 男女视频在线观看网站免费| 国产精品综合久久久久久久免费| 晚上一个人看的免费电影| 黑人高潮一二区| 久久亚洲国产成人精品v| 18禁在线无遮挡免费观看视频| 一进一出抽搐gif免费好疼| 国产一级毛片在线| 黑人高潮一二区| 色5月婷婷丁香| 一边摸一边抽搐一进一小说| 亚洲av中文av极速乱| 午夜福利成人在线免费观看| 一边亲一边摸免费视频| 日韩国内少妇激情av| 久久九九热精品免费| 亚洲欧美精品专区久久| av在线老鸭窝| 少妇裸体淫交视频免费看高清| 国产熟女欧美一区二区| 在线免费观看不下载黄p国产| 亚洲欧洲国产日韩| 精品久久久久久久人妻蜜臀av| 欧美zozozo另类| 三级国产精品欧美在线观看| 91精品国产九色| 国产高清视频在线观看网站| 日韩国内少妇激情av| 久久九九热精品免费| 亚洲成人精品中文字幕电影| 亚洲av成人精品一区久久| 在线观看美女被高潮喷水网站| 亚洲中文字幕日韩| 女人被狂操c到高潮| 爱豆传媒免费全集在线观看| 欧美激情国产日韩精品一区| 给我免费播放毛片高清在线观看| 国产真实伦视频高清在线观看| 天堂影院成人在线观看| 最近视频中文字幕2019在线8| 日本成人三级电影网站| 日本撒尿小便嘘嘘汇集6| 亚洲av.av天堂| 中文资源天堂在线| 高清毛片免费观看视频网站| 人人妻人人澡欧美一区二区| 国产亚洲av片在线观看秒播厂 | 国产 一区精品| 亚洲在线观看片| 日韩成人av中文字幕在线观看| 插逼视频在线观看| 日本撒尿小便嘘嘘汇集6| 免费电影在线观看免费观看| 欧美激情国产日韩精品一区| 欧美色视频一区免费| 日本色播在线视频| 国内精品久久久久精免费| 久久6这里有精品| ponron亚洲| 亚洲图色成人| 日韩强制内射视频| 在线天堂最新版资源| 三级毛片av免费| 免费av毛片视频| 亚洲成av人片在线播放无| 好男人视频免费观看在线| 日日啪夜夜撸| 男女那种视频在线观看| 免费观看人在逋| 色哟哟哟哟哟哟| 欧美另类亚洲清纯唯美| 九九热线精品视视频播放| 黄色日韩在线| 夜夜夜夜夜久久久久| av又黄又爽大尺度在线免费看 | 亚洲国产高清在线一区二区三| 又爽又黄无遮挡网站| 哪里可以看免费的av片| 国产黄片美女视频| 麻豆精品久久久久久蜜桃| 日韩三级伦理在线观看| www.av在线官网国产| 51国产日韩欧美| 色综合亚洲欧美另类图片| 在线播放无遮挡| 99久国产av精品国产电影| 26uuu在线亚洲综合色| 国产伦精品一区二区三区四那| 午夜福利在线观看吧| 日本免费一区二区三区高清不卡| 亚洲欧美成人精品一区二区| 亚洲av男天堂| 精品久久久久久成人av| 久久久久久伊人网av| 十八禁国产超污无遮挡网站| 国产精品久久久久久精品电影| 干丝袜人妻中文字幕| 男女下面进入的视频免费午夜| 在线播放国产精品三级| 国产精品一区二区三区四区久久| 看片在线看免费视频| 嫩草影院新地址| 一级黄色大片毛片| 午夜爱爱视频在线播放| 美女大奶头视频| 久久精品国产鲁丝片午夜精品| 深夜精品福利| 91精品一卡2卡3卡4卡| 国产精品久久久久久av不卡| 一个人看的www免费观看视频| 亚洲av免费高清在线观看| 亚洲精品自拍成人| 女人被狂操c到高潮| 日韩欧美一区二区三区在线观看| 国产色爽女视频免费观看| 亚洲最大成人av| h日本视频在线播放| av女优亚洲男人天堂| 只有这里有精品99| 日本在线视频免费播放| 国产精品一区二区三区四区久久|