• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator

    2022-08-31 09:57:48MengPeng彭猛JunBoYang楊俊波HaoChen陳浩BoYuanLi李博源XuLeiGe葛緒雷XiaoHuYang楊曉虎GuoBoZhang張國博andYanYunMa馬燕云
    Chinese Physics B 2022年8期
    關(guān)鍵詞:陳浩楊俊

    Meng Peng(彭猛) Jun-Bo Yang(楊俊波) Hao Chen(陳浩) Bo-Yuan Li(李博源)Xu-Lei Ge(葛緒雷) Xiao-Hu Yang(楊曉虎) Guo-Bo Zhang(張國博) and Yan-Yun Ma(馬燕云)

    1Department of Physics,National University of Defense Technology,Changsha 410072,China

    2College of Physics and Optoelectronic Engineering,Shenzhen University,Shenzhen 518000,China

    3Key Laboratory for Laser Plasmas(MoE),School of Physics and Astronomy,Shanghai Jiao Tong University,Shanghai 200240,China

    4College of Advanced Interdisciplinary Studies,National University of Defense Technology,Changsha 410073,China

    Keywords: space radiation,laser–plasma interaction,two-dimensional material,Raman spectroscopy

    1. Introduction

    Space radiation is one of the substantial threats to spacecraft and satellites because it can severely damage solar cells and electronics onboard.[1]With the continuous deepening of human space exploration, the demands on spacecraft performance are increasing. All space agencies around the world are constantly developing various countermeasures to deal with this threat. Space radiation, which has a plenitude of different types and origins,can be extremely versatile. Space radiation is usually composed of various particles, such as electrons,protons,ions,and photons. Moreover,the energy spectra of radiation belt are very broadband,spanning multiple orders of magnitude.[1,2]Space radiation belts exist in the five strongly magnetized planets in solar system, namely, Earth,Jupiter, Saturn, Uranus, and Neptune.[3–5]According to the model based on the measurements of Pioneer and Voyager detections, the electron energy in Jupiter’s radiation belt can reach 100 MeV,which is much higher than that in Earth’s radiation belt.[5–8]

    In planetary radiation belts, energetic electrons are accelerated to form directional spectra fluxes characterized by a power-law or exponential decline towards higher energies.In contrast to space radiation,laboratory’s space radiation test facilities characterized by linacs or cyclotrons cannot produce broadband spectra, but instead monoenergetic beams,resulting in completely different energy deposition on the device.[9]Based on the chirped pulse amplification(CPA),[10]today’s laser system can generate power up to petawattregime to produce relativistic electron beam by laser–plasma interaction.[11,12]Electron beams with low energy divergence and exponential energy distribution emitted from laser-plasma accelerator (LPA) are similar to the conditions in space radiation, contributing to a booming research field, especially in the field of space radiation.[2,8,12]LPA is a workable advanced tool as a complementary source for space radiation testing. In 2017, Hiddinget al.[2]used LPA to reproduce the broadband Van-Allen belt level electron beam for systematically exploring the degradation of optocouplers,and a significant electronics degradation characterized straightforwardly by the current transfer ratio was acquired with such laboratory-made space radiation.

    The harsh radiation environment has a severe impact on the reliability of conventional silicon-based devices. The undesirable phenomena such as single event effect, total dose effect, and displacement damage, can adversely affect their performance.[13–16]Now, quantum tunneling is setting a hard limit for further miniaturization of silicon-based electronics at nanoscale technology nodes, but the adoption of novel material and/or device structure is considered beyond this limit. Of particular interest is the two-dimensional (2D) material such as graphene,[17–20]transition metal dichalcogenide(TMD),[21–23]and black phosphorus(BP).[24–26]Their intrinsically large specific area,low power requirement,and chemical stability make devices based on 2D material a promising candidate for space instrumentation.[14]The 2D materialbased integrated electronics have a smaller sensitive volume, demonstrating stronger protection against single event effects.[27]However, zero bandgap limits the application of graphene in the field of optoelectronics.[17,18]BP(0.3 eV)and TMD(<2.0 eV)have a small bandgap that hinders the potential optoelectronic application at higher energy. Recently, 2D layered metal phosphorus trichalcogenides (MPS3,M=Fe,Ni, Mn, Zn, etc.)[28–31]have received enormous attention for the excellent electronic, optical and magnetic properties derived from their electronic structure and energy band. In this article, we study the exponential energy electron beam produced by LPA for the 2D material(FePS3)testing,which has potential space application. A series of characterizations have been performed on the FePS3sample before and after electron radiation for radiation damage analysis, and the detailed discussion and conclusion are given in Section 3.

    2. Experimental details

    2.1. Preparation and characterization of FePS3

    Fig.1. (a)Schematic crystal structure of FePS3. (b)Brightfield microscope image of cleaved sheet samples exfoliated onto an oxidized silicon substrate.(c)AFM topography image of FePS3 sample,and the height profiles along line A.(d)The typical Raman spectrum of FePS3 sample showing Eu,E(3)1g,A(11g),E(14g),A(12g),Si-2TA,and Si-TO peaks.

    An optical microscope (BX41M-LED, Olympus) has been used to characterize the FePS3samples. In the case of exfoliated FePS3samples, the region edges and boundaries between different layers often run in parallel or are arranged at angles close to 60?and 120?[34](see Fig. 1(b)).This observation is due to the crack-propagation along the crystal axis of high-symmetry during exfoliation. The FePS3samples comprising areas of tens of layers with 2–20 μm lateral dimensions have been scanned by the atomic force microscopy (AFM, NT-MDT Solver SPM &SNOM). Figure 1(c) presents the AFM topography image along height profiles. Raman spectroscopy (Senterra, Bruker), as a nondestructive characterization technique, has been used to test the property of FePS3at room temperature. According to

    2.2. Electron radiation

    In 1979, laser electron acceleration was proposed by Tajima and Dawson.[40]In their theory, when an intense focused laser pulse(I ≥1018W/cm2)propagates through the underdense plasma, this plasma will excite a relativistic plasma wave with a field amplitude of 100 GV/m. This plasma wave passes through the plasma at the same speed of laser.[12,41]Massive charge displacements cause a high electric wake-field for electron acceleration to relativistic energy in a very short distance. The radiation damage experiment has been performed with a compact state-of-the-art Ti:sapphire laser system at Shanghai Jiao Tong University.[42]Here,the laser pulse with an energy ofE ~5.8 J was delivered in 29 fs over a 30μm diameter focus. The laser was focused on a gas-jet target by off-axis parabola (OAP) where the gas-jet ejected the mixed gas (0.5% N2+99.5% He) at each shot to produce a broadband electron beam by self-truncated ionization injection.[42]The whole experimental process was carried out in a vacuum chamber,as described in Fig.2.

    Fig.2. The setup of the radiation chamber for online monitoring electron beam. The indent laser system was strongly focused on the gas jet by OAP where the radiation was produced. Focus diagnostic microscope objective(2D stage),permanent magnet-based spectrometer,IP,and DRZ in the forward direction were positioned next to the gas jet.

    An infrared camera(CCD1, Spiricon OPHIR Photonics)and 2D stage were used to monitor dynamically the focused laser spot when adjusting the laser path to maximize the laser intensity on the gas jet. The top-view image of plasma channel formed by laser–plasma interaction was captured by a 12-bit CCD camera (CCD2, Pixelfly). The electron beam was recorded by the magnetic spectrometer which consists of a permanent dipole magnet,an Image Stack(IP,Fusji),a scintillator screen (DRZ, Mitsubishi Chemical), and an intensified charge-coupled device (ICCD, Andor) camera. The dipole magnet was 16 cm long, 1.0 T magnetic field strength with a 1 cm gap. The direction of magnetic field in the gap was perpendicular to its horizontal plane during installation. The distance between the exit of dipole magnet and the IP was 16.5 cm, which fully resolves the peak electron energy up to~400 MeV.The energetic electron flux could penetrate the IP to image on the DRZ,and then the fluorescence signals emitted from DRZ were recorded by ICCD online. A cumulative electron signals with 5 shots in IP are presented in Fig. 3(a).Based on the gyroradius of the electron trajectory in dipole magnet and electron signals recorded by IP, an average electron number of 1.2×107per shot is produced. The fluence of LPA-produced electron beam per shot is approximately equivalent to the electron beams with energies greater than 0.2 MeV in Earth’s radiation belt. The broadband electron spectrum is depicted in Fig.3(b)(black line).

    In order to make FePS3samples with cross-section of about 1×1 cm fully irradiated by an electron beam with a few milliradian divergence,an 8 mm thick aluminum foil has been used to enlarge the electron beam spot. Meanwhile, an InSe film has been used to monitor the uniformity and spot size of the electron beam,while the magnetic spectrometer and DRZ were positioned in the front of FePS3sample for dynamic monitoring electron beam.The schematic diagram of radiation test is depicted in Fig. 4(a), where the accumulated electron beams with 3 shots were irradiated on the FePS3samples. The transportation process of energetic electron beam in aluminum foil has been simulated with Geant4 (Version 4.10.7).[43,44]The“FTFP BERTGE”physics package was used to describe the transportation of energetic electrons and secondary particles. It was assumed that a plane particle source of 1 mm radius,50 milliradian divergence degree shot electrons to aluminum foil after 50 cm flight in vacuum. Based on the simulation results,the spot radius of the outgoing electron beam was expanded to 5 mm, fully covering the surface of testing samples(see Fig.4(b)).The simulated outgoing electron spectrum is presented in Fig.3(b)(red line).

    The energetic electron beams produced by LPA are well beyond the energy limit of Earth’s radiation belt where the majority of electrons have energies up to 15 MeV. However, it shall be pointed out that the most important aspect is the exponential electron spectrum produced by LPA.[12]Moreover, based on the simulation results, the deposited energies to FePS3sample via electron–nucleus scattering are rather constant for electron energy range above 3 MeV (see Fig. 5). The total absorbed dose of FePS3sample irradiated by LPA-produced electron beams is about 1.2 mGy, which is 10% higher than that produced by electron beams at geosynchronous orbit at the same electron intensity.

    Fig.3. The exponential electron beam produced from LPA.(a)The raw information of electron beams obtained by IP. (b) The induced broadband electron spectra before (black line, the experimental result) and after(red line,the simulated result)passing through Al foil.

    Fig.4. (a)Schematic diagram of the electron beam for radiation test. (b)The spot size of electron flux after propagating Al foil.

    Fig. 5. The simulated results of deposited energy for electron energy from 3 MeV to 400 MeV in the FePS3 sheet sample.

    3. Results and discussion

    Electron stopping is mainly controlled by inelastic scattering between the incoming energetic electron beam and the electrons in the target.[45]Inelastic scattering can excite target electrons to relatively high energy(keV),which can transfer electron excitation energy away from the central region of the lattice, causing damage far away from the collision region. When the transferred energy is large enough to exceed the threshold for target atom displacing from lattice position,it causes to ionization and bond breakage. Once electron beams transfer enough energy, or numerous inelastic scatterings occur close to each other, the cascade process develops into a complex multi-body phenomenon,leading to the lattice breakup. The region of overlapping collisions can be regarded as “hot”, called a “heat spike”,[46–48]which may lead to intense heating of crystal lattice and damage to the cylindrical heat spikes.[49]Near the sample surface, the heat spike can lead to massive sputtering evaporation.[50]The optical image of InSe film exposed to the energetic electron beam is presented in Fig. 6(a). There are significantly light spots corresponding to the thinner area formed from the massive evaporation,whereas the optical characteristics of InSe film also indicate that the electron flux uniformity was good after propagating Al foil. The energies transferred to the FePS3sample were much larger than the bond energy and Van Der Waals gap,causing the bond to broke and massive particle evaporation.As a result,electron radiation led to bulk sample cleavage and damage between areas of uneven thickness (see Figs. 6(b)–6(c)).

    The energy of electron beam far exceeds the threshold for knock-on damage,and hole formation to the crystal lattice can be initiated at energy as low as tens of keV.[51]The optical image of sheet sample after electron radiation is presented in Fig. 7(a). It has numerous cyan holes on the FePS3surface caused by electron sputtering. The electron radiation effect on the surface topography of FePS3was also characterized with AFM at ambient temperature,while the surface image and the height information of multilayer FePS3sample following radiation are shown in Figs.7(b)–7(c). The thin sheet sample has smaller average roughness (Ra) than the thick sample, which is ascribed to more average energy acquired by sample target atoms during radiation and impurities on the surface. During the preparation of sheet samples, H2O and O2molecules adhere inevitably to the sample surface. Electron radiation breaks the structure of [P2S6]4?, and the dangling bonds of S and P can combine H2O and O2molecules to form S=O and P=O bonds.

    Fig.6. (a)Optical image of InSe with obvious light spots after radiation. (b)Optical image of bulk FePS3 sample before radiation. (c) The electron-induced cleavage of bulk FePS3 sample after radiation.

    Fig. 7. (a) Brightfield microscope image of sheet samples after electron radiation. (b) AFM surface topography of FePS3 sheets following energetic electron radiation. (c)The cross-sectional height along line A in(b).

    Fig. 8. The Raman spectra of FePS3 sample before and after electron radiation. (a) Out-of-plane vibration: Eu mode. (b) Out-of-plane vibration: A(11g) mode and in-plane vibration: E(14g) mode. (c)Out-of-plane vibration: A(12g) mode.

    4. Conclusion

    In combination with the established conventional radiation source, LPA, as a complementary radiation source, can allow us to reproduce space radiation for electronic tests. In this work, a compact state-of-the-art Ti:sapphire laser system at a laser intensity ofI=2.8×1019W/cm2has been used to produce broadband electron beams for studying space radiation effects on the 2D material. In this experiment of laserplasma interaction,we have produced an exponential energetic electron beam with an average intensity of 1.4×107/shot.

    The effects of electron beam radiation on tens of layers FePS3samples have been systematically investigated with different kinds of characterization tools. Electron radiation led to the bulk sample cleavage and damage between areas of uneven thickness, while the energetic electron beam caused massive sputtering and ablation of the FePS3sheet sample, resulting in the surface of FePS3samples rough dramatically. Electron radiation also caused severe damage on the bipyramid structure of[P2S6]4?unit and the cleavage of P–P and P–S bonds,resulting in all the characteristic peaks sharply weakened to some extent, or even disappearing. It has a radiation threshold on the 2D material and device for normal operation under such harsh electron radiation. Our results pave the way towards testing the property of 2D materials under intense radiation and the allowable radiation dose for the application of 2D material and device.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No. 11975308), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA25050200), and Science Challenge Project (Grant No.TZ2018001).

    猜你喜歡
    陳浩楊俊
    Topological states switching and group velocity control in two-dimensional non-reciprocal Hermitian photonic lattice
    楊俊德:農(nóng)業(yè)豐收的“守護神”
    CONSTRUCTION OF IMPROVED BRANCHING LATIN HYPERCUBE DESIGNS?
    Investigation of hypersonic flows through a cavity with sweepback angle in near space using the DSMC method*
    DYNAMICS ANALYSIS OF A DELAYED HIV INFECTION MODEL WITH CTL IMMUNE RESPONSE AND ANTIBODY IMMUNE RESPONSE?
    陳浩悼亡詩淺析附《楚帆集》校語
    李泊城 隋邦平 楊俊顯 王綠竹 作品
    大眾文藝(2019年3期)2019-01-24 13:39:44
    《紅蜻蜓》教案
    Current Reversals of an Underdamped Brownian Particle in an Asymmetric Deformable Potential?
    醉你
    久久伊人香网站| 青草久久国产| www日本黄色视频网| 午夜精品久久久久久毛片777| 一本久久中文字幕| 亚洲精品色激情综合| 99久久精品一区二区三区| 美女免费视频网站| 精品久久久久久久毛片微露脸| 超碰av人人做人人爽久久 | 亚洲avbb在线观看| 给我免费播放毛片高清在线观看| 天堂av国产一区二区熟女人妻| 不卡一级毛片| 日韩欧美精品v在线| 我的老师免费观看完整版| 国内揄拍国产精品人妻在线| 校园春色视频在线观看| 在线视频色国产色| 国产69精品久久久久777片| 小蜜桃在线观看免费完整版高清| 日韩高清综合在线| 我的老师免费观看完整版| 亚洲五月婷婷丁香| 热99在线观看视频| 亚洲成a人片在线一区二区| 一级黄色大片毛片| 嫩草影院精品99| 色老头精品视频在线观看| 午夜激情福利司机影院| 亚洲性夜色夜夜综合| 熟女人妻精品中文字幕| 国产精品av视频在线免费观看| 欧美丝袜亚洲另类 | 色播亚洲综合网| 午夜视频国产福利| 日韩欧美免费精品| 美女被艹到高潮喷水动态| 久久久久久久精品吃奶| 国产高潮美女av| 国内精品久久久久久久电影| 久久人妻av系列| eeuss影院久久| 欧美高清成人免费视频www| 国产精品香港三级国产av潘金莲| 欧美日韩一级在线毛片| 天天一区二区日本电影三级| 99在线视频只有这里精品首页| 一进一出抽搐gif免费好疼| 99久久成人亚洲精品观看| 成人三级黄色视频| 最近最新中文字幕大全电影3| 我的老师免费观看完整版| 午夜福利视频1000在线观看| 女同久久另类99精品国产91| 叶爱在线成人免费视频播放| 久久久久久久亚洲中文字幕 | 精品一区二区三区人妻视频| 国产69精品久久久久777片| 成人欧美大片| 午夜福利免费观看在线| 网址你懂的国产日韩在线| 日韩欧美精品免费久久 | 婷婷精品国产亚洲av在线| 成人18禁在线播放| 久久久久久久精品吃奶| 国产视频一区二区在线看| 91av网一区二区| 一区二区三区激情视频| 欧美不卡视频在线免费观看| 日日夜夜操网爽| 99热6这里只有精品| 久久国产乱子伦精品免费另类| 中出人妻视频一区二区| 久久婷婷人人爽人人干人人爱| 亚洲 欧美 日韩 在线 免费| 亚洲精品在线观看二区| 在线播放无遮挡| 免费观看的影片在线观看| 国产成年人精品一区二区| 亚洲欧美日韩东京热| 老司机午夜福利在线观看视频| 国产伦精品一区二区三区视频9 | 亚洲午夜理论影院| 国模一区二区三区四区视频| 中文字幕人成人乱码亚洲影| 午夜免费男女啪啪视频观看 | 最新中文字幕久久久久| 99久久精品一区二区三区| 午夜精品久久久久久毛片777| 国产一区二区三区视频了| 色av中文字幕| 亚洲狠狠婷婷综合久久图片| 国产精品亚洲美女久久久| 久9热在线精品视频| 丁香欧美五月| 亚洲第一欧美日韩一区二区三区| 我的老师免费观看完整版| 黑人欧美特级aaaaaa片| 午夜免费激情av| 波多野结衣高清作品| 色哟哟哟哟哟哟| 老熟妇仑乱视频hdxx| 色尼玛亚洲综合影院| 桃红色精品国产亚洲av| 在线视频色国产色| 欧美色欧美亚洲另类二区| 亚洲五月婷婷丁香| 色噜噜av男人的天堂激情| 亚洲精品在线美女| 男女下面进入的视频免费午夜| 午夜福利免费观看在线| 日日摸夜夜添夜夜添小说| 99riav亚洲国产免费| 亚洲av日韩精品久久久久久密| 亚洲电影在线观看av| 老司机午夜十八禁免费视频| 亚洲精品国产精品久久久不卡| 国产精品99久久久久久久久| 国产淫片久久久久久久久 | 国产成人a区在线观看| 午夜激情福利司机影院| 久久精品国产清高在天天线| 99视频精品全部免费 在线| 免费一级毛片在线播放高清视频| 日韩高清综合在线| 99精品欧美一区二区三区四区| 两性午夜刺激爽爽歪歪视频在线观看| 日韩亚洲欧美综合| 久久精品影院6| 一个人看的www免费观看视频| 欧美一区二区亚洲| 亚洲专区中文字幕在线| 99精品在免费线老司机午夜| 黄色片一级片一级黄色片| 国产精品野战在线观看| 特大巨黑吊av在线直播| 久久午夜亚洲精品久久| 舔av片在线| 日韩成人在线观看一区二区三区| 亚洲无线观看免费| 一边摸一边抽搐一进一小说| 国产欧美日韩精品一区二区| 日韩高清综合在线| 欧美性猛交╳xxx乱大交人| 2021天堂中文幕一二区在线观| 欧美日韩福利视频一区二区| 亚洲精品粉嫩美女一区| 日日夜夜操网爽| 成人无遮挡网站| 男女午夜视频在线观看| 又紧又爽又黄一区二区| 国产精品久久久久久人妻精品电影| 日韩欧美国产一区二区入口| 一个人看的www免费观看视频| 国产视频内射| 国产精品久久久久久人妻精品电影| 亚洲精品亚洲一区二区| 亚洲国产精品合色在线| 99热6这里只有精品| 欧美成人一区二区免费高清观看| 国产高潮美女av| 午夜视频国产福利| 丰满人妻熟妇乱又伦精品不卡| 一级作爱视频免费观看| 美女高潮喷水抽搐中文字幕| 国产欧美日韩精品一区二区| 97超级碰碰碰精品色视频在线观看| 欧美性猛交╳xxx乱大交人| 成人国产一区最新在线观看| 又黄又爽又免费观看的视频| 嫩草影院入口| 少妇丰满av| 好男人电影高清在线观看| 欧美激情久久久久久爽电影| 欧美最黄视频在线播放免费| 日本在线视频免费播放| 日韩有码中文字幕| 欧美又色又爽又黄视频| 国产精品一区二区三区四区免费观看 | 亚洲国产精品999在线| 91在线观看av| 欧美极品一区二区三区四区| 最后的刺客免费高清国语| 中文字幕人妻丝袜一区二区| 亚洲真实伦在线观看| 久久欧美精品欧美久久欧美| 啦啦啦免费观看视频1| 国产精品国产高清国产av| 亚洲精品乱码久久久v下载方式 | 久久午夜亚洲精品久久| 天天添夜夜摸| 嫩草影院精品99| 少妇人妻一区二区三区视频| 国产精品久久久久久亚洲av鲁大| 一级毛片高清免费大全| 婷婷丁香在线五月| 男女床上黄色一级片免费看| 亚洲国产精品sss在线观看| 老汉色∧v一级毛片| 99久久九九国产精品国产免费| 精品久久久久久久久久免费视频| 成年人黄色毛片网站| 亚洲成人中文字幕在线播放| 欧美一区二区精品小视频在线| 大型黄色视频在线免费观看| 国产精品98久久久久久宅男小说| 午夜免费男女啪啪视频观看 | 一二三四社区在线视频社区8| 在线观看av片永久免费下载| 九九在线视频观看精品| 亚洲av五月六月丁香网| 午夜日韩欧美国产| 亚洲国产中文字幕在线视频| 在线看三级毛片| 一级作爱视频免费观看| 国产亚洲av嫩草精品影院| 午夜福利成人在线免费观看| 久久6这里有精品| 久久久久久久午夜电影| 丰满乱子伦码专区| 俄罗斯特黄特色一大片| 伊人久久大香线蕉亚洲五| 欧美日韩黄片免| 夜夜躁狠狠躁天天躁| 可以在线观看毛片的网站| 夜夜躁狠狠躁天天躁| 亚洲欧美日韩卡通动漫| 亚洲精品粉嫩美女一区| 丰满人妻一区二区三区视频av | 在线观看av片永久免费下载| 丁香六月欧美| 午夜精品久久久久久毛片777| 成人鲁丝片一二三区免费| 麻豆成人午夜福利视频| 在线观看午夜福利视频| 夜夜爽天天搞| 俄罗斯特黄特色一大片| 精品免费久久久久久久清纯| 亚洲精品美女久久久久99蜜臀| 日本成人三级电影网站| 日日夜夜操网爽| 久久久国产精品麻豆| 国产精品一区二区三区四区久久| 午夜福利欧美成人| 国产精品一及| 日韩欧美精品v在线| 动漫黄色视频在线观看| 亚洲欧美日韩东京热| 国产精品野战在线观看| 国产av一区在线观看免费| 老司机午夜十八禁免费视频| 色综合亚洲欧美另类图片| 亚洲国产精品999在线| 免费在线观看影片大全网站| 激情在线观看视频在线高清| 两性午夜刺激爽爽歪歪视频在线观看| 久久草成人影院| 老司机午夜福利在线观看视频| 国产欧美日韩一区二区精品| 欧美日韩一级在线毛片| 国产欧美日韩一区二区精品| 美女免费视频网站| 日日夜夜操网爽| 成人午夜高清在线视频| a级毛片a级免费在线| 男女床上黄色一级片免费看| 日韩欧美国产一区二区入口| 精华霜和精华液先用哪个| 亚洲av成人不卡在线观看播放网| 亚洲成人免费电影在线观看| 级片在线观看| 一本久久中文字幕| 国产精品久久久久久人妻精品电影| 在线观看av片永久免费下载| 12—13女人毛片做爰片一| 国产精品久久久久久久电影 | 久久国产乱子伦精品免费另类| 国产一级毛片七仙女欲春2| 老司机在亚洲福利影院| 国内精品久久久久精免费| 成人亚洲精品av一区二区| 国产69精品久久久久777片| 成人亚洲精品av一区二区| 一边摸一边抽搐一进一小说| 色噜噜av男人的天堂激情| 村上凉子中文字幕在线| 99久久九九国产精品国产免费| 最近最新中文字幕大全电影3| 亚洲天堂国产精品一区在线| 最近最新中文字幕大全电影3| 欧美中文综合在线视频| 成人鲁丝片一二三区免费| 俺也久久电影网| 夜夜夜夜夜久久久久| 特大巨黑吊av在线直播| 中文在线观看免费www的网站| 真人一进一出gif抽搐免费| 真人一进一出gif抽搐免费| 精品日产1卡2卡| 真人做人爱边吃奶动态| 亚洲人成网站高清观看| 国产一区在线观看成人免费| 国产真实伦视频高清在线观看 | 噜噜噜噜噜久久久久久91| 久久人人精品亚洲av| 女同久久另类99精品国产91| 国产视频一区二区在线看| 韩国av一区二区三区四区| 亚洲无线观看免费| 变态另类成人亚洲欧美熟女| 亚洲 欧美 日韩 在线 免费| 搞女人的毛片| 国产探花极品一区二区| 高潮久久久久久久久久久不卡| 男女那种视频在线观看| 51午夜福利影视在线观看| 啪啪无遮挡十八禁网站| 精品人妻偷拍中文字幕| 校园春色视频在线观看| 国产精品亚洲美女久久久| 精品国内亚洲2022精品成人| 在线国产一区二区在线| 婷婷精品国产亚洲av| 2021天堂中文幕一二区在线观| 午夜影院日韩av| 成年女人毛片免费观看观看9| 香蕉丝袜av| 制服丝袜大香蕉在线| а√天堂www在线а√下载| 免费看a级黄色片| 啦啦啦观看免费观看视频高清| 一区福利在线观看| 免费av不卡在线播放| 亚洲人成网站高清观看| 最新在线观看一区二区三区| 国产69精品久久久久777片| 日本 av在线| 悠悠久久av| 亚洲欧美日韩无卡精品| 午夜免费成人在线视频| av中文乱码字幕在线| 神马国产精品三级电影在线观看| 久久精品亚洲精品国产色婷小说| 真人做人爱边吃奶动态| 日韩国内少妇激情av| 久久精品亚洲精品国产色婷小说| 亚洲精品乱码久久久v下载方式 | 国产一区二区在线观看日韩 | 国产黄a三级三级三级人| 日韩欧美国产一区二区入口| 国产极品精品免费视频能看的| 精品福利观看| 中文字幕av在线有码专区| 国产精品野战在线观看| e午夜精品久久久久久久| 午夜激情欧美在线| 亚洲一区高清亚洲精品| 亚洲天堂国产精品一区在线| 国产精品野战在线观看| 夜夜夜夜夜久久久久| 亚洲av不卡在线观看| 给我免费播放毛片高清在线观看| 一个人免费在线观看电影| 蜜桃亚洲精品一区二区三区| 最新美女视频免费是黄的| av专区在线播放| 日韩欧美在线二视频| 免费人成在线观看视频色| 老司机午夜十八禁免费视频| 欧美国产日韩亚洲一区| 91麻豆av在线| 尤物成人国产欧美一区二区三区| 欧美乱色亚洲激情| 国产老妇女一区| 亚洲电影在线观看av| 国产一级毛片七仙女欲春2| 日韩成人在线观看一区二区三区| 日韩精品中文字幕看吧| xxxwww97欧美| 国产精华一区二区三区| 国产视频内射| 免费观看精品视频网站| 日韩国内少妇激情av| 精品一区二区三区人妻视频| 亚洲精品亚洲一区二区| 男人舔女人下体高潮全视频| 白带黄色成豆腐渣| 国产精品美女特级片免费视频播放器| 特大巨黑吊av在线直播| 成人欧美大片| 国产精品亚洲美女久久久| 麻豆成人午夜福利视频| 美女高潮的动态| 国产 一区 欧美 日韩| 国产成人av激情在线播放| 天堂av国产一区二区熟女人妻| 免费看光身美女| 亚洲成人久久性| 欧美绝顶高潮抽搐喷水| 欧美乱码精品一区二区三区| 婷婷精品国产亚洲av| 亚洲国产精品sss在线观看| 丰满乱子伦码专区| 亚洲av免费高清在线观看| 99热6这里只有精品| 一级黄片播放器| 国产综合懂色| 在线免费观看不下载黄p国产 | 动漫黄色视频在线观看| 美女免费视频网站| 国产黄a三级三级三级人| 99久久无色码亚洲精品果冻| 色视频www国产| 日日摸夜夜添夜夜添小说| 国产精品98久久久久久宅男小说| 欧美日韩亚洲国产一区二区在线观看| 欧美丝袜亚洲另类 | 国内揄拍国产精品人妻在线| 色吧在线观看| 欧美zozozo另类| 美女 人体艺术 gogo| 欧美大码av| 老熟妇乱子伦视频在线观看| 在线视频色国产色| 国产成人福利小说| 男插女下体视频免费在线播放| 欧美中文日本在线观看视频| 可以在线观看毛片的网站| 国产黄片美女视频| 村上凉子中文字幕在线| 国产av不卡久久| 毛片女人毛片| 国产色爽女视频免费观看| 网址你懂的国产日韩在线| 午夜福利18| 男女下面进入的视频免费午夜| 99精品欧美一区二区三区四区| 亚洲黑人精品在线| 免费看日本二区| 啦啦啦韩国在线观看视频| 老司机在亚洲福利影院| 亚洲国产精品999在线| 3wmmmm亚洲av在线观看| 亚洲精品色激情综合| 久久久久国内视频| 免费观看的影片在线观看| 久久久久精品国产欧美久久久| 啦啦啦观看免费观看视频高清| 亚洲一区二区三区色噜噜| 色综合站精品国产| 99热这里只有精品一区| 免费看光身美女| 亚洲自拍偷在线| 在线观看美女被高潮喷水网站 | 日韩亚洲欧美综合| 国产精品久久久久久久久免 | 亚洲激情在线av| 18禁美女被吸乳视频| 国产 一区 欧美 日韩| 欧美三级亚洲精品| 99国产精品一区二区蜜桃av| 欧美中文日本在线观看视频| 亚洲午夜理论影院| 亚洲色图av天堂| 中文亚洲av片在线观看爽| av天堂在线播放| 午夜福利视频1000在线观看| 99久久成人亚洲精品观看| 欧美三级亚洲精品| 叶爱在线成人免费视频播放| 国产精华一区二区三区| 亚洲第一电影网av| 婷婷精品国产亚洲av| 一进一出抽搐gif免费好疼| 色综合站精品国产| 国产精品永久免费网站| 真人做人爱边吃奶动态| 九九久久精品国产亚洲av麻豆| 国产高清有码在线观看视频| 真实男女啪啪啪动态图| 日韩人妻高清精品专区| 有码 亚洲区| 男女之事视频高清在线观看| 欧美一级a爱片免费观看看| 国产精品综合久久久久久久免费| 国产三级黄色录像| 亚洲人成伊人成综合网2020| 不卡一级毛片| 岛国视频午夜一区免费看| 久久久国产成人免费| 可以在线观看毛片的网站| 亚洲精品亚洲一区二区| 嫁个100分男人电影在线观看| 日韩欧美在线二视频| 少妇高潮的动态图| 国产伦精品一区二区三区视频9 | 久久婷婷人人爽人人干人人爱| 欧美激情在线99| 欧美日韩一级在线毛片| 一级毛片高清免费大全| 久久精品国产自在天天线| 精品无人区乱码1区二区| 尤物成人国产欧美一区二区三区| 日韩成人在线观看一区二区三区| 十八禁网站免费在线| 午夜激情欧美在线| 日韩欧美国产在线观看| 激情在线观看视频在线高清| 色噜噜av男人的天堂激情| 国产伦人伦偷精品视频| 免费看日本二区| 欧美最新免费一区二区三区 | 中出人妻视频一区二区| 国产精品98久久久久久宅男小说| 男人舔女人下体高潮全视频| 90打野战视频偷拍视频| 两个人看的免费小视频| 欧美日韩精品网址| 亚洲成人中文字幕在线播放| 黄色片一级片一级黄色片| 亚洲国产中文字幕在线视频| 黄色日韩在线| 日韩免费av在线播放| АⅤ资源中文在线天堂| aaaaa片日本免费| 国产成人a区在线观看| 每晚都被弄得嗷嗷叫到高潮| 亚洲性夜色夜夜综合| 在线播放国产精品三级| 午夜福利在线观看免费完整高清在 | 男人和女人高潮做爰伦理| 国产精品99久久久久久久久| 久久久久久九九精品二区国产| 欧美成狂野欧美在线观看| 亚洲国产日韩欧美精品在线观看 | 亚洲国产欧美网| 国产真实伦视频高清在线观看 | 亚洲av中文字字幕乱码综合| 久久人人精品亚洲av| 色播亚洲综合网| 国产精品永久免费网站| 欧美乱色亚洲激情| 色噜噜av男人的天堂激情| tocl精华| 窝窝影院91人妻| 每晚都被弄得嗷嗷叫到高潮| 色综合亚洲欧美另类图片| 欧洲精品卡2卡3卡4卡5卡区| 国产一区二区三区视频了| 色综合站精品国产| 老司机午夜福利在线观看视频| 精品国内亚洲2022精品成人| 一进一出好大好爽视频| 国产精品美女特级片免费视频播放器| 国产亚洲精品综合一区在线观看| 国产午夜福利久久久久久| 亚洲av日韩精品久久久久久密| 男女那种视频在线观看| 伊人久久大香线蕉亚洲五| 亚洲熟妇熟女久久| 欧美日韩一级在线毛片| 国产成+人综合+亚洲专区| 亚洲性夜色夜夜综合| 国产综合懂色| 午夜视频国产福利| 欧美不卡视频在线免费观看| 亚洲人成网站在线播放欧美日韩| 久久精品综合一区二区三区| 18禁黄网站禁片午夜丰满| 网址你懂的国产日韩在线| 国产黄a三级三级三级人| 亚洲国产中文字幕在线视频| 亚洲中文字幕一区二区三区有码在线看| 欧美日韩中文字幕国产精品一区二区三区| 天堂av国产一区二区熟女人妻| 男女下面进入的视频免费午夜| 日本撒尿小便嘘嘘汇集6| 国产精品99久久99久久久不卡| 亚洲国产欧美人成| av片东京热男人的天堂| 在线观看美女被高潮喷水网站 | 好看av亚洲va欧美ⅴa在| 亚洲成人中文字幕在线播放| 一级作爱视频免费观看| 91在线观看av| 一个人免费在线观看电影| 人妻丰满熟妇av一区二区三区| 亚洲欧美日韩无卡精品| 好男人在线观看高清免费视频| 国产免费一级a男人的天堂| 女人十人毛片免费观看3o分钟| 成人欧美大片| 丰满乱子伦码专区| 久久人妻av系列| 久久精品夜夜夜夜夜久久蜜豆| 禁无遮挡网站| 国产av在哪里看| 国产美女午夜福利| 精品国产超薄肉色丝袜足j| 久9热在线精品视频| 99久久九九国产精品国产免费| 欧美日韩中文字幕国产精品一区二区三区| 国产精品野战在线观看| 九九久久精品国产亚洲av麻豆| 少妇人妻精品综合一区二区 | 欧美在线一区亚洲| 色av中文字幕| 亚洲欧美日韩无卡精品| 麻豆成人午夜福利视频| 免费无遮挡裸体视频| 国产精品三级大全| 99精品在免费线老司机午夜| 国产精品香港三级国产av潘金莲| 禁无遮挡网站|