• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CONSTRUCTION OF IMPROVED BRANCHING LATIN HYPERCUBE DESIGNS?

    2021-09-06 07:54:04陳浩
    關(guān)鍵詞:陳浩

    (陳浩)

    School of Statistics,Tianjin University of Finance and Economics,Tianjin 300222,China E-mail:chlh1985@126.com

    Jinyu YANG (楊金語) Min-Qian LIU (劉民千)?

    School of Statistics and Data Science,LPMC&KLMDASR,Nankai University,Tianjin 300071,China E-mail:jyyang@nankai.edu.cn;mqliu@nankai.edu.cn

    Abstract In this paper,we propose a new method,called the level-collapsing method,to construct branching Latin hypercube designs(BLHDs).The obtained design has a sliced structure in the third part,that is,the part for the shared factors,which is desirable for the qualitative branching factors.The construction method is easy to implement,and(near)orthogonality can be achieved in the obtained BLHDs.A simulation example is provided to illustrate the effectiveness of the new designs.

    Key words Branching and nested factors;computer experiment;Gaussian process model;orthogonality

    1 Introduction

    Many experiments involve factors that only exist within the levels of another factor.Take printed circuit board(PCB)manufacturing,for example([1]).Here,the surface preparation method is a qualitative factor having two levels:mechanical scrubbing and chemical treatment.Under each of the two levels,there exist two different factors:pressure and micro-etch.More precisely,the factor pressure only exists when the method involves mechanical scrubbing,and micro-etch rate only exists under the level of chemical treatment.Following the de finitions in[1],the factors that only exist within the levels of another factor(like the pressure and the microetch rate)are called nested factors.Accordingly,a factor within which other factors are nested is called a branching factor;these include things such as the surface preparation method for PCB manufacturing.Such experimental situations are often encountered in computer experiments as well,for example,the motivation example of[1].The objective of that example is to optimize a turning process for hardened bearing steel with a cBN cutting tool.There is one branching factor,called the cutting edge shape,which has two levels:chamfer and hone edge.Within the chamfer,two factors(length and angle)are nested,while no factor is nested in the hone edge.In addition,there are six other factors(cutting edge radius,tool nose radius,rake angle,cutting speed,feed and depth of cut),called shared factors,which are common to both the branching and nested factors.

    Although experiments with branching and nested factors are commonly encountered,there is little literature on the design construction for such experiments.Taguchi[2]proposed pseudofactor designs by carefully assigning branching and nested factors to the columns of orthogonal arrays(OAs,[3]),where the pseudo-factor is in fact the nested factor.Later,in[4],such designs were called branching designs.However,as stated in[1],Taguchi’s method is not sufficiently general to be applied to computer experiments.Instead,Hung et al.[1]developed branching Latin hypercube designs(BLHDs)to suit computer experiments with branching and nested factors.A BLHD consists of three parts:(i)an OA for the branching factors;(ii)several Latin hypercube designs(LHDs)([5])for the nested factors;(iii)an LHD for the shared factors.An example of a BLHD is given in Table 1(Table 3 in[1]);here the BLHD has eight runs,one branching factor

    z

    ,one nested factor

    v

    ,and two shared factors:

    x

    and

    x

    .As pointed out in[1],the same levels of

    v

    (for example two 1’s)do not have the same meaning.Such a frame of a BLHD looks attractive,however the third part has no sliced structure to accommodate the qualitative branching factor.The superiority of sliced Latin hypercube designs(SLHDs)over ordinary LHDs was proved by both theoretical and simulated results in[6]when being used for computer experiments with both qualitative and quantitative factors.Thus an SLHD is more effective as the third part of a BLHD than an LHD.For an SLHD,not only the whole design,but also its slices achieve the maximum strati fication in any one-dimensional projection.Such a good property ensures that when the third part is collapsed onto the branching factor,each factor in the third part gets maximum strati fication under each level of the branching factor.Take the design in Table 1 as an example;when the third part is collapsed onto

    z

    ,it becomes the following matrix:

    Table 1 An example of a BLHD

    It is easy to see that the first column

    x

    does not get the maximum strati fication under either level of

    z

    ,which can be seen more clearly from the scatter plot in Figure 1(a);that is,when considering the projection on

    x

    ,there are two points falling into either of the intervals[1

    /

    4

    ,

    2

    /

    4)and[2

    /

    4

    ,

    3

    /

    4).Note that the levels of

    x

    and

    x

    in Figure 1 are mapped into[0

    ,

    1)through(

    x

    ?0

    .

    5)

    /

    8,where

    x

    is the

    i

    th level of factor

    x

    for

    i

    =1

    ,...,

    8 and

    j

    =1

    ,

    2.However,if we exchange the second and seventh elements of

    x

    in Table 1,then the third part becomes an SLHD with 8 runs,2 factors and 2 slices.Now,the collapsed matrix becomes

    Figure 1 (a)Scatter plot of the third part of the BLHD in Table 1;(b)Scatter plot of the third part obtained by exchanging the 2nd and 7th elements of x1in Table 1.The symbols ‘?’and ‘+’represent the four runs from the first and second slices,respectively.

    The scatter plot is presented in Figure 1(b),which shows that there is only one point from each slice falling into one of the intervals[0

    ,

    1

    /

    4)

    ,

    [1

    /

    4

    ,

    2

    /

    4)

    ,

    [2

    /

    4

    ,

    3

    /

    4)

    ,

    [3

    /

    4

    ,

    1)in each dimension;that is,each slice gets the maximum strati fication in any 4×1 or 1×4 grid.In this paper,we focus on introducing a sliced structure into the third part of BLHDs,and propose a levelcollapsing method to construct BLHDs.The obtained designs,referred to as improved BLHDs(IBLHDs),have a better structure than existing BLHDs,and can achieve near orthogonality more easily.

    The remainder of this paper is organized as follows:Section 2 provides the level-collapsing method for constructing IBLHDs.Section 3 discusses the(near)orthogonality of the IBLHDs.An example for illustrating their effectiveness is presented in Section 4.Section 5 contains some concluding remarks.

    2 Construction of IBLHDs

    First,we give some de finitions and notation.For any real number

    r

    ,「

    r

    ?denotes the smallest integer greater than or equal to

    r

    ,and for a real vector or matrix

    M

    ,「

    M

    ?is de fined to its elements.A permutation on

    Z

    is a rearrangement of 1

    ,...,n

    ,and all

    n

    !rearrangements are equally probable.An

    n

    ×

    q

    matrix is called a Latin hypercube design(LHD),denoted by

    L

    (

    n,q

    ),if each column is a permutation on

    Z

    ,and these columns are obtained independently.Denote an SLHD with

    n

    runs,

    q

    factors and

    s

    slices by

    SL

    (

    n,q,s

    ).Next,we propose the level-collapsing method for constructing IBLHDs.Without loss of generality,assume that there is only one branching factor,

    z

    ,with

    s

    levels,under each of which an

    L

    (

    n

    ,m

    )is nested.In addition,

    t

    shared factors are involved.

    Algorithm 2.1

    Step 1

    Let

    z

    =(1

    ,...,

    1

    ,...,s,...,s

    )be the branching factor,where each level

    i

    appears

    n

    times for

    i

    =1

    ,...,s

    .

    Step 2

    Construct an

    SL

    (

    sn

    ,m

    +

    t,s

    )by the method in[6],denoted by

    S

    =(

    S

    ,S

    ),where

    S

    includes

    m

    columns of

    S

    ,and

    S

    includes the left

    t

    columns.

    For the IBLHD in Table 2,there are two structural differences compared with BLHDs:(i)the third part is an

    SL

    (

    n,t,s

    )instead of an

    L

    (

    n,t

    ),which guarantees that each shared factor gets the maximum strati fication under each level of the branching factor;(ii)the LHDs in the second part are obtained by collapsing some columns of the SLHDs constructed in Step 2,which makes it easier to develop(near)orthogonality between factors.

    Table 2 IBLHD with one branching factor

    Table 3 IBLHD in Example 3.3

    Table 4 Correlations among v1,v2,x1and x2

    Remark 2.2

    Note that for a BLHD,it may happen that there is no nested factor under some level of the branching factor([1]).In this case,we just need to delete the corresponding LHD in the second part of an IBLHD.

    3 Nearly Orthogonal IBLHDs

    Orthogonality is a desirable property for experimental designs,because it guarantees that the main effects can be estimated uncorrelatedly under the first-order polynomial model.In this section,we consider nearly orthogonal IBLHDs,in which nested factors are orthogonal to each other,orthogonal to the shared factors for the whole IBLHD,and nearly orthogonal to the shared factors within each slice.

    Let us now see some further de finitions.A design is said to be orthogonal if the correlation between any two distinct columns is zero.An

    SL

    (

    n,q,s

    )is called a sliced orthogonal LHD(SOLHD,[7–12]),denoted by

    SOL

    (

    n,q,s

    ),if both the whole design and its slices are orthogonal.From the construction method in Algorithm 2.1,if the original SLHD in Step 2 is an SOLHD,then the obtained IBLHD will inherit the orthogonality to some extent.In this paper,we only take the SOLHDs constructed by Algorithm 1 in[10]as the SLHDs in Step 2 of Algorithm 2.1.Other SOLHDs in the aforementioned literature can also be used of course,and the results will be similar,that is,the resulting IBLHDs are nearly orthogonal.To present the results in Proposition 3.1,we first brie fly introduce Algorithm 1 in[10].

    Using

    OD

    (

    m

    )’s,Yang et al.[10]constructed

    SOL

    (2

    sm,m,s

    )by

    where

    D

    ,...,D

    are

    OD

    (

    m

    )’s with(

    a,b

    )

    ,...,

    (

    a,b

    ),respectively,and

    a

    =2

    s

    and

    b

    =?

    a

    +(2

    j

    ?1)for

    j

    =1

    ,...,s

    .When projected onto each dimension,each of the 2

    m

    equally spaced intervals[?2

    sm,

    ?2

    s

    (

    m

    ?1))

    ,

    [?2

    s

    (

    m

    ?1)

    ,

    ?2

    s

    (

    m

    ?2))

    ,...,

    [?2

    s,

    0)

    ,

    [0

    ,

    2

    s

    )

    ,...,

    [2

    s

    (

    m

    ?1)

    ,

    2

    sm

    )contains exactly one point of each slice.

    Proposition 3.1

    Without loss of generality,assume that there is only one branching factor with

    s

    levels.If the SLHD

    S

    =(

    S

    ,S

    )in Step 2 of Algorithm 2.1 is an

    SOL

    (2

    sm,m,s

    )in(3.1),then(i)the nested factors are orthogonal to the shared factors for the whole IBLHD,and nearly orthogonal to the shared factors within each slice,and the upper bound for the absolute correlations between any nested factor and any shared factor in the

    j

    th slice is

    (ii)the nested factors are orthogonal to each other for both the whole design and its slices.

    Before proving Proposition 3.1,we present an obvious lemma with its proof omitted.

    Lemma 3.2

    Assume that

    D

    is an

    OD

    (

    m

    ),where

    m

    =2and

    r

    ≥1 is an integer,and let

    T

    =(

    T

    ,...,T

    )=(

    D

    ,

    ?

    D

    ).Then(i)

    T

    is one permutation on set{?

    ma

    ?

    b,

    ?(

    m

    ?1)

    a

    ?

    b,...,

    ?

    a

    ?

    b,a

    +

    b,...,

    (

    m

    ?1)

    a

    +

    b,ma

    +

    b

    },

    j

    =1

    ,...,m

    ;(ii)

    T

    can be collapsed to one permutation on{1

    ,...,

    2

    m

    }by linear transformation

    where

    T

    is the

    i

    th element of

    T

    ,

    P

    =

    b/a

    +

    m

    +1for the negative levels of

    T

    ,and

    P

    =?

    b/a

    +

    m

    for the positive levels of

    T

    .

    Because the inner product is a sum that does not depend on the order of the product pairs,so we can always arrange the order of summation so that the first

    m

    levels of

    A

    are negative.Then based on the structure of the

    SOL

    (2

    sm,m,s

    )in(3.1),

    Therefore,the correlation between

    C

    and

    B

    is

    Thus,the nested factors are orthogonal to the shared factors for the whole IBLHD.This completes the proof of(i).

    (ii)Denote the columns of any two nested factors in the

    j

    th slice of the IBLHD by

    C

    and

    C

    ,respectively,which are collapsed from

    A

    and

    A

    by linear transformation based on(3.3),

    j

    =1

    ,...,s

    .Note that 〈

    A

    ,A

    〉=0,and thus,

    so corr(

    C

    ,C

    )=0.Therefore,the nested factors are orthogonal to each other within each slice.The orthogonality also holds for the whole design.This completes the proof of(ii).Note that in Proposition 3.1,the nested factors are orthogonal to the shared factors for the whole IBLHD,however,if some other SOLHDs are used as the SLHDs in Step 2 of Algorithm 2.1,the nested factors may only be nearly orthogonal to the shared factors for the whole IBLHD.Usually,the values of(3.2)are small,for example,when

    m

    =8

    ,s

    =3

    ,a

    =6

    ,b

    =?5

    ,b

    =?3

    ,b

    =?1.In this case,the upper bounds(3.2)for the three slices are 0

    .

    0162

    ,

    0

    .

    0153 and 0

    .

    0431,respectively.An illustrative example is given below.

    Example 3.3

    Consider a computer experiment with 16 runs,one branching factor

    z

    with two levels?1 and+1,two nested factors

    v

    and

    v

    ,and two shared factors

    x

    and

    x

    .According to Algorithm 2.1 and Proposition 3.1,we take an

    SOL

    (16

    ,

    4

    ,

    2)from[10]with

    a

    =4,

    b

    =?3,

    b

    =?1,which is

    Without loss of generality,the nested factors are assigned to the first two columns of

    S

    ,and after they are collapsed over

    z

    ,the final IBLHD is presented in Table 3.We can compute the upper bounds given in(3.2),which are 0

    .

    0525 and 0

    .

    0434 for the two slices.The real correlations between the nested factors and shared factors for the two slices and the whole design are listed in Table 4,which verify the conclusions in Proposition 3.1.Moreover,we can see that the upper bounds(3.2)are attainable.

    4 Effectiveness of IBLHDs

    In this section,we mainly study the performance of IBLHDs when they are used for building Gaussian process(GP)models.Although integrated analysis has been proven to be better than independent analysis([14]),we insist on using independent analysis in this paper,because different levels of the branching factor often represent remarkably different things,such as the two surface treatment methods in[1].That is to say,the data under one level of the branching factor is probably irrelevant with the data under another one,therefore,they can borrow no strength from one another to improve the fitted model.

    where f(x)=(

    f

    (x)

    ,...,f

    (x))is a vector of pre-speci fied regression functions and β=(

    β

    ,...,β

    )is a vector of unknown coefficients.The residual

    ε

    is assumed to be a stationary GP with zero mean and covariance

    where R(x

    ,

    x)is the Gaussian correlation function,whose popular form is the product exponential correlation function([15])that will be used in this paper:

    Here,θ=(

    θ

    ,...,θ

    )is a vector of scale parameters.Usually,a maximum likelihood method is adopted to estimate the parameters(β

    ,

    θ).Following the normality assumption of the GP model,the log-likelihood function of the collected data is

    where R(

    θ

    )is the

    n

    ×

    n

    correlation matrix with the(

    i,j

    )th element being R(x

    ,

    x)and F=(f(x)

    ,...,

    f(x)).As is stated in[16],simultaneous maximization over(β

    ,

    θ)is unstable because R(θ)may be nearly singular and

    σ

    could be very small.Furthermore,β and θ play different roles:β is used to model overall trend,while θ is a smoothing parameter vector.Thus it is desirable to estimate these things separately.After giving θ,the maximum likelihood estimators(MLE)of β and

    σ

    can be derived from(4.1)as follows:

    Then the MLE of θ can be obtained as

    Finally,the best linear unbiased predictor(BLUP)of

    y

    at an untried point xis

    Next,we present an illustrative example which was implemented using the Matlab toolbox DACE([17]).

    Example 4.1

    Assume there is a branching factor

    z

    with two levels,?1 and+1,and under each of these the nested factor

    v

    has eight levels:1

    ,...,

    8.In addition,three shared factors,

    x

    ,x

    and

    x

    ,are involved,and sixteen runs are available.The real response function is assumed to be

    Figure 2 Boxplots of the 1000 RMSPEs corresponding to BLHDs and IBLHDs.

    Table 5 Mean and standard deviation values of RMPSEs in Example 4.1

    Note that in this section we fit a separate GP model for each level of the branching factor,otherwise we would need a special kernel function.

    5 Concluding Remarks

    In this paper,we proposed a new method for constructing BLHDs,and showed that the obtained IBLHDs improve the BLHDs in terms of the projection property under each level of the branching factor;that is,not only the whole design but also the slices get maximum strati fication in one-dimensional projection.In addition,if the original SLHDs are orthogonal,then in the obtained IBLHDs,the nested factors are orthogonal to each other,orthogonal to the shared factors for the whole design,and nearly orthogonal to the shared factors within each slice.Furthermore,the example shows that the IBLHDs outperform the BLHDs when used for building a GP model and for predictions at new points.

    Note that all the optimization criteria in[1],including maximin distance,minimum correlation and orthogonal-maximin,can be applied on IBLHDs to get corresponding optimal IBLHDs.Although the nested factors are quantitative in both this paper and[1],they can be qualitative sometimes.Chen et al.[12]constructed SLHDs with both the branching and nested factors being qualitative.In addition,we can also construct the second and third parts of an IBLHD using the OA-based idea([18–20]).

    猜你喜歡
    陳浩
    《快樂足球》
    Molecular mechanism study of Astragalus adsurgens Pall synergistically induced by plasma and plasma-activated water
    你好,姐姐
    生死時速:陌生女孩的語音暗藏求救信號
    Investigation of hypersonic flows through a cavity with sweepback angle in near space using the DSMC method*
    陳浩悼亡詩淺析附《楚帆集》校語
    Current Reversals of an Underdamped Brownian Particle in an Asymmetric Deformable Potential?
    智能變電站繼電保護(hù)系統(tǒng)可靠性分析
    醉你
    被『電』住了
    妹子高潮喷水视频| 搡老妇女老女人老熟妇| 狂野欧美白嫩少妇大欣赏| 99久久综合精品五月天人人| 国产精品野战在线观看| 亚洲成人久久性| 国产精品一及| 欧美黑人巨大hd| 国产麻豆成人av免费视频| 久久久久久久久免费视频了| 国内精品一区二区在线观看| 丁香欧美五月| 黄频高清免费视频| 最新在线观看一区二区三区| 亚洲av成人一区二区三| 一进一出抽搐gif免费好疼| 一a级毛片在线观看| 国产精品精品国产色婷婷| 丝袜人妻中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 亚洲一区中文字幕在线| 五月伊人婷婷丁香| 黄频高清免费视频| 精品欧美一区二区三区在线| 欧美绝顶高潮抽搐喷水| 日韩欧美精品v在线| videosex国产| 三级毛片av免费| 脱女人内裤的视频| 亚洲中文字幕一区二区三区有码在线看 | 一本大道久久a久久精品| 此物有八面人人有两片| 欧美日韩中文字幕国产精品一区二区三区| 国产真实乱freesex| √禁漫天堂资源中文www| 亚洲最大成人中文| 啦啦啦免费观看视频1| or卡值多少钱| 精品无人区乱码1区二区| 成人欧美大片| 一进一出抽搐gif免费好疼| 国产高清视频在线观看网站| 国产精华一区二区三区| 高清在线国产一区| 婷婷精品国产亚洲av| 一级a爱片免费观看的视频| 国产一区二区三区在线臀色熟女| 午夜精品久久久久久毛片777| 91大片在线观看| 国产精品1区2区在线观看.| 精华霜和精华液先用哪个| 少妇裸体淫交视频免费看高清 | 亚洲成人免费电影在线观看| 在线免费观看的www视频| 亚洲精品久久国产高清桃花| 久久久久精品国产欧美久久久| 搡老熟女国产l中国老女人| 此物有八面人人有两片| 叶爱在线成人免费视频播放| 性欧美人与动物交配| 免费在线观看视频国产中文字幕亚洲| 国产三级在线视频| 一个人免费在线观看电影 | 久久久精品大字幕| 国产精品亚洲一级av第二区| 亚洲,欧美精品.| 午夜免费激情av| 欧美大码av| 女同久久另类99精品国产91| 免费在线观看完整版高清| 十八禁人妻一区二区| 色尼玛亚洲综合影院| 亚洲精品一卡2卡三卡4卡5卡| 一区福利在线观看| 1024视频免费在线观看| 精品久久久久久久久久久久久| 国产精品1区2区在线观看.| 中文字幕人成人乱码亚洲影| 国产精品自产拍在线观看55亚洲| 欧美黄色淫秽网站| 国产伦一二天堂av在线观看| 久久国产乱子伦精品免费另类| 欧美日韩亚洲综合一区二区三区_| 两人在一起打扑克的视频| 中文资源天堂在线| 国产三级在线视频| 亚洲aⅴ乱码一区二区在线播放 | 哪里可以看免费的av片| 午夜老司机福利片| 9191精品国产免费久久| 亚洲国产精品sss在线观看| 国内毛片毛片毛片毛片毛片| 特大巨黑吊av在线直播| 国产精品一区二区三区四区免费观看 | 久久精品国产综合久久久| av天堂在线播放| 久久中文字幕一级| 欧美另类亚洲清纯唯美| 777久久人妻少妇嫩草av网站| 久久精品国产亚洲av香蕉五月| 老鸭窝网址在线观看| 国产av一区在线观看免费| 久久香蕉精品热| 免费在线观看完整版高清| 久久久国产成人免费| 国产1区2区3区精品| 日韩精品青青久久久久久| 国产精品自产拍在线观看55亚洲| 人妻久久中文字幕网| 老司机在亚洲福利影院| 亚洲国产欧洲综合997久久,| 黄色片一级片一级黄色片| 一级毛片高清免费大全| 成人国产一区最新在线观看| 少妇裸体淫交视频免费看高清 | 色在线成人网| 大型av网站在线播放| 欧美另类亚洲清纯唯美| 国语自产精品视频在线第100页| 国产私拍福利视频在线观看| 精品熟女少妇八av免费久了| 欧美日本视频| 国产不卡一卡二| 久久天躁狠狠躁夜夜2o2o| 级片在线观看| 一进一出抽搐gif免费好疼| a级毛片a级免费在线| 久久久久性生活片| 国产精品一区二区精品视频观看| 亚洲熟妇熟女久久| 国产单亲对白刺激| 一级毛片精品| 亚洲欧美日韩无卡精品| 啪啪无遮挡十八禁网站| 日本三级黄在线观看| 国产亚洲av高清不卡| 亚洲国产欧洲综合997久久,| 久久久久久亚洲精品国产蜜桃av| av免费在线观看网站| 男女下面进入的视频免费午夜| www.www免费av| 怎么达到女性高潮| 人人妻人人澡欧美一区二区| av超薄肉色丝袜交足视频| 两个人看的免费小视频| 国产精品久久久久久亚洲av鲁大| 人成视频在线观看免费观看| 免费观看精品视频网站| 国产精品久久久久久亚洲av鲁大| 夜夜爽天天搞| 久久久精品大字幕| 在线视频色国产色| 亚洲五月天丁香| 亚洲人成网站高清观看| 成人av在线播放网站| 国产成人精品久久二区二区免费| 亚洲国产精品999在线| 母亲3免费完整高清在线观看| 欧美久久黑人一区二区| 亚洲精品一区av在线观看| 亚洲国产精品成人综合色| 最新美女视频免费是黄的| 欧美一区二区精品小视频在线| 国产精品精品国产色婷婷| 成年女人毛片免费观看观看9| 亚洲精品美女久久久久99蜜臀| 久久香蕉激情| 国产野战对白在线观看| 国产一区二区在线观看日韩 | 成在线人永久免费视频| 免费一级毛片在线播放高清视频| 男人舔女人下体高潮全视频| 国产成人系列免费观看| 2021天堂中文幕一二区在线观| 午夜a级毛片| 最近最新中文字幕大全免费视频| 中国美女看黄片| 中出人妻视频一区二区| 成人三级做爰电影| 亚洲在线自拍视频| 国产精品99久久99久久久不卡| 少妇粗大呻吟视频| 男人舔奶头视频| 男人舔女人的私密视频| 亚洲中文字幕日韩| 国产野战对白在线观看| 深夜精品福利| or卡值多少钱| 1024视频免费在线观看| 中文字幕精品亚洲无线码一区| 国产亚洲欧美98| 91老司机精品| 亚洲精品一卡2卡三卡4卡5卡| 美女午夜性视频免费| 午夜福利免费观看在线| 老鸭窝网址在线观看| 亚洲色图 男人天堂 中文字幕| 日韩欧美在线二视频| 黑人操中国人逼视频| 国产精品99久久99久久久不卡| 亚洲熟女毛片儿| 99国产极品粉嫩在线观看| 一个人免费在线观看的高清视频| √禁漫天堂资源中文www| 我的老师免费观看完整版| 黄色视频,在线免费观看| 欧美中文综合在线视频| 999精品在线视频| 亚洲狠狠婷婷综合久久图片| 精品久久久久久久久久久久久| 久久精品人妻少妇| www.www免费av| 亚洲午夜理论影院| 91麻豆精品激情在线观看国产| 美女 人体艺术 gogo| 日韩精品中文字幕看吧| 九九热线精品视视频播放| 欧洲精品卡2卡3卡4卡5卡区| 老司机靠b影院| 国产高清有码在线观看视频 | 99国产极品粉嫩在线观看| 精品久久久久久久末码| 亚洲国产高清在线一区二区三| 日韩三级视频一区二区三区| 国产精品永久免费网站| 国产亚洲精品第一综合不卡| 国产亚洲av嫩草精品影院| 欧美乱码精品一区二区三区| 在线免费观看的www视频| 久久久久久亚洲精品国产蜜桃av| 身体一侧抽搐| 人成视频在线观看免费观看| 一级毛片高清免费大全| 亚洲精品久久成人aⅴ小说| 久久久国产成人免费| 757午夜福利合集在线观看| 变态另类丝袜制服| 级片在线观看| 国产在线观看jvid| 亚洲人成电影免费在线| 熟女电影av网| 狠狠狠狠99中文字幕| 亚洲欧美日韩高清在线视频| 男女午夜视频在线观看| 桃红色精品国产亚洲av| 婷婷亚洲欧美| 亚洲狠狠婷婷综合久久图片| 人妻丰满熟妇av一区二区三区| 国产精品久久久av美女十八| bbb黄色大片| 午夜激情av网站| or卡值多少钱| 国产探花在线观看一区二区| 国产高清激情床上av| 狂野欧美白嫩少妇大欣赏| 婷婷精品国产亚洲av| 久久久国产欧美日韩av| 免费看a级黄色片| 免费观看精品视频网站| 国产亚洲精品综合一区在线观看 | 久久久久久久久久黄片| 亚洲18禁久久av| 国产成人精品无人区| 国产97色在线日韩免费| 午夜日韩欧美国产| 精品电影一区二区在线| 床上黄色一级片| 国产亚洲av嫩草精品影院| 校园春色视频在线观看| 淫妇啪啪啪对白视频| 欧美性长视频在线观看| 搞女人的毛片| 999久久久国产精品视频| 床上黄色一级片| 99精品久久久久人妻精品| 中文在线观看免费www的网站 | 日韩欧美国产一区二区入口| 宅男免费午夜| 听说在线观看完整版免费高清| 亚洲成av人片免费观看| 色av中文字幕| 看片在线看免费视频| 村上凉子中文字幕在线| 999久久久国产精品视频| 99久久精品热视频| 欧美黑人欧美精品刺激| 桃色一区二区三区在线观看| 亚洲全国av大片| 久久久久国内视频| 国产精品一区二区三区四区免费观看 | 熟女少妇亚洲综合色aaa.| 丁香六月欧美| 国产亚洲精品一区二区www| 精品电影一区二区在线| 久久国产乱子伦精品免费另类| 亚洲精品粉嫩美女一区| 日韩欧美国产在线观看| av欧美777| 国产日本99.免费观看| 久久久久久免费高清国产稀缺| 老鸭窝网址在线观看| 国产成+人综合+亚洲专区| 国产精品九九99| 男女那种视频在线观看| 国产私拍福利视频在线观看| 伦理电影免费视频| 日本 av在线| 久久久久久亚洲精品国产蜜桃av| 午夜免费成人在线视频| 18禁黄网站禁片午夜丰满| 亚洲精品在线美女| 久久久久九九精品影院| 中文亚洲av片在线观看爽| 18禁美女被吸乳视频| 欧美日本视频| 一进一出好大好爽视频| 狂野欧美白嫩少妇大欣赏| 身体一侧抽搐| 夜夜爽天天搞| 国产精品野战在线观看| 国产精品一区二区三区四区久久| 国产aⅴ精品一区二区三区波| 啦啦啦免费观看视频1| 最新在线观看一区二区三区| 男女午夜视频在线观看| 成年免费大片在线观看| 亚洲精品在线观看二区| 午夜激情福利司机影院| 999久久久国产精品视频| 后天国语完整版免费观看| 一二三四在线观看免费中文在| 国产亚洲精品久久久久5区| 亚洲午夜理论影院| 99国产综合亚洲精品| 亚洲中文日韩欧美视频| 亚洲中文av在线| 男女那种视频在线观看| 亚洲国产欧洲综合997久久,| 中文字幕久久专区| 九色成人免费人妻av| 精品国产乱子伦一区二区三区| 久久中文看片网| 午夜成年电影在线免费观看| 美女午夜性视频免费| 99久久综合精品五月天人人| 男人舔女人下体高潮全视频| 欧美国产日韩亚洲一区| 国产私拍福利视频在线观看| 伦理电影免费视频| 亚洲自拍偷在线| 给我免费播放毛片高清在线观看| www.熟女人妻精品国产| 日本黄色视频三级网站网址| 女生性感内裤真人,穿戴方法视频| 狂野欧美白嫩少妇大欣赏| 国产精品乱码一区二三区的特点| 国产精品av视频在线免费观看| 制服诱惑二区| 一本大道久久a久久精品| avwww免费| 国产成人精品无人区| 亚洲av成人精品一区久久| 悠悠久久av| 欧美成人性av电影在线观看| 午夜成年电影在线免费观看| 欧美三级亚洲精品| 丰满的人妻完整版| 99精品久久久久人妻精品| 99热这里只有精品一区 | 欧美成狂野欧美在线观看| 正在播放国产对白刺激| 久久婷婷成人综合色麻豆| 久久精品影院6| 亚洲第一欧美日韩一区二区三区| 亚洲色图av天堂| 亚洲精品色激情综合| 久久久久久亚洲精品国产蜜桃av| 国产亚洲精品久久久久久毛片| 国产一区二区三区在线臀色熟女| 午夜久久久久精精品| 村上凉子中文字幕在线| 亚洲色图 男人天堂 中文字幕| 国内精品一区二区在线观看| 欧美日韩乱码在线| 又黄又粗又硬又大视频| 亚洲av第一区精品v没综合| 757午夜福利合集在线观看| av视频在线观看入口| 曰老女人黄片| 俺也久久电影网| 在线观看www视频免费| 亚洲一码二码三码区别大吗| netflix在线观看网站| 久热爱精品视频在线9| 久久精品国产综合久久久| 宅男免费午夜| 可以免费在线观看a视频的电影网站| ponron亚洲| 一边摸一边抽搐一进一小说| 特级一级黄色大片| 91成年电影在线观看| 怎么达到女性高潮| 久久中文看片网| 精品久久久久久久久久久久久| 成人三级黄色视频| 美女 人体艺术 gogo| 日韩中文字幕欧美一区二区| 天天添夜夜摸| 50天的宝宝边吃奶边哭怎么回事| 1024香蕉在线观看| 亚洲天堂国产精品一区在线| 黄色女人牲交| 97超级碰碰碰精品色视频在线观看| 又紧又爽又黄一区二区| 中文字幕熟女人妻在线| 欧美最黄视频在线播放免费| 草草在线视频免费看| 欧美3d第一页| 神马国产精品三级电影在线观看 | 好看av亚洲va欧美ⅴa在| 欧美黄色片欧美黄色片| bbb黄色大片| 日韩精品中文字幕看吧| 舔av片在线| 一本精品99久久精品77| 黄色女人牲交| 国产精品美女特级片免费视频播放器 | 亚洲人与动物交配视频| 一二三四在线观看免费中文在| 国产高清有码在线观看视频 | 欧美性猛交╳xxx乱大交人| 韩国av一区二区三区四区| 香蕉丝袜av| 欧美日韩精品网址| 后天国语完整版免费观看| 亚洲 国产 在线| 成人国语在线视频| 久久精品aⅴ一区二区三区四区| 亚洲欧洲精品一区二区精品久久久| 国产精品免费一区二区三区在线| 久久国产精品人妻蜜桃| 国产一区二区在线av高清观看| 亚洲国产日韩欧美精品在线观看 | 琪琪午夜伦伦电影理论片6080| 午夜日韩欧美国产| cao死你这个sao货| 国产亚洲av高清不卡| 麻豆国产av国片精品| 精品不卡国产一区二区三区| 亚洲七黄色美女视频| 精品久久久久久久毛片微露脸| 人妻久久中文字幕网| 精品一区二区三区视频在线观看免费| 亚洲精品av麻豆狂野| 动漫黄色视频在线观看| 午夜亚洲福利在线播放| 成人精品一区二区免费| 国产私拍福利视频在线观看| 精品日产1卡2卡| 又粗又爽又猛毛片免费看| 午夜福利视频1000在线观看| 久久久久国产精品人妻aⅴ院| a级毛片a级免费在线| 精品国产乱子伦一区二区三区| 色综合亚洲欧美另类图片| 色综合欧美亚洲国产小说| 婷婷丁香在线五月| 亚洲午夜理论影院| 国产不卡一卡二| 别揉我奶头~嗯~啊~动态视频| 特级一级黄色大片| 一a级毛片在线观看| 麻豆成人午夜福利视频| 黄色成人免费大全| 日韩av在线大香蕉| 在线观看66精品国产| 别揉我奶头~嗯~啊~动态视频| 村上凉子中文字幕在线| 中文字幕最新亚洲高清| 90打野战视频偷拍视频| 精品福利观看| 亚洲人成电影免费在线| 美女免费视频网站| 亚洲天堂国产精品一区在线| 久久久久久大精品| 国语自产精品视频在线第100页| 毛片女人毛片| 村上凉子中文字幕在线| 中文在线观看免费www的网站 | 国产精品一区二区免费欧美| 欧美性猛交黑人性爽| 99国产精品一区二区三区| svipshipincom国产片| 国产精品一区二区三区四区久久| 成人精品一区二区免费| 一个人免费在线观看的高清视频| 国语自产精品视频在线第100页| 制服诱惑二区| 少妇人妻一区二区三区视频| 欧美久久黑人一区二区| 舔av片在线| 一二三四在线观看免费中文在| 欧美日韩一级在线毛片| 国产不卡一卡二| 精品国产乱子伦一区二区三区| 国内毛片毛片毛片毛片毛片| 一级黄色大片毛片| 中文字幕精品亚洲无线码一区| 亚洲片人在线观看| 国产探花在线观看一区二区| 久久精品国产亚洲av高清一级| 妹子高潮喷水视频| 可以免费在线观看a视频的电影网站| 国产精品,欧美在线| 亚洲av成人一区二区三| 一边摸一边抽搐一进一小说| 人人妻,人人澡人人爽秒播| 日本三级黄在线观看| 亚洲精品粉嫩美女一区| 曰老女人黄片| 国产精品美女特级片免费视频播放器 | 男人舔女人下体高潮全视频| 免费在线观看日本一区| 性色av乱码一区二区三区2| 国产亚洲精品久久久久久毛片| 在线看三级毛片| 精品国产美女av久久久久小说| 久久久久久久久中文| 久久久久久久精品吃奶| 久久久久久人人人人人| www.精华液| 色综合站精品国产| 精品福利观看| 午夜老司机福利片| 免费av毛片视频| 91在线观看av| 久久精品夜夜夜夜夜久久蜜豆 | 黄片小视频在线播放| 日韩欧美在线乱码| a在线观看视频网站| 2021天堂中文幕一二区在线观| 久久午夜综合久久蜜桃| 国内毛片毛片毛片毛片毛片| 国语自产精品视频在线第100页| 在线观看午夜福利视频| 黑人巨大精品欧美一区二区mp4| 久久天躁狠狠躁夜夜2o2o| 在线a可以看的网站| 久久精品成人免费网站| 日韩中文字幕欧美一区二区| 丝袜人妻中文字幕| 熟女电影av网| 久久香蕉激情| 人人妻,人人澡人人爽秒播| 首页视频小说图片口味搜索| 村上凉子中文字幕在线| 欧美日韩亚洲国产一区二区在线观看| 久久精品夜夜夜夜夜久久蜜豆 | 999精品在线视频| 精品日产1卡2卡| 国产一区二区激情短视频| 亚洲精品一卡2卡三卡4卡5卡| 99热6这里只有精品| 国产免费av片在线观看野外av| 一级毛片高清免费大全| 又大又爽又粗| 国产男靠女视频免费网站| 日本一本二区三区精品| 午夜亚洲福利在线播放| 国产乱人伦免费视频| 亚洲人与动物交配视频| 91麻豆精品激情在线观看国产| 国产亚洲精品一区二区www| 成年人黄色毛片网站| 少妇人妻一区二区三区视频| 国产精品电影一区二区三区| 精品久久久久久久末码| 国产三级在线视频| 精品国产乱子伦一区二区三区| 人成视频在线观看免费观看| 神马国产精品三级电影在线观看 | 听说在线观看完整版免费高清| 动漫黄色视频在线观看| 国产精品美女特级片免费视频播放器 | 国产1区2区3区精品| 俄罗斯特黄特色一大片| 天天一区二区日本电影三级| 日日干狠狠操夜夜爽| 精品不卡国产一区二区三区| 久久久国产成人免费| 人人妻人人澡欧美一区二区| 国产激情久久老熟女| 午夜免费观看网址| 成人欧美大片| 午夜亚洲福利在线播放| 激情在线观看视频在线高清| 久久精品成人免费网站| 亚洲精品在线美女| 国产成人一区二区三区免费视频网站| 午夜免费成人在线视频| 久久草成人影院| 国内揄拍国产精品人妻在线| 国产在线精品亚洲第一网站| 女生性感内裤真人,穿戴方法视频| 又黄又粗又硬又大视频| 国产精品久久视频播放| 少妇粗大呻吟视频| 欧美3d第一页| 国产精品久久久人人做人人爽| 欧美一级a爱片免费观看看 | 日日夜夜操网爽| 亚洲人成77777在线视频| 欧美性长视频在线观看| 麻豆av在线久日| 精品一区二区三区视频在线观看免费|