• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A nonlinear wave coupling algorithm and its programing and application in plasma turbulences

    2022-06-29 08:55:40YongShen沈勇YuHangShen沈煜航JiaQiDong董家齊
    Chinese Physics B 2022年6期
    關(guān)鍵詞:董家

    Yong Shen(沈勇) Yu-Hang Shen(沈煜航) Jia-Qi Dong(董家齊)

    Kai-Jun Zhao(趙開君)4, Zhong-Bing Shi(石中兵)1, and Ji-Quan Li(李繼全)1

    1Southwestern Institute of Physics,Chengdu 610041,China

    2School of Information and Communication Engineering,University of Electronic Science and Technology of China,Chengdu 611731,China

    3Institute for Fusion Theory and Simulation,Zhejiang University,Hangzhou 310013,China

    4College of Nuclear Science and Engineer,East China University of Technology,Nanchang 330013,China

    Keywords: bispectral analysis,wave coupling,algorithm,plasma turbulence,energy cascade

    1. Introduction

    Digital bispectral analysis method can be applied to the studying of fluid turbulence,[1]plasma saturated turbulence,[2–5]and other nonlinear systems,which has proved to be a very important data analysis technology in practice. In the late 1980s, Ritzet al. studied this problem and presented an algorithm using bispectral analysis technique.[6–8]In the Ritzet al.’s method the iterative technique is used to solve the wave coupling equation, but the fourth-order moment in the equation is approximated by a second-order moment. The input signals can be non-Gaussian signals or Gaussian signals.The typical application of this method is to deal with the transiting flow.[7]Using the Ritzet al.’s algorithm,one can use experimental turbulence data to quantitatively estimate nonlinear coupling coefficients or estimate the magnitude of energy cascades between waves in a fully developed turbulence system.However, because in the Ritzet al.’s method, the authors did not take into consideration the non-ideal fluctuations,the calculation results tend to have large systematic errors and often produce large non-physical damping coefficients.

    In order to make up for the defects of Ritzet al’s method,Kimet al. reconstructed the power spectrum by retaining the role of the fourth moment and proposed Kimet al.’s algorithm in 1996,[9]where the spectrum is divided into ideal spectrum component and non-ideal spectrum component,and the spectrum components directly related to the quadratic nonlinear interaction are called ideal spectrum, while the non-ideal spectrum does not participate in the linear coupling process nor the tree-wave coupling process. Kimet al.’s method imposes a time-static condition of “input ideal spectral power equals output ideal spectral power”to include an assumption of local homogeneity.

    Nevertheless, in some nonlinear systems such as developing turbulent systems such as shallow ocean waves,the assumption of Kimet al.’s algorithm may not hold. In such systems, forcing the power of the input spectrum to equal that of the output spectrum would lose a lot of valid information.In this respect,Kim proposed the linear regression method and successfully solved such problems.[10]In the process of studying such systems, in Ref. [11] the authors proposed another new digital bispectral analysis algorithm — complete iterative method—to calculate and analyze the three-wave interaction inside the developing turbulence. The complete iteration method is an extension of Ritz method,while it contains the effect of the fourth moment in the wave coupling equation, so that all the wave information has been considered.In Ref.[11],the applicability of complete iterative method in fluid turbulence was discussed in detail,however,the application prospect of this method in plasma has not been analyzed yet. Subsequently, the study of Ref. [12] focused on this issue and made the comparative analysis of the performance of the complete iteration method and Kim method, and studied the applicability of these two mainstream algorithms in edge plasma turbulence spectrum analysis. The results show that the spectral characteristics of edge plasma turbulence are different from those of fluid turbulence. That is,in the edge plasmas,the energy mainly concentrates in the low-frequency region, and the high-order coupling may occupy a certain proportion, which needs to be eliminated from the three-wave coupling effect,which can be done by employing the Kim hypothesis.

    According to the above results,Kim’s algorithm is shown suitable to be used in the study of edge plasma turbulence.It is of significant importance for the study of the energy transfers occurring in fully developed turbulent system due to nonlinear properties of the flows, and the wave coupling equation describing the changes of spectral components has representative significance in such nonlinear systems. However,none of the previous studies has involved the specific program implementation with respect to this algorithm,although it is indeed an important topic. Shenet al. carried out this kind of work in advance.[13,14]In Ref. [14], an algorithm and its programing for solving the wave coupling equation were presented,while the algorithm still belongs to a kind of linear regression analysis methods,therefore,its structure turns relatively complex. In this work, an algorithm and program based on Kimet al.’s method are developed to solve the nonlinear wave coupling equations, in which the Kim’s hypothesis is completely adopted. The algorithm has simpler structure and higher precision. This work focuses on realizing the idea,the programming and simulation-verifying the algorithm,thereby improving the work of Ref. [11] and providing a feasible software tool for studying the plasma turbulence.

    2. Modeling and algorithm implementation

    2.1. Physical and mathematical model

    In sea waves and some other wave systems, the input and output signals are given, and the output signals can be generated through linear transformation process and nonlinear transformation process.[15,16]Such a system can be seen as a “black box”. If only linear transformation process and quadratic nonlinear transformation process are considered,and the cubic and higher order nonlinear processes are weak,the nonlinear system can be expressed by the following nonlinear transfer equation:

    On the other hand,in order to quantitatively estimate the linear growth rate of fully developed turbulence and the energy cascade between waves,we consider the nonlinear drift wave coupling equation in the following form:

    2.2. Solution algorithm

    Here,the vectors and matrices involved are defined by

    And here,we have definedf=H(k),whereHis a linear function andkis a constant number.That is,kis used as an index of frequencyf,and is always an integer. In fully developed turbulence,it is approximatelyf ≈kΔf,andγk ≈(|Lk|2-1)/Δx.

    2.3. Programing

    The programing flow of the specific algorithm is as follows.

    Algorithm: Solver of wave coupling equations

    Step 1 Original data: input signalx(t,x),y(t,x);

    Step 2 Pre-process:

    Step 2.1 Defining and inputting assemble number (n),sample number(num),

    Step 2.2 Performing Fourier transform on original data so as to get the source data set of input and output signal spectraXiandYi,i=1,2,...,N;

    Step 3 Fork=-num/2 tonum/2-1,the following steps are executed:

    Step 3.1 Calculating all groups (k1,k2) that satisfy the condition‘k1+k2=k’,and saving the group number asknum,

    Here two issues need to be addressed. First,the parametersk,k1andk2should meet the three-wave coupling conditionk=k1+k2,and the determination of these indicators is one of the basic points for this program.[14]Secondly, the ensemble number(n)and sample number(num)should be big enough to ensure the accuracy of spectrum estimation. In a fully developed turbulence system,n ≥1000 andnum ≥64 are generally taken,and the number of samples overlapped for each realization segment takesnp~num/2, or the total number of sampled data meets the conditionn×(num-np)+np >3×104.Also,nummust be an exponential multiple of 2; or, in the Fourier transform,fill some numbers‘0’in sample data set to meet this requirement.

    The pre-processing of input and output data is described below. Taking the study of edge plasma turbulence in tokamak for example,[13]we take the float potentials as the original signals,obtaining at two adjacent spatial points in poloidal direction during the period of[600,700]ms in an experimental discharge, with a sampling frequency of 1 MHz and thus the Nyquist frequency of 500 kHz. There are two groups of sample data. The first set of data (corresponding to the first spatial point) serves as the input signal and the second set (corresponding to the second point) as the output signal. We can take 780 realizations(n=780)and 256 samples(num=256) for each realization. It is worth noting that the sampled data need to be partially overlapped. The number of overlapping samples for each realization can benp=128,thus the total number of source data required for each channel is(num-np)+np=99968<105; and it is obvious that the practically total number of sample data can meet this requirement. Subsequently, the Fourier transform can be performed on the data for each realization to obtain the input and output signal spectra,which will be used as the input and output data in the program.

    The third step is the core of the program,which is actually the solver for Eq.(1)or Eq.(1a). In addition,if the program is used for energy transfer analysis of turbulence,it is necessary to calculate nonlinear energy transfer function,that is,

    The power transfer function represents the power change in the wave with the frequencyfin the wave coupling process(f=f1+f2). The nonlinear energy transfer functionW fNL represents the variation of the nonlinear energy of wave with frequencyf.

    3. Simulation

    3.1. Simulation data generation

    wherekis defined as the index of frequencyfas mentioned above, which approximately satisfies the relationf=kΔfand three-wave coupling condition, namelyf=f1+f2, or say,k=k1+k2. And for simplicity, we take ?k= 32, and Δf=1 kHz.

    In the simulation,the original input data are white Gaussian noise signals, which pass through the “black box” 12 times, and the output signal of the last black box serves as the final input signal to simulate a fully developed turbulence. Its power spectrum is shown in solid blue lines in Fig. 2. And then, according to the given mean dispersion relation(Eq.(14a)),the quadratic nonlinear coupling coefficient

    Fig. 3. Pre-setting values of nonlinear system model: (a) real part of(b) imaginary part of , and (c) the mode of quadratic nonlinear transfer function.

    As seen from Figs.3(a)and 3(b),the real part of the linear coupling coefficient (corresponding to the growth rateγ)is basically symmetric about the axisx=0, while its imaginary part (corresponding to the mean dispersion function) is symmetric about the origin point.

    3.2. Comparison and analysis of simulation results

    The ideal turbulence model that satisfies Kimet al.’s hypothesis has been defined above. The input and output spectrum signals generated are input in the present program for computations, and then the calculated phase spectrum, linear and quadratic coupling coefficients, and the estimated quadratic transfer function, are obtained and illustrated in Fig. 4. Note that the real part of the linear coupling coefficientΛLfis also the linear growth rateγ,and its imaginary part is the average dispersion relationω-r.

    As seen from Fig. 4(a), since the ideal output spectrumYkis calculated from the input signal spectrumXkaccording to the constraint condition〈YkY*k〉=〈XkX*k〉, the phase difference between the output signal spectrumYkand the input signal spectrumXkis not smooth,while this does not weaken the correctness of the simulation results. Comparing Fig.4(c)with Fig.3(a),as well as comparing Fig.4(b)with Fig.3(b),it is demonstrated that the real part and the imaginary part ofΛLfcalculated are basically equal to the pre-setting values within a certain error range. And the mode of the nonlinear transfer function,Qf(f1,f2),as shown in Fig.4(d),is approximately identical with that in Fig. 3(c). All these results confirm that the program runs well.

    Plotted in Fig. 5 is the comparison between the linear growth rateγfcalculated andTf/2Pf. Obviously,it indicates the relationshipγf-Tf/2Pf ≈0,suggesting that

    namely,as the difference between the input power and the output power satisfies ΔPf ≡Pf(x+Δx)-Pf(x)≈0, indicating an approximately constant power. It can be shown that the output spectrum here belongs to the ideal output spectrum,the model meets Kimet al.’s hypothesis, so it is suitable for the algorithm in this paper, and the program running results are physically accurate.

    4. Application: Case calculation

    The study of plasma in a toroidal device involves with many aspects.[25–28]Here we choose the edge plasma turbulence data measured in an experiment on the toroidal device,and employ the present program to calculate and analyze the energy transfer in the turbulent system, so as to test the efficiency of the algorithm and program in practical application.Shown in Fig. 6 is the signals evolve with time in the input channel and the output channel in Discharge 53441 on TPERX RFP device. The sampling frequency is 1 MHz. The measured 3.1×104data in total in a range fromt=18.5 ms to 49.5 ms are taken as the original signals. The number of realizations is taken to ben=480,and the number of samples at a time isnum=128, and the number of overlapped samples in each segment is takennp=64. Hence,the total number of sample data required for each channel is 30784 (<31000).

    The input and the output power spectra are shown in Fig.7. For this experimental edge plasma turbulence, clearly most of the energy is concentrated in the lower frequency region.In this system,the auto-power spectrum reaches its maximum value atf=0 kHz,about 3 a.u.,and most of the energy is concentrated within the range off <100 kHz.

    The auto-power spectra of the input signal and output signal shown in Fig. 7 are very similar, but there are still differences,which are the basic characteristics of the wave when the three-wave coupling predominates in the edge plasma turbulence. If such differences are small enough,the computational results are reliable; however, if the difference is too large, or say, the two auto-power spectra are not very similar, indicating that much useful information about spectrum would be lost when separating the non-ideal spectrum from ideal one, the computational results seem not precise as discussed in detail in Ref.[11].

    In addition, the coherence of turbulence at two spatial points can affect the calculation results. In order to avoid such adverse effects, it is required to make the two spatial points

    where the input and output signals are measured close enough,that is,the value of Δxshould be small enough. Generally,in a medium-sized toroidal device,the accuracy can be guaranteed by selecting Δx~0.1 cm–0.5 cm.

    5. Summary

    In this paper,a nonlinear wave coupling algorithm is proposed and implemented by a program. The algorithm is based on digital bis-spectrum estimation analysis and Kimet al.’s hypothesis,[9]that is,it is assumed that the input signal spectral power is equal to the output spectral power. Shenet al.have compared Kimet al.’s method with the complete iterative method[12]and proposed that Kimet al.’s method is more suitable for the analysis of energy transfer in edge plasma turbulence. The algorithm in this work belongs to Kimet al.’s method in essence.

    In this algorithm, the nonlinear energy transfer function is calculated directly from the wave coupling coefficients,thereby improving the computation accuracy. When we apply the algorithm to the identification of turbulent energy transfer process, the original algorithm is transformed from wavenumber space into frequency space, which is appropriate to the physical characteristics of edge plasma turbulence.[29]The programing flow is given, and the simulation analysis is carried out, showing that the calculation results are reliable. As an application, the energy cascade analysis of typical edge plasma turbulence is performed.As a result,a physical picture of the energy transfer in the turbulent system is constructed,confirming that the energy transfer in this turbulent system spreads from lower-to higher-frequency region and its corresponding wave turns from a linear growing wave into a damping wave. The case analysis also demonstrates that the algorithm and program are both suitable to the study of the fully developed turbulence or saturated turbulence, such as edge plasma turbulence.[18,19]

    Acknowledgements

    Project supported by the National Key Research and Development Program of China (Grant No. 2017YFE0301200),the National Natural Science Foundation of China (Grant Nos. 12075077 and 12175055), and the Science and Technology Project of Sichuan Pprovince, China (Grant No.2020YJ0464).

    猜你喜歡
    董家
    董家鴻院士
    Exact surface energy and elementary excitations of the XXX spin-1/2 chain with arbitrary non-diagonal boundary fields
    Neoclassical tearing mode stabilization by electron cyclotron current drive for HL-2M tokamak*
    大功率激電測深方法在豫西董家埝銀礦床勘查中的應(yīng)用
    學(xué)習(xí)是進(jìn)步階梯,做不放棄的自己
    Effects of trapped electrons on the ion temperature gradient mode in tokamak plasmas with hollow density profiles
    董家口
    紅巖(2018年6期)2018-11-16 12:27:24
    填成語
    老友(2018年3期)2018-01-22 04:01:48
    補(bǔ)唐詩慶建軍節(jié)
    老友(2017年8期)2017-02-07 03:19:24
    安丘董家莊漢畫像石墓主人之謎
    大眾考古(2014年2期)2014-06-26 08:29:32
    丝瓜视频免费看黄片| 欧美精品国产亚洲| 国产亚洲欧美精品永久| 黑人高潮一二区| 最近最新中文字幕免费大全7| 欧美精品国产亚洲| 国产精品久久久久久av不卡| 一区二区三区乱码不卡18| 国产 精品1| 中文乱码字字幕精品一区二区三区| 日韩亚洲欧美综合| 午夜免费鲁丝| 又粗又硬又长又爽又黄的视频| 久久久久久伊人网av| 免费观看a级毛片全部| 不卡视频在线观看欧美| 久久久久久久久久成人| 免费人成在线观看视频色| 97超碰精品成人国产| 网址你懂的国产日韩在线| 全区人妻精品视频| 精品人妻一区二区三区麻豆| 日韩亚洲欧美综合| 国产在视频线精品| 青青草视频在线视频观看| 舔av片在线| 欧美少妇被猛烈插入视频| 国产精品一区二区在线不卡| 国产国拍精品亚洲av在线观看| 色哟哟·www| 日本猛色少妇xxxxx猛交久久| 欧美另类一区| 国产精品三级大全| 国产视频首页在线观看| 日韩免费高清中文字幕av| 在线亚洲精品国产二区图片欧美 | 欧美日韩国产mv在线观看视频 | 色5月婷婷丁香| 日产精品乱码卡一卡2卡三| 久久99蜜桃精品久久| 午夜福利高清视频| 国产乱人视频| 国产精品成人在线| www.色视频.com| 精品久久久久久久久av| 一二三四中文在线观看免费高清| 啦啦啦视频在线资源免费观看| 国产精品秋霞免费鲁丝片| 只有这里有精品99| av免费观看日本| 日韩制服骚丝袜av| 欧美国产精品一级二级三级 | 国产精品成人在线| 在线观看美女被高潮喷水网站| 国产美女午夜福利| 中文资源天堂在线| 婷婷色综合大香蕉| 日韩欧美精品免费久久| 国产淫语在线视频| 两个人的视频大全免费| 欧美少妇被猛烈插入视频| 乱系列少妇在线播放| 大又大粗又爽又黄少妇毛片口| 免费观看av网站的网址| 欧美精品国产亚洲| 乱系列少妇在线播放| 国产欧美日韩精品一区二区| 2022亚洲国产成人精品| 久久ye,这里只有精品| 水蜜桃什么品种好| 国产精品不卡视频一区二区| 欧美日韩在线观看h| 青春草亚洲视频在线观看| 国产黄色视频一区二区在线观看| 91精品一卡2卡3卡4卡| 日韩av在线免费看完整版不卡| 免费久久久久久久精品成人欧美视频 | 99久国产av精品国产电影| 精品亚洲成国产av| 国产女主播在线喷水免费视频网站| 午夜激情久久久久久久| 久久久久精品性色| 日韩成人伦理影院| 日本wwww免费看| 少妇猛男粗大的猛烈进出视频| 免费看av在线观看网站| 网址你懂的国产日韩在线| 搡女人真爽免费视频火全软件| 91久久精品国产一区二区成人| 国产爽快片一区二区三区| 亚洲中文av在线| 少妇被粗大猛烈的视频| 亚洲va在线va天堂va国产| 一个人免费看片子| 久久久亚洲精品成人影院| 国产精品爽爽va在线观看网站| 国产精品国产三级国产专区5o| 尾随美女入室| 亚洲美女视频黄频| 99久国产av精品国产电影| 成人综合一区亚洲| 中文欧美无线码| 99九九线精品视频在线观看视频| 国产久久久一区二区三区| 久久女婷五月综合色啪小说| 日韩av免费高清视频| 51国产日韩欧美| 亚洲人成网站在线观看播放| 在线观看一区二区三区| 高清欧美精品videossex| 观看免费一级毛片| 在线看a的网站| 自拍欧美九色日韩亚洲蝌蚪91 | 国产成人a区在线观看| 高清黄色对白视频在线免费看 | 国产精品99久久99久久久不卡 | 99热这里只有是精品50| 亚洲精品久久久久久婷婷小说| 青春草亚洲视频在线观看| 嘟嘟电影网在线观看| 伦理电影大哥的女人| 久久99热这里只有精品18| 欧美日韩国产mv在线观看视频 | 一级毛片久久久久久久久女| 极品少妇高潮喷水抽搐| 欧美精品人与动牲交sv欧美| 午夜免费鲁丝| 精品一区二区三卡| 男女边摸边吃奶| 激情 狠狠 欧美| 青春草国产在线视频| 欧美激情国产日韩精品一区| 日韩制服骚丝袜av| 午夜激情福利司机影院| 五月开心婷婷网| 波野结衣二区三区在线| 久久国产乱子免费精品| 在线观看免费高清a一片| 中文字幕亚洲精品专区| 女人久久www免费人成看片| 日韩不卡一区二区三区视频在线| 春色校园在线视频观看| 久热这里只有精品99| 久久热精品热| 亚洲av电影在线观看一区二区三区| 最近的中文字幕免费完整| 国产又色又爽无遮挡免| 99久久精品热视频| 国产精品久久久久久精品电影小说 | 99久久精品热视频| 97精品久久久久久久久久精品| 亚洲久久久国产精品| 欧美bdsm另类| 18禁裸乳无遮挡免费网站照片| 中文字幕久久专区| 最黄视频免费看| 美女内射精品一级片tv| 久热这里只有精品99| 亚洲欧美日韩无卡精品| 国产精品熟女久久久久浪| 小蜜桃在线观看免费完整版高清| 久久精品久久久久久噜噜老黄| 亚洲va在线va天堂va国产| 久久精品熟女亚洲av麻豆精品| 亚洲精品自拍成人| 好男人视频免费观看在线| 国产成人a区在线观看| 亚洲精品日韩在线中文字幕| 六月丁香七月| 人人妻人人看人人澡| 日韩中字成人| 成年人午夜在线观看视频| 成人午夜精彩视频在线观看| 美女主播在线视频| 一级毛片我不卡| 国产成人精品一,二区| 久久久亚洲精品成人影院| 欧美日韩视频高清一区二区三区二| 熟妇人妻不卡中文字幕| 亚洲av欧美aⅴ国产| 成人漫画全彩无遮挡| 久热久热在线精品观看| 免费观看av网站的网址| 久久综合国产亚洲精品| 国产大屁股一区二区在线视频| 亚洲精品aⅴ在线观看| 超碰av人人做人人爽久久| 中文字幕免费在线视频6| 天堂中文最新版在线下载| 国产亚洲午夜精品一区二区久久| 亚洲国产成人一精品久久久| 男女啪啪激烈高潮av片| 精品久久久精品久久久| 精品一品国产午夜福利视频| 欧美日韩精品成人综合77777| 性色avwww在线观看| 免费人成在线观看视频色| 在线观看免费日韩欧美大片 | 欧美性感艳星| 一个人免费看片子| 蜜臀久久99精品久久宅男| 国产成人免费无遮挡视频| 日韩视频在线欧美| 久久久久久久久大av| 最近的中文字幕免费完整| 日韩,欧美,国产一区二区三区| 久久久久久伊人网av| 国产 精品1| 日韩国内少妇激情av| 一级毛片 在线播放| 日韩 亚洲 欧美在线| 国产一区二区三区综合在线观看 | 欧美老熟妇乱子伦牲交| 视频区图区小说| 99久久精品国产国产毛片| 尾随美女入室| 少妇的逼好多水| 免费看av在线观看网站| 我的老师免费观看完整版| 亚洲av电影在线观看一区二区三区| 欧美成人午夜免费资源| 日韩av在线免费看完整版不卡| 91在线精品国自产拍蜜月| 老师上课跳d突然被开到最大视频| 男女啪啪激烈高潮av片| 精品久久久精品久久久| 亚洲国产精品999| 亚洲欧美成人综合另类久久久| 大香蕉97超碰在线| 久久精品国产亚洲av涩爱| 美女国产视频在线观看| 亚洲精品中文字幕在线视频 | 国内少妇人妻偷人精品xxx网站| av在线播放精品| 亚洲第一av免费看| 免费播放大片免费观看视频在线观看| 国产精品99久久99久久久不卡 | 十八禁网站网址无遮挡 | 国内精品宾馆在线| 免费看光身美女| 精品午夜福利在线看| 欧美丝袜亚洲另类| 欧美三级亚洲精品| 啦啦啦视频在线资源免费观看| 日韩视频在线欧美| 亚洲av男天堂| 男人狂女人下面高潮的视频| 91久久精品电影网| 一级毛片我不卡| 麻豆成人av视频| 亚州av有码| 天堂俺去俺来也www色官网| 老司机影院毛片| av一本久久久久| 免费黄网站久久成人精品| 在线看a的网站| 免费观看无遮挡的男女| 少妇的逼水好多| 九九久久精品国产亚洲av麻豆| 国产精品一区www在线观看| 黄色配什么色好看| 舔av片在线| 精品亚洲成国产av| 黄片wwwwww| 国产精品久久久久久精品电影小说 | 多毛熟女@视频| 伊人久久国产一区二区| 26uuu在线亚洲综合色| 狂野欧美激情性bbbbbb| 精品熟女少妇av免费看| 99久久综合免费| 蜜桃在线观看..| 久久99热这里只有精品18| 秋霞在线观看毛片| 边亲边吃奶的免费视频| 2021少妇久久久久久久久久久| 久久精品国产亚洲av涩爱| 一级片'在线观看视频| 纯流量卡能插随身wifi吗| 日韩av免费高清视频| 欧美日韩亚洲高清精品| 日韩av在线免费看完整版不卡| 精品久久久久久久末码| 不卡视频在线观看欧美| 99九九线精品视频在线观看视频| 18+在线观看网站| 免费不卡的大黄色大毛片视频在线观看| 超碰97精品在线观看| 你懂的网址亚洲精品在线观看| 嫩草影院新地址| 午夜免费观看性视频| 亚洲伊人久久精品综合| 欧美日韩亚洲高清精品| 国产精品偷伦视频观看了| 久久国内精品自在自线图片| 免费av不卡在线播放| 99九九线精品视频在线观看视频| 男女无遮挡免费网站观看| 国产成人91sexporn| 国产亚洲一区二区精品| av网站免费在线观看视频| 好男人视频免费观看在线| 中国美白少妇内射xxxbb| 色吧在线观看| 亚洲人成网站在线播| 亚洲av国产av综合av卡| 简卡轻食公司| 日本黄大片高清| 一区二区三区免费毛片| 黄色一级大片看看| 午夜免费鲁丝| 小蜜桃在线观看免费完整版高清| 又粗又硬又长又爽又黄的视频| 午夜激情福利司机影院| 欧美日本视频| 国产69精品久久久久777片| 久久久a久久爽久久v久久| h日本视频在线播放| 在线观看一区二区三区| 亚洲国产最新在线播放| 中文在线观看免费www的网站| 大陆偷拍与自拍| 日韩不卡一区二区三区视频在线| 日日摸夜夜添夜夜爱| 美女视频免费永久观看网站| 伦理电影大哥的女人| 亚洲欧美成人综合另类久久久| 亚洲综合精品二区| 久久精品熟女亚洲av麻豆精品| 婷婷色麻豆天堂久久| 一级毛片久久久久久久久女| 美女视频免费永久观看网站| av福利片在线观看| 成人国产av品久久久| 伦理电影大哥的女人| 亚洲成色77777| 亚洲国产精品专区欧美| 乱系列少妇在线播放| 国产又色又爽无遮挡免| 亚洲精品久久久久久婷婷小说| 成人18禁高潮啪啪吃奶动态图 | 黄色配什么色好看| 国产成人免费观看mmmm| 亚洲av免费高清在线观看| av专区在线播放| 91aial.com中文字幕在线观看| 国产精品久久久久久av不卡| 欧美一级a爱片免费观看看| 亚洲精品乱码久久久久久按摩| 观看美女的网站| 高清在线视频一区二区三区| 日韩av不卡免费在线播放| 啦啦啦中文免费视频观看日本| 新久久久久国产一级毛片| 欧美日韩精品成人综合77777| 日韩一区二区三区影片| 日韩av在线免费看完整版不卡| 在现免费观看毛片| 国产免费福利视频在线观看| 大香蕉97超碰在线| 午夜福利在线观看免费完整高清在| 久久国产亚洲av麻豆专区| 国产精品人妻久久久久久| 国产男女内射视频| 大又大粗又爽又黄少妇毛片口| 亚洲国产精品专区欧美| 国产精品久久久久久久久免| 亚洲熟女精品中文字幕| 秋霞在线观看毛片| av播播在线观看一区| 99热6这里只有精品| 亚洲av日韩在线播放| 婷婷色综合www| 国产黄片美女视频| 少妇猛男粗大的猛烈进出视频| 国产探花极品一区二区| 搡老乐熟女国产| 男女无遮挡免费网站观看| 黑人高潮一二区| videos熟女内射| 日韩伦理黄色片| 国产v大片淫在线免费观看| 午夜福利在线在线| 秋霞在线观看毛片| 蜜臀久久99精品久久宅男| 狂野欧美白嫩少妇大欣赏| 永久网站在线| 久久国内精品自在自线图片| 你懂的网址亚洲精品在线观看| 一区二区三区免费毛片| 最近中文字幕2019免费版| 亚洲婷婷狠狠爱综合网| 欧美日韩综合久久久久久| av卡一久久| 国产成人精品福利久久| av在线播放精品| 免费看光身美女| 人人妻人人添人人爽欧美一区卜 | 五月玫瑰六月丁香| 久久精品熟女亚洲av麻豆精品| 亚洲精品色激情综合| 日日啪夜夜爽| www.色视频.com| 直男gayav资源| 日本wwww免费看| 九九爱精品视频在线观看| 亚洲成人中文字幕在线播放| 性色av一级| 只有这里有精品99| 一级av片app| 国产 一区精品| 美女高潮的动态| 久久99精品国语久久久| 国产精品国产三级国产专区5o| 国产黄色免费在线视频| 亚洲欧美一区二区三区国产| 亚洲精品视频女| 最近2019中文字幕mv第一页| 国产永久视频网站| 亚洲高清免费不卡视频| 中文资源天堂在线| 亚洲一级一片aⅴ在线观看| 午夜福利影视在线免费观看| 最近的中文字幕免费完整| 欧美三级亚洲精品| 午夜福利视频精品| www.av在线官网国产| 亚洲国产欧美在线一区| 亚洲图色成人| 国产午夜精品久久久久久一区二区三区| 老司机影院成人| 一个人看视频在线观看www免费| xxx大片免费视频| 老熟女久久久| 国产黄频视频在线观看| h日本视频在线播放| 18禁裸乳无遮挡动漫免费视频| 久久久久久久大尺度免费视频| 天天躁夜夜躁狠狠久久av| 国语对白做爰xxxⅹ性视频网站| 91精品一卡2卡3卡4卡| 亚洲国产欧美在线一区| 亚洲精品国产av蜜桃| 国产精品福利在线免费观看| 男人和女人高潮做爰伦理| 精品酒店卫生间| 在线观看美女被高潮喷水网站| 国产欧美日韩精品一区二区| av免费在线看不卡| 如何舔出高潮| 免费人妻精品一区二区三区视频| 毛片女人毛片| 不卡视频在线观看欧美| 精品一区在线观看国产| 观看免费一级毛片| 国产伦精品一区二区三区视频9| 亚洲精品第二区| 欧美最新免费一区二区三区| 我要看日韩黄色一级片| 国产成人精品一,二区| h日本视频在线播放| 青春草亚洲视频在线观看| 老女人水多毛片| 看非洲黑人一级黄片| 免费黄色在线免费观看| 寂寞人妻少妇视频99o| 久久97久久精品| 欧美变态另类bdsm刘玥| 十分钟在线观看高清视频www | 国内揄拍国产精品人妻在线| 欧美日韩视频高清一区二区三区二| 另类亚洲欧美激情| 欧美性感艳星| 亚洲性久久影院| 国产亚洲最大av| 国产成人freesex在线| 最后的刺客免费高清国语| 久久久久久九九精品二区国产| 免费看av在线观看网站| 十分钟在线观看高清视频www | 国产白丝娇喘喷水9色精品| 婷婷色综合www| 午夜日本视频在线| 如何舔出高潮| 亚洲自偷自拍三级| 伦精品一区二区三区| 天天躁日日操中文字幕| 在线观看av片永久免费下载| 18禁动态无遮挡网站| 久久久久视频综合| 国产成人一区二区在线| 最后的刺客免费高清国语| 男女边摸边吃奶| 亚洲精品国产av蜜桃| 亚洲av福利一区| 人人妻人人爽人人添夜夜欢视频 | 欧美xxxx性猛交bbbb| 少妇人妻一区二区三区视频| 最近最新中文字幕大全电影3| 国产视频首页在线观看| av福利片在线观看| 黄色视频在线播放观看不卡| 亚洲成人中文字幕在线播放| 亚洲第一av免费看| 午夜免费鲁丝| 亚洲欧美精品自产自拍| 美女高潮的动态| 高清日韩中文字幕在线| 中文资源天堂在线| 性色avwww在线观看| freevideosex欧美| 高清在线视频一区二区三区| 日韩强制内射视频| 成人亚洲欧美一区二区av| 国产精品久久久久久精品电影小说 | 国产精品久久久久成人av| 亚洲真实伦在线观看| 日日啪夜夜爽| 青春草亚洲视频在线观看| .国产精品久久| 少妇人妻精品综合一区二区| 菩萨蛮人人尽说江南好唐韦庄| 日本欧美视频一区| 偷拍熟女少妇极品色| 亚洲在久久综合| 毛片一级片免费看久久久久| 欧美zozozo另类| 国产精品伦人一区二区| 亚洲成人中文字幕在线播放| 男人添女人高潮全过程视频| 一区二区三区四区激情视频| 久久久久国产网址| 麻豆成人午夜福利视频| 亚洲欧美精品自产自拍| 如何舔出高潮| 亚洲内射少妇av| 国产淫语在线视频| 国产成人免费无遮挡视频| 国产探花极品一区二区| 成年人午夜在线观看视频| 中文天堂在线官网| 亚洲不卡免费看| 亚洲欧美成人综合另类久久久| 久久久精品免费免费高清| 国产亚洲午夜精品一区二区久久| 三级经典国产精品| 亚洲欧美日韩卡通动漫| 久久久久久九九精品二区国产| 在线免费十八禁| 少妇人妻一区二区三区视频| 国产色婷婷99| 中文精品一卡2卡3卡4更新| 日韩,欧美,国产一区二区三区| 久久99热这里只频精品6学生| 1000部很黄的大片| 简卡轻食公司| 精品久久久久久电影网| 国产久久久一区二区三区| 狂野欧美激情性xxxx在线观看| 最近最新中文字幕大全电影3| 欧美日韩视频高清一区二区三区二| 欧美日本视频| 亚洲四区av| 少妇被粗大猛烈的视频| 内地一区二区视频在线| 久久久精品94久久精品| 18+在线观看网站| 亚洲欧美清纯卡通| 亚洲第一区二区三区不卡| 晚上一个人看的免费电影| 有码 亚洲区| 蜜桃在线观看..| 亚洲欧美清纯卡通| 亚洲成人中文字幕在线播放| av专区在线播放| 亚洲欧美日韩卡通动漫| 亚洲精品日韩在线中文字幕| 最近最新中文字幕大全电影3| 日韩三级伦理在线观看| 岛国毛片在线播放| 天天躁日日操中文字幕| 亚洲精品,欧美精品| 欧美一级a爱片免费观看看| 久久人人爽人人爽人人片va| 国产黄片美女视频| 国产精品久久久久成人av| 久久精品国产自在天天线| 国产深夜福利视频在线观看| 成人漫画全彩无遮挡| av在线蜜桃| 狂野欧美激情性bbbbbb| 99久久中文字幕三级久久日本| 99热这里只有是精品50| 久久韩国三级中文字幕| 免费观看av网站的网址| 狠狠精品人妻久久久久久综合| 精品久久久久久久久亚洲| 狠狠精品人妻久久久久久综合| 搡老乐熟女国产| 中文资源天堂在线| 久久久精品94久久精品| 99热这里只有是精品50| 久久久久人妻精品一区果冻| 在线精品无人区一区二区三 | 免费观看在线日韩| 亚洲av综合色区一区| 欧美xxⅹ黑人| 高清毛片免费看| 我要看日韩黄色一级片| 日韩国内少妇激情av| 久久久久国产精品人妻一区二区| 国产精品偷伦视频观看了| 一级毛片aaaaaa免费看小| 久久久久久久久大av| 久久久久国产网址|