• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of trapped electrons on the ion temperature gradient mode in tokamak plasmas with hollow density profiles

    2020-06-14 08:45:22JingchunLI李景春JiaqiDONG董家齊andSongfenLIU劉松芬
    Plasma Science and Technology 2020年5期
    關(guān)鍵詞:董家

    Jingchun LI (李景春),Jiaqi DONG (董家齊) and Songfen LIU (劉松芬)

    1 School of Physics,Nankai University,Tianjin 300071,People’s Republic of China

    2 University of California,Irvine,CA 92697,United States of America

    3 School of Physics and Optoelectronic Technology,Dalian University of Technology,Dalian 116024,People’s Republic of China

    4 Southwestern Institute of Physics,Chengdu 610041,People’s Republic of China

    Abstract

    Keywords:micro-instabilities,trapped electrons,impurities

    1.Introduction

    In tokamaks,ion temperature gradient(ITG)driven instability is one of the drift waves and is considered a major factor for ion-scale turbulent transport.The ITG modes also have an important effect on the low(L)to high(H)confinement mode transition and energy confinement [1].The hollow (inverted)density profile occurs simultaneously with the pellet injection for plasma core fueling and L-H confinement transition[2–5].The study of drift wave instability under the hollow density profile and the turbulent transport caused by it can provide guidance for a pellet fueling experiment.Besides,it is well known that impurity ions are inevitably present in toroidal fusion plasma due to the inevitable interaction between the plasma and the first wall material.These impurity ions have significant effects on drift waves.Therefore,it is important to investigate the impurity ions effect on the ITG mode under a hollow density profile.

    On the one hand,the ITG mode as well as the effect of impurities on it has been intensively studied theoretically and experimentally in the case of a monotonically decreasing density profile(R/Ln> 0)[6–8].The study of the ITG driven mode with impurities in toroidal plasmas was first investigated in[9].Later on,the effect of impurities on the ITG was also carried out in the reversed field pinch [10,11].On the other hand,in terms of the inverted density distribution(R/Ln<0),previous work on the ITG mode has not been systematic[12,13].Early theoretical studies include the calculations from Tang and Hahm [13,14].Their results showed that in the case of a negative density gradient,the ITG mode becomes unstable as the temperature gradient of ions exceed a certain critical threshold.Adam et al [15]demonstrated that the inverted density profile can cause particles to transport radially inward,which means,to some extent,that the profile is advantageous for fusion confinement.

    Recently,studies relating to hollow density profiles have been carried out on many magnetic confinement fusion devices[16–21],such as the Mega Ampere Spherical Tokamak(MAST),Joint European Torus (JET),Axially Symmetric Divertor Experiment(ASDEX Upgrade),and the Large Helical Device (LHD).In addition,Tegnered et al [22]studied the transport of turbulent particles caused by ITG modes and trapped electron modes (TEM) under a hollow density distribution using the gyrokinetic code GENE and the Weiland Fluid Transport Model.It was found that the negative density gradient can suppress turbulence or change the relationship between diffusion and convection,and weaken the transport of particles to the core,thereby reducing the efficiency of fueling.Dong et al studied the electron temperature gradient (ETG)driven instabilities in plasmas with slightly inverted density profiles and demonstrated the E × B flow shear stabilization on the ETG modes,as well as on the transport[23].More recently,Du et al[24]used the local gyrokinetic eigenvalue code HD7[25,26]to simulate the ITG and TEM numerically under a hollow profile,and efficiently scanned the key parameters(i.e.,density gradient,temperature gradient,temperature ratios,and vertical wave numbers) affecting the ITG mode and TEM instability threshold and intensity.However,their research did not consider the effects of impurities.Impurities are inevitable in magnetic confinement fusion experiments,which not only cause a large amount of energy loss in the plasma,but also affect various instabilities in the plasma.They will in turn affect the distribution of the plasma parameters and confinement performance [27,28].

    In this paper,we incorporate the trapped electrons (TEs)and impurities in the calculations,and systematically investigate the effects of TEs and impurities on the ITG modes in inverted density tokamak plasmas by adopting the gyrokinetic integral eigenmode scheme in a toroidal configuration.Our kinetic simulations found that in inverted density plasma,the increase of the ITG enhances the ITG growth rate and frequency.For the weak density gradient situation,the impurities(O+6)can decrease the growth rate as well as frequency of the ITG mode distinctly,and the greater the fraction of impurities,the greater the influence of inhibition of impurities on the the ITG mode.For the strong density gradient cases,impurities enhance the ITG instability,and the TE has a suppression effect on the modes.In addition,it is shown that the growth rate of the ITG decreases with the increase of positive magnetic shear s,while the real frequency increases with the increase of positive magnetic shear s.Furthermore,the growth rate of the ITG enhances while the real frequency decreases with the decrease of negative magnetic shear s.The relationship between the ITG mode and magnetic shear is emphasized for both slight and strong hollow density profiles in tokamak plasmas.

    The remainder of this paper is organized as follows.The gyrokinetic equation and physical model are introduced in section 2.The numerical results of the ITG modes in an inverted density plasma edge with impurities are presented and analyzed in section 3.Finally,a brief conclusion is presented in section 4.

    2.Physical model

    To begin with,to make the structure of the article more complete,we first present the local gyrokinetic integral scheme used in this paper.We use the ballooning mode representation to study the ion-scale drift wave instability in tokamak plasma,with the linear mode coupling caused by the configuration of the toroidal magnetic field taken into account.The main ions in the system are hydrogen ions,and different ionized states of lithium,carbon,oxygen,nickel,tungsten,etc.are impurity ions.The main ions and impurity ions are all passing particles,which are described by a gyrokinetic model.In a toroidal geometry system with circular cross-sections,we consider the full kinetic effects of the main and impurity ions,such as magnetic field curvature and gradient drifts,finite Larmor radius (FLR) effects,and wave-particle resonance effects.Here,we ignore the FLR effect of the TEs and believe that the passing electrons are subject to adiabatic response.

    When considering the effects of TEs and impurity ions,low-frequency electrostatic disturbances in non-uniform plasmas can be described by quasi-neutral conditions:

    In the ballooning representation and with the gyrokinetic equation,the non-adiabatic response of the particle is governed by:

    where the magnetic(gradient and curvature)drift frequency is

    The diamagnetic drift frequency induced by the pressure gradient is:

    The definitions of the other parameters are as follows.The transit frequency isωt=v‖Rq,and the electron diamagnetic drift frequency isω*e=ck θTeeBLne,vtj=The non-adiabatic response of the TEs can be achieved by expanding equation(3)withω/ωbe,whereωbeis the bouncing frequency of the TEs.When ignoring the FLR of the TEs,the density perturbation of the TEs can be expressed as

    The precession drift frequency of the TEs is written as

    After complex mathematical operations,we obtain the expression of the integral eigenequation corresponding to equation (1):

    where

    The equation contains two types of ions,one is hydrogen ion,which are the main ion in the plasma,and the other is called impurity ion because of their small fraction.Among them

    Herek,k',kθis normalized to=Ωi/vti=andIl(l=0,1)is the modifeid l-order Bessel function.All symbols have their general meaning,such as the density gradient scale lengthLnj=-nj/?nj,undisturbed plasma density n0,temperature gradient scale lengthLTj=-Tj/?Tj,safety factor q,and magnetic shears=rdq/qdr.Z is the ion charge number,mjandTjare ion mass and temperature,and R is the major radius of the torus.It should be noted that not all parameters are independent,for example,based on quasi-neutral conditions,

    While assumingTi(r)=Tz(r),we achieve

    The parametersηi,ηe,εnand other parameters in the equation will influence the dispersion relationship.We use the gyrokinetic integral code HD7 to discuss their effects in the next section.

    3.Numerical results and analysis

    We now study the effect of impurity on the ITG mode with different temperatures and density gradients with the gyrokinetic integral eigenvalue code HD7.Compared with the nonlinear simulation,the limitation of linear simulation here is that the turbulence saturation amplitude cannot be obtained,and the relationship between microscopic instability and turbulence cannot be studied.However,linear simulation is still necessary:(i)it can determine the possible driving mechanism and instability conditions;(ii) when the transport caused by turbulence dominates,the plasma density and temperature gradient may be adjusted to be close to the threshold predicted by the linear instability theory;(iii) the temporal and spatial characteristics of the linear mode may be related to the turbulent flow,which can provide a rough estimate of the turbulent transport.We investigate the influence of other parameters like impurity species and magnetic shear on the ITG instabilities.In our calculations,since we consider hollow density profile plasma,Lez=Lne/Lnz> 0 means that the density gradients of the impurity and main ions are in the same direction,namely,impurities are peaked toward the plasma edge.Lez< 0 means that the density gradients are in opposite directions.

    Figure 1.Normalized growth rate (γ) and real frequency (ωr) of the ITG versus R/LTi for different impurity charge concentrations fz.The other parameters are s=0.8,q=1.4,kθρs=0.4,Lez=2,ηe=1,and R/Lne=–1.O+6 is treated as impurities.

    Figure 2.Normalized growth rate (γ) and real frequency (ωr) of the ITG versus R/LTi for different impurity charge concentrations fz.The other parameters are s=0.8,q=1.4,kθρs=0.6,Lez=2,ηe=1,and R/Lne=–8.O+6 is treated as impurities.

    3.1.Dependence on the ITG

    The normalized growth rate(γ)and the real frequency(ωr)of pure ITG modes versus R/LTiare presented in figures 1(a)and (b),respectively,where the length of the normalized electron temperature gradient scale R/LTeis equal to the length of the electron density gradient scale R/Lne.It must be explained here that the black dotted line represents the result of no impurities,i.e.,fz=0.We can see that the increase of the ITG enhances both the growth rate and frequency of the ITG modes,and impurities decrease the growth rate as well as frequency of the ITG mode distinctly.The higher the fraction of impurity O+6,the greater the suppression effect of the ITG.This suggests that the ITG modes are damped by impurity ions.The stabilizing effect of impurities is consistent with previous research results,because when the gradient of the impurity ions is the same as the electron density gradient,the dominant ion density is diluted (the relationship between the ion density gradient and the fraction of impurities is presented by equation(8))[28–32],which makes the impurity ion effect weaken the driving force of the ITG and stabilizes the ITG mode.

    Figure 2 is the same as figure 1 except that it has a strong density gradientLne=-ne/?ne=–8.Compared with figure 1,the real frequency of the ITG in figure 2 is lower.Most importantly,the impurity increases the growth rate of the ITG mode,which is very different in the weak density gradient case.For the strong density gradient,we have to consider the gradient of the main ion density.We have Lez=Lne/Lnzand Lei=Lne/Lni.Since Lezis positive while Lneis negative,this leads to the gradient of the impurity ion density being the same as that of the main ion density,which increases the ion density gradient and enhances the driving force.Therefore,the effect of impurities is destabilizing.

    Figure 3.Normalized growth rate (γ) and real frequency (ωr)versus R/LTi for different cases.The other parameters are s=0.8,q=1.4,kθρs=0.6,and R/Lne=–1.O+6 (with fz=0.25) is treated as impurities when they are incorporated.

    Figure 4.Normalized growth rate (γ) and real frequency (ωr)versus R/LTi for different cases.The other parameters are s=0.8,q=1.4,kθρs=0.6,and R/Lne=–8.O+6 (with fz=0.25) is treated as impurities when they are incorporated.

    3.2.Effect of TEs

    Figure 3 shows the normalized growth rate (γ) and real frequency(ωr)versus R/LTifor different cases,namely,with and without impurities,TEs.We set other parameters as:s=0.8,q=1.4,kθρs=0.6,and R/Lne=–1.As can be seen from figure 3,the impurity has a stabilizing effect on the ITG,and the TE can enhance the ITG instability,where the stabilization effect of the impurities is consistent with the previous simulation results.Concerning the destabilizing effect of TE,usually,when there are TEs,free energy is transferred from the TEs to the waves due to the precession drift resonance,so the TEs are destabilizing for the ITG.This resonance with TEs is related to the bounce average precession frequency(see equation (5)).The direction of the precession is in the toroidal direction.In fact,the resonance of TEs with the ITG mode is clearly represented by the denominator in the front of the integration overκd2in equation (5),which indicates that the resonance occurs between the mode oscillation(ω)and the bounce averaged precessional motionof TEs in the toroidal direction.Such resonance may have a destabilizing effect on the mode.

    The normalized growth rate (γ) and real frequency (ωr)versus R/LTifor different cases,namely,with and without impurities,TEs are presented in figure 4 with R/Lne=–8.The other parameters are the same as those shown in figure 3.We can see that there is a big difference between the TE effects between the weak and strong density gradient cases.In the weak density gradient situation,the TE effects tend to enhance the ITG instability,while the impurity has a clear stabilizing effect.However,in the strong density gradient cases,both the effects of impurities and TEs increase the ITG instability,especially the role of impurities,which makes the growth rate of instability increase by a large amplitude.This result in the hollow density profile plasma is exactly the opposite of that in plasmas with normal density gradient.We need to note that,generally speaking,for the former case,the total effect of TEs and impurity ions is stabilizing,while for the latter cases,the total effect is destabilizing.

    3.3.Effect of magnetic shear

    Numerous studies have shown that magnetic shear is an important parameter affecting instability,turbulent transport bifurcation,ion temperature profile invariance,and turbulent spreading.This is mainly because magnetic shear can affect the radial structure of the drift mode.In some experimental devices,the core weak magnetic shear discharge mode,which is listed as one of the candidates for the advanced operating modes of ITER,is studied.In this mode,the safety factor profile of the core is relatively flat and the magnetic shear is relatively small.A large number of studies have shown that the weak magnetic shear discharge pattern can well suppress the current-driven and fast MHD instability,but it is found that some slow-growing modes still grow,including microscopic drift instability.

    Figure 5.Normalized growth rate(γ)and real frequency(ωr)versus positive s with different Lez.(a)and(b)represent R/Lne=-1;(c)and(d) represents R/Lne=-8.Other parameters are set as:s=0.8,q=1.4,kθρs=0.4,and ηe=1.C+6 (fz=0.2) is treated as impurities.

    In this subsection,we investigate the effect of magnetic shear on ITG instability in inverted density plasma.For comparison,we chose R/Lne=–1 and R/Lne=–8,respectively,to compare the flat and steep electron density distributions to analyze the influences of magnetic shear on ITG instability.Figure 5 depicts the normalized growth rate (γ)and real frequency (ωr) versus positive magnetic shear s with different Lez.Figures 5(a) and (b) represent R/Lne=–1;figures 5(c) and (d) represent R/Lne=–8.We set the other parameters as:s=0.8,q=1.4,kθρs=0.4,and ηe=1.C+6is treated as impurities.From figure 5,it is shown that the growth rate of the ITG mode decreases with positive magnetic shear s while the real frequency increases with positive magnetic shear.That means,large magnetic shear will suppress the growth of the ITG mode.A strong electron density gradient only changes the real frequency of the ITG mode,while it hardly affects the relationship between the ITG mode and the magnetic shear.

    Figure 6 is the same as figure 5,except the magnetic shear is negative.From figure 6,we can see that the growth rate of the ITG increases with negative magnetic shear s while the real frequency decreases with the decrease of negative magnetic shear.This indicates that the ITG mode will also be suppressed with larger negative magnetic shear s.It should be noted that under the steep electron density distribution,the effects of impurities on the ITG shown in figures 2 and 5 are different.This is because we do not consider TEs in figure 2,and in figure 5 we do consider TEs.If figure 5 does not incorporate TEs,figures 2 and 5 are consistent under a negative strong density gradient.

    3.4.Eigenmode structure

    In this subsection,we discuss the eigenmode structure of the ITG modes in the ballooning space.To compare the results,we use s=0.9 and s=–0.9 to discuss the characteristics of the ITG in the negative and positive magnetic shear intervals,respectively.The red solid line and the blue dashed line represent the real partand the imaginary partof the disturbing electrostatic potential,respectively,in figure 7,which shows the eigenmode structures of the ITG in θ-space with s=0.9.Figures 7(a)–(c) represent R/Lne=–1 and figures 7(d)–(f) represent R/Lne=–8.Other parameters are set the same as those in figure 5.Figure 8 is the same except s=–0.9.For positive s,we can see that the eigenmode structure is well localized in the ballooning space.For negative s,the eigenmode is elongated along the direction of the magnetic field lines,thus requiring a higher calculation accuracy.As shown in figures 7 and 8,the length calculated in the negative s interval is greater than the value in the positive s.In addition,we learn that for relatively large electron density gradients,the ITG mode structure has oscillations in the θ-space.

    4.Summary and discussion

    In this paper,with a local equilibrium model,the local properties of the ITG mode in tokamak plasmas of inverted density profiles are studied in the presence of impurity ions and TEs,using the gyrokinetic integral eigenvalue code HD7.The specific results obtained can be summarized as follows.

    Figure 6.Normalized growth rate(γ)and real frequency (ωr)versus negative s with different Lez.(a)and(b)represent R/Lne=–1;(c)and(d) represent R/Lne=–8.Other parameters are set as:s=0.8,q=1.4,kθρs=0.4,and ηe=1.Fully ionized carbon (C+6,fz=0.2) is treated as impurity species.

    Figure 7.Eigenmode structures of the ITG in the(θ)space with s=0.9.(a)–(c)represent R/Lne=–1;(d)–(f)represent R/Lne=–8.Other parameters are set the same as those shown in figure 5.C+6 is treated as impurities with fz=0.2.

    Figure 8.Eigenmode structures of the ITG in the(θ)space with s=–0.9.(a)–(c)represent R/Lne=–1;(d)–(f)represent R/Lne=–8.Other parameters are set the same as those shown in figure 6.C+6 is treated as impurities with fz=0.2.

    (1) The increase of the ITG enhances the ITG growth rate and frequency.The effects of the TEs and impurity ions depend on the electron density gradient.In the weak density gradient situation,the TE effects tend to increase the ITG instability,while the impurity has a distinct stabilizing effect.However,in the strong density gradient cases,both the impurity and TEs increase the ITG instabilities.

    (2) The magnetic shear s is an important parameter affecting ITG instability.It is found that the growth rate of the ITG decreases with positive magnetic shear s while the real frequency increases with s.We also demonstrate that the growth rate of the ITG increases with negative s while the real frequency decreases with s.In addition,in inverted density plasma,the length of the calculated mode structure in the negative s interval is greater than that in the positive s case.

    Future work will include a quasi-linear study of TE and impurities effects on the ITG mode in toroidal plasmas with hollow density profiles.Moreover,electromagnetic simulations of the ITG in toroidal plasmas are also ongoing.

    Acknowledgments

    The authors would like to thank Huarong Du and Jia Li for fruitful discussions.This work is supported by the National Key R&D Program of China (Nos.2018YFE0303102 and 2017YFE0301702),US SciDAC GSEP,the NSFC (Nos.11905109 and 11947238),the China Postdoctoral Science Foundation (No.2018M640230),and the Fundamental Research Funds for the Central Universities,Nankai University (63191351).

    猜你喜歡
    董家
    董家鴻院士
    Exact surface energy and elementary excitations of the XXX spin-1/2 chain with arbitrary non-diagonal boundary fields
    A nonlinear wave coupling algorithm and its programing and application in plasma turbulences
    Neoclassical tearing mode stabilization by electron cyclotron current drive for HL-2M tokamak*
    大功率激電測深方法在豫西董家埝銀礦床勘查中的應(yīng)用
    學(xué)習(xí)是進步階梯,做不放棄的自己
    董家口
    紅巖(2018年6期)2018-11-16 12:27:24
    填成語
    老友(2018年3期)2018-01-22 04:01:48
    補唐詩慶建軍節(jié)
    老友(2017年8期)2017-02-07 03:19:24
    安丘董家莊漢畫像石墓主人之謎
    大眾考古(2014年2期)2014-06-26 08:29:32
    日韩欧美 国产精品| 精品一区二区三区视频在线观看免费| 内地一区二区视频在线| 夜夜夜夜夜久久久久| x7x7x7水蜜桃| 欧美最黄视频在线播放免费| 亚洲成人免费电影在线观看| 九九久久精品国产亚洲av麻豆| 亚洲av第一区精品v没综合| 日韩有码中文字幕| 国产在线男女| 日本五十路高清| 九色成人免费人妻av| 成人无遮挡网站| 欧美中文日本在线观看视频| 91在线观看av| 国产三级在线视频| 乱人视频在线观看| 很黄的视频免费| 国产激情偷乱视频一区二区| 亚洲 国产 在线| 波多野结衣高清作品| av视频在线观看入口| 国产麻豆成人av免费视频| 亚洲不卡免费看| 一个人看视频在线观看www免费| 欧美+亚洲+日韩+国产| 亚洲国产欧洲综合997久久,| www.www免费av| 精品久久久久久成人av| 一级黄色大片毛片| 国产蜜桃级精品一区二区三区| 女人十人毛片免费观看3o分钟| 美女高潮的动态| 18+在线观看网站| 12—13女人毛片做爰片一| 国产精品免费一区二区三区在线| 欧美乱妇无乱码| 国产色爽女视频免费观看| 女同久久另类99精品国产91| 欧美黄色片欧美黄色片| 成人av在线播放网站| 亚洲在线观看片| 亚洲中文字幕日韩| 国产成年人精品一区二区| 俺也久久电影网| 91麻豆av在线| 成人欧美大片| 久久国产精品人妻蜜桃| 我的老师免费观看完整版| 少妇的逼水好多| 精品午夜福利视频在线观看一区| 国产v大片淫在线免费观看| 国产又黄又爽又无遮挡在线| 欧美一级a爱片免费观看看| 丁香六月欧美| 在线十欧美十亚洲十日本专区| 美女被艹到高潮喷水动态| 中文字幕免费在线视频6| 国产成人aa在线观看| 麻豆成人av在线观看| 国产精品久久久久久亚洲av鲁大| 九色成人免费人妻av| 久久亚洲真实| 俺也久久电影网| 一级av片app| 熟妇人妻久久中文字幕3abv| 亚洲精品日韩av片在线观看| 日本a在线网址| 99久国产av精品| 一个人看视频在线观看www免费| 亚洲精品日韩av片在线观看| 老鸭窝网址在线观看| www.熟女人妻精品国产| 亚洲中文字幕日韩| 淫秽高清视频在线观看| 欧美极品一区二区三区四区| 亚洲成人免费电影在线观看| 亚洲av日韩精品久久久久久密| 无人区码免费观看不卡| 一个人看视频在线观看www免费| www日本黄色视频网| 亚洲欧美日韩卡通动漫| 成人美女网站在线观看视频| 在线观看av片永久免费下载| 深爱激情五月婷婷| 丰满人妻熟妇乱又伦精品不卡| 小说图片视频综合网站| 99在线人妻在线中文字幕| 亚洲人与动物交配视频| 日韩国内少妇激情av| 一级a爱片免费观看的视频| 舔av片在线| 性色avwww在线观看| 精品欧美国产一区二区三| 非洲黑人性xxxx精品又粗又长| 午夜精品一区二区三区免费看| 色哟哟哟哟哟哟| 成年女人永久免费观看视频| 久久草成人影院| 国产乱人伦免费视频| 久久99热这里只有精品18| 男插女下体视频免费在线播放| 精品久久久久久久久久免费视频| 午夜福利在线在线| 久久天躁狠狠躁夜夜2o2o| 中文字幕人妻熟人妻熟丝袜美| 全区人妻精品视频| 国产精品日韩av在线免费观看| 亚洲人成伊人成综合网2020| 看十八女毛片水多多多| 亚洲av.av天堂| 久久九九热精品免费| 国产探花在线观看一区二区| 亚洲国产精品999在线| 最近中文字幕高清免费大全6 | 丰满乱子伦码专区| 内地一区二区视频在线| 欧美一区二区精品小视频在线| 久久久久久久午夜电影| 亚洲av不卡在线观看| 99久久九九国产精品国产免费| 婷婷六月久久综合丁香| 三级毛片av免费| 91在线观看av| 91麻豆精品激情在线观看国产| 最近在线观看免费完整版| 国产激情偷乱视频一区二区| avwww免费| 国产成人影院久久av| 啦啦啦观看免费观看视频高清| 亚洲 国产 在线| 观看美女的网站| 国产v大片淫在线免费观看| 变态另类成人亚洲欧美熟女| 欧美性猛交黑人性爽| 女人被狂操c到高潮| 亚洲av五月六月丁香网| avwww免费| 国产精品久久久久久人妻精品电影| 亚洲最大成人av| 成年女人永久免费观看视频| 成人性生交大片免费视频hd| 精品久久久久久久人妻蜜臀av| 12—13女人毛片做爰片一| www.999成人在线观看| 久久久久国内视频| 又爽又黄a免费视频| 久99久视频精品免费| 国内久久婷婷六月综合欲色啪| 国产精品不卡视频一区二区 | 久久欧美精品欧美久久欧美| 国产午夜精品久久久久久一区二区三区 | 此物有八面人人有两片| 久久久久国产精品人妻aⅴ院| 亚洲国产高清在线一区二区三| 男人舔奶头视频| 久久中文看片网| 亚洲av熟女| 中文字幕精品亚洲无线码一区| 国产成人a区在线观看| 波野结衣二区三区在线| 色在线成人网| 淫秽高清视频在线观看| 最近在线观看免费完整版| 国产大屁股一区二区在线视频| 国产精品国产高清国产av| 午夜福利高清视频| 婷婷六月久久综合丁香| 啪啪无遮挡十八禁网站| 国产单亲对白刺激| 国产精品亚洲美女久久久| 日韩人妻高清精品专区| 国产综合懂色| 日本在线视频免费播放| 欧美高清成人免费视频www| 国产精品综合久久久久久久免费| 日韩欧美一区二区三区在线观看| 最近中文字幕高清免费大全6 | АⅤ资源中文在线天堂| 中亚洲国语对白在线视频| 丰满乱子伦码专区| 午夜福利视频1000在线观看| 婷婷丁香在线五月| 欧美日本视频| 成人毛片a级毛片在线播放| 国产精品,欧美在线| 亚洲五月婷婷丁香| 国产在线精品亚洲第一网站| 午夜福利18| 久久天躁狠狠躁夜夜2o2o| 看片在线看免费视频| 亚洲精品成人久久久久久| 99riav亚洲国产免费| 看黄色毛片网站| 亚洲美女视频黄频| 欧美黄色淫秽网站| 欧美一区二区精品小视频在线| av视频在线观看入口| 夜夜躁狠狠躁天天躁| 最好的美女福利视频网| 久9热在线精品视频| 成人永久免费在线观看视频| 国产成人福利小说| 很黄的视频免费| 国产成+人综合+亚洲专区| 欧美成人a在线观看| 桃红色精品国产亚洲av| 亚洲人成伊人成综合网2020| a级一级毛片免费在线观看| 在线天堂最新版资源| 婷婷色综合大香蕉| 美女xxoo啪啪120秒动态图 | h日本视频在线播放| 欧美在线黄色| 日本免费a在线| 欧美xxxx性猛交bbbb| 日日夜夜操网爽| 精品一区二区三区视频在线观看免费| 丰满的人妻完整版| 毛片一级片免费看久久久久 | 成年人黄色毛片网站| 99热这里只有是精品50| 亚洲欧美日韩无卡精品| 午夜激情欧美在线| 精品国产亚洲在线| 欧美zozozo另类| 啦啦啦韩国在线观看视频| 3wmmmm亚洲av在线观看| 欧美色欧美亚洲另类二区| 一级黄色大片毛片| 女人十人毛片免费观看3o分钟| 国产精品野战在线观看| 搡女人真爽免费视频火全软件 | 亚洲av电影在线进入| 国产久久久一区二区三区| 欧美又色又爽又黄视频| 日本一二三区视频观看| 婷婷亚洲欧美| 国产精品三级大全| 午夜精品一区二区三区免费看| 成人三级黄色视频| 美女 人体艺术 gogo| 午夜两性在线视频| 69av精品久久久久久| 国产av麻豆久久久久久久| 久久99热这里只有精品18| 国产日本99.免费观看| 在线观看免费视频日本深夜| 亚洲aⅴ乱码一区二区在线播放| 99精品在免费线老司机午夜| 88av欧美| 乱码一卡2卡4卡精品| 国产三级在线视频| 51国产日韩欧美| 日本成人三级电影网站| 老鸭窝网址在线观看| 搡老熟女国产l中国老女人| 国产精品一区二区三区四区久久| 国产在视频线在精品| 村上凉子中文字幕在线| 99精品久久久久人妻精品| 婷婷精品国产亚洲av| 中文字幕熟女人妻在线| 真人做人爱边吃奶动态| 亚洲18禁久久av| 免费黄网站久久成人精品 | 99热这里只有精品一区| 亚洲美女黄片视频| 国产成人av教育| 欧美区成人在线视频| 91在线精品国自产拍蜜月| a级一级毛片免费在线观看| 国产91精品成人一区二区三区| 久久久久性生活片| 国内少妇人妻偷人精品xxx网站| www.www免费av| 黄色配什么色好看| av在线天堂中文字幕| 日韩大尺度精品在线看网址| 丰满人妻一区二区三区视频av| 蜜桃亚洲精品一区二区三区| 日韩成人在线观看一区二区三区| 在线看三级毛片| 99久久久亚洲精品蜜臀av| 中国美女看黄片| 国产精品99久久久久久久久| 欧美一区二区亚洲| 成人精品一区二区免费| 国产三级黄色录像| 人妻丰满熟妇av一区二区三区| 热99在线观看视频| 老司机福利观看| 波多野结衣高清无吗| 国产亚洲精品久久久com| 婷婷精品国产亚洲av| 国产伦人伦偷精品视频| 91九色精品人成在线观看| 亚洲内射少妇av| 国产在视频线在精品| 一a级毛片在线观看| x7x7x7水蜜桃| 午夜福利在线在线| 久久久久性生活片| av在线观看视频网站免费| 1024手机看黄色片| 两个人的视频大全免费| 免费观看的影片在线观看| 少妇高潮的动态图| 91在线精品国自产拍蜜月| 欧美日本视频| 极品教师在线免费播放| 91狼人影院| 97超视频在线观看视频| 国内精品久久久久久久电影| 看免费av毛片| av女优亚洲男人天堂| 国产大屁股一区二区在线视频| 亚洲精品一卡2卡三卡4卡5卡| 欧美在线黄色| 免费观看的影片在线观看| 午夜免费男女啪啪视频观看 | 欧美3d第一页| 久久国产精品影院| 欧美一区二区国产精品久久精品| 国产单亲对白刺激| 一区二区三区激情视频| 亚洲性夜色夜夜综合| 欧美另类亚洲清纯唯美| 动漫黄色视频在线观看| 欧美一区二区国产精品久久精品| 久久精品影院6| 久久久久精品国产欧美久久久| 男人舔女人下体高潮全视频| 亚洲欧美精品综合久久99| 亚洲自拍偷在线| 免费在线观看成人毛片| 国产精品久久久久久亚洲av鲁大| 在线看三级毛片| 欧美又色又爽又黄视频| 色视频www国产| 国内少妇人妻偷人精品xxx网站| 亚洲欧美日韩高清专用| 我的老师免费观看完整版| 高清毛片免费观看视频网站| 成人特级黄色片久久久久久久| 毛片一级片免费看久久久久 | 欧美三级亚洲精品| 日韩亚洲欧美综合| 老熟妇仑乱视频hdxx| 在现免费观看毛片| 亚洲中文字幕日韩| 精品欧美国产一区二区三| 亚洲第一区二区三区不卡| 一边摸一边抽搐一进一小说| 午夜两性在线视频| 一本一本综合久久| 午夜福利高清视频| aaaaa片日本免费| 色哟哟哟哟哟哟| 久久九九热精品免费| 亚洲国产高清在线一区二区三| 久久久久九九精品影院| 精品一区二区三区视频在线观看免费| 久久久国产成人免费| 免费在线观看影片大全网站| 别揉我奶头~嗯~啊~动态视频| 国产一级毛片七仙女欲春2| 欧美乱妇无乱码| 夜夜看夜夜爽夜夜摸| 亚洲精品久久国产高清桃花| 欧美三级亚洲精品| 最近在线观看免费完整版| 两个人的视频大全免费| 少妇人妻精品综合一区二区 | 一级作爱视频免费观看| 久久热精品热| 桃色一区二区三区在线观看| 91av网一区二区| 精品午夜福利视频在线观看一区| 亚洲美女视频黄频| 久久国产精品人妻蜜桃| www.999成人在线观看| 怎么达到女性高潮| 国产一区二区激情短视频| 欧美最黄视频在线播放免费| 露出奶头的视频| av专区在线播放| a级毛片免费高清观看在线播放| 在线国产一区二区在线| 美女xxoo啪啪120秒动态图 | 欧美色视频一区免费| 一区二区三区高清视频在线| 免费在线观看亚洲国产| 亚洲真实伦在线观看| 欧美3d第一页| 亚洲片人在线观看| 国产色爽女视频免费观看| 国产高清视频在线观看网站| 国产欧美日韩精品一区二区| 亚洲av电影在线进入| 国产熟女xx| 精品免费久久久久久久清纯| 亚洲精品一卡2卡三卡4卡5卡| 最后的刺客免费高清国语| 亚洲第一区二区三区不卡| 久9热在线精品视频| 午夜福利高清视频| 国产69精品久久久久777片| 精品久久久久久,| 如何舔出高潮| 婷婷六月久久综合丁香| 国产成人a区在线观看| 国产成人福利小说| 欧美日韩国产亚洲二区| 丝袜美腿在线中文| 亚洲国产高清在线一区二区三| 欧美色视频一区免费| 91午夜精品亚洲一区二区三区 | 搞女人的毛片| 亚洲五月天丁香| 一区二区三区激情视频| 狂野欧美白嫩少妇大欣赏| 亚洲精品一区av在线观看| 97超级碰碰碰精品色视频在线观看| 精品人妻视频免费看| 色综合欧美亚洲国产小说| av欧美777| 国产av一区在线观看免费| 在线免费观看的www视频| 欧美最黄视频在线播放免费| 99国产综合亚洲精品| 国产探花极品一区二区| 亚洲五月天丁香| 亚洲精品在线美女| 午夜激情欧美在线| 日韩中字成人| 亚洲人成网站高清观看| 噜噜噜噜噜久久久久久91| 免费看光身美女| 国产精品久久视频播放| 不卡一级毛片| 久久久久性生活片| 日本 av在线| 国产在线精品亚洲第一网站| 国产精品爽爽va在线观看网站| 搞女人的毛片| a在线观看视频网站| av在线蜜桃| 免费在线观看成人毛片| 久久亚洲精品不卡| 精品久久久久久久久久免费视频| or卡值多少钱| 又黄又爽又免费观看的视频| 久久性视频一级片| 精品人妻1区二区| 欧美极品一区二区三区四区| 深夜精品福利| 国产熟女xx| 老鸭窝网址在线观看| 午夜福利在线观看免费完整高清在 | 成年版毛片免费区| 亚洲av免费高清在线观看| 男人舔奶头视频| 亚洲av不卡在线观看| 久久中文看片网| 午夜视频国产福利| 亚洲aⅴ乱码一区二区在线播放| 亚洲成人免费电影在线观看| 深夜a级毛片| 国产精品伦人一区二区| 99久久精品热视频| 国产激情偷乱视频一区二区| 69人妻影院| 亚洲人成网站在线播放欧美日韩| 无人区码免费观看不卡| avwww免费| 午夜精品一区二区三区免费看| a级毛片免费高清观看在线播放| 亚洲最大成人中文| 桃红色精品国产亚洲av| 午夜免费成人在线视频| 亚洲精品乱码久久久v下载方式| 99热只有精品国产| 国产熟女xx| 女人十人毛片免费观看3o分钟| 欧美精品啪啪一区二区三区| 美女xxoo啪啪120秒动态图 | 女生性感内裤真人,穿戴方法视频| 精品久久久久久久久久免费视频| 国产一区二区在线观看日韩| 成人鲁丝片一二三区免费| 婷婷精品国产亚洲av在线| 国产精品美女特级片免费视频播放器| 国产精品一区二区性色av| 午夜免费激情av| 在线观看免费视频日本深夜| 国产精品久久视频播放| 国产精品一区二区三区四区免费观看 | 精品久久久久久久久久免费视频| 我的女老师完整版在线观看| 在线播放国产精品三级| 国产高清激情床上av| 成熟少妇高潮喷水视频| 97人妻精品一区二区三区麻豆| 日本撒尿小便嘘嘘汇集6| 神马国产精品三级电影在线观看| 熟女人妻精品中文字幕| 国产乱人视频| 亚洲精品乱码久久久v下载方式| 在线观看一区二区三区| 精品午夜福利视频在线观看一区| 精华霜和精华液先用哪个| 免费黄网站久久成人精品 | 日韩国内少妇激情av| 日韩欧美精品免费久久 | 欧美高清性xxxxhd video| 国产精品一区二区三区四区久久| 欧美绝顶高潮抽搐喷水| 男人和女人高潮做爰伦理| 国产av在哪里看| 亚洲天堂国产精品一区在线| 欧美性猛交╳xxx乱大交人| 变态另类成人亚洲欧美熟女| 中文字幕精品亚洲无线码一区| 热99在线观看视频| 小蜜桃在线观看免费完整版高清| 日韩av在线大香蕉| 中文字幕av成人在线电影| 蜜桃久久精品国产亚洲av| 久久人人爽人人爽人人片va | 国产精品自产拍在线观看55亚洲| 国产白丝娇喘喷水9色精品| 日韩有码中文字幕| 久久精品久久久久久噜噜老黄 | 嫩草影视91久久| 日本在线视频免费播放| 亚洲最大成人av| 欧美日韩综合久久久久久 | www.熟女人妻精品国产| 噜噜噜噜噜久久久久久91| 国产老妇女一区| 99热这里只有是精品在线观看 | 国产在线男女| 中国美女看黄片| 日本五十路高清| 真实男女啪啪啪动态图| 国产伦人伦偷精品视频| 1000部很黄的大片| 中文字幕免费在线视频6| 亚洲国产欧美人成| av福利片在线观看| 国产视频内射| 我的女老师完整版在线观看| 欧美+日韩+精品| 国产亚洲av嫩草精品影院| 91av网一区二区| 窝窝影院91人妻| 69av精品久久久久久| 精品人妻偷拍中文字幕| www.熟女人妻精品国产| 99国产综合亚洲精品| 欧美三级亚洲精品| 精品午夜福利视频在线观看一区| 色哟哟·www| 免费无遮挡裸体视频| 18禁黄网站禁片午夜丰满| 国产免费av片在线观看野外av| 欧美日本视频| 久久午夜亚洲精品久久| 在线观看一区二区三区| 午夜日韩欧美国产| 国产精华一区二区三区| 欧美在线黄色| 窝窝影院91人妻| 国产精品久久视频播放| 午夜福利18| 啦啦啦韩国在线观看视频| 日本 欧美在线| 午夜福利在线在线| 99热这里只有是精品50| 69av精品久久久久久| 日韩欧美国产一区二区入口| 久久国产精品人妻蜜桃| 成人午夜高清在线视频| 欧美一区二区精品小视频在线| 丰满人妻熟妇乱又伦精品不卡| 深爱激情五月婷婷| 1000部很黄的大片| 国内久久婷婷六月综合欲色啪| 18禁在线播放成人免费| 1000部很黄的大片| 直男gayav资源| 欧美日韩乱码在线| 悠悠久久av| 国产av一区在线观看免费| 免费观看人在逋| 国内少妇人妻偷人精品xxx网站| 级片在线观看| 在线观看美女被高潮喷水网站 | 日韩欧美精品免费久久 | 成人美女网站在线观看视频| 亚洲aⅴ乱码一区二区在线播放| 人人妻,人人澡人人爽秒播| 成人美女网站在线观看视频| 男女视频在线观看网站免费| 亚洲乱码一区二区免费版| 成人一区二区视频在线观看| 久久天躁狠狠躁夜夜2o2o| 国产真实伦视频高清在线观看 | 国产精品影院久久| 亚洲在线观看片| 91久久精品国产一区二区成人| 最好的美女福利视频网| 窝窝影院91人妻|