• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Vickers hardness change of the Chinese low-activation ferritic/martensitic steel CLF-1 irradiated with high-energy heavy ions

    2020-06-14 08:45:50ZhaonanDING丁兆楠ChonghongZHANG張崇宏YitaoYANG楊義濤YuguangCHEN陳宇光XianlongZHANG張憲龍YinSONG宋銀TongdaMA馬通達(dá)YupingXU徐玉平andGuangnanLUO羅廣南
    Plasma Science and Technology 2020年5期
    關(guān)鍵詞:廣南通達(dá)

    Zhaonan DING (丁兆楠),Chonghong ZHANG (張崇宏),Yitao YANG (楊義濤),Yuguang CHEN (陳宇光),Xianlong ZHANG (張憲龍),Yin SONG (宋銀),Tongda MA (馬通達(dá)),Yuping XU (徐玉平) and Guangnan LUO (羅廣南)

    1 Institute of Modern Physics,Chinese Academy of Sciences,Lanzhou 730000,People’s Republic of China

    2 School of Nuclear Science and Technology,University of Chinese Academy of Sciences,Beijing 100049,People’s Republic of China

    3 General Research Institute for Nonferrous Metals,Beijing 100088,People’s Republic of China

    4 Institute of Plasma Physics,Chinese Academy of Sciences,Hefei 230031,People’s Republic of China

    Abstract

    Keywords:CLF-1,RAFM steel,heavy ions,irradiation,hardening

    1.Introduction

    Irradiation by the high-energy neutrons from the D–T reaction in fusion reactors will produce defects and gaseous impurities including helium in structural components such as the first wall/blankets,resulting in embrittlement and swelling of materials,thereby seriously restricting integrity and safety in long-life operation of fusion reactors.Due to excellent thermophysical and mechanical properties,good resistance to void swelling as well as low-activation,reduced-activation ferritic/martensitic (RAFM) steels have been considered as prime candidates for structural materials for fusion reactorblankets [1,2].The Chinese RAFM steel CLF-1 is one such candidate material for the design and manufacture of the helium-cooled ceramic breeder test blanket module (HCCB TBM) [3].Previous studies have shown that the ductile–brittle transition temperature and high-temperature tensile properties,especially the tensile strength of CLF-1,are close to the international level for the same type of RAFM steel,but there is still a lack of research on its response to irradiation.In view of the fact that hardening /embrittlement under irradiation is a crucial issue for the use of RAFM steels in the low-temperature regime (below 400°C),more studies are needed to clarify the performance of CLF-1 under irradiation.

    Table 1.Specific chemical composition of CLF-1 steel in wt%.

    The Vickers micro-hardness is known to have a direct correlation with the yield strength of steels.Busby et al [4]found that there is a simple interrelation between yield stress and Vickers hardness for austenite and ferrite steel after neutron irradiation.The Vickers hardness test does not require a large volume of material[5].The hardness and depth profile information obtained from the irradiated surface can be further analyzed to establish the correlation between the Vickers hardness and the macroscopic mechanical properties of the material [6].For a reliable evaluation of the irradiation hardening of steels by the Vickers micro-hardness test,the region damaged by irradiation needs to be thick enough so as to readily minimize the contribution of the unaffected substrate of the specimens.Besides various neutron sources,ion beams generated by high-energy accelerators are also applicable as surrogates [7]due to some attractive attributes such as higher damage rates,easier control of irradiation parameters and lower radioactivity of samples,enabling easy handling for the post-irradiation examination.Moreover,cascade damage induced by energetic heavy ions in materials is similar to that by fast neutrons [7].Therefore,heavy ions can be used to simulate neutron irradiation of structural components [8–10].

    In the present work,specimens of CLF-1 steel were irradiated with high-energy heavy ions to successively increasing damage levels at a low temperature where irradiation-induced hardening is significant.Vickers hardness together with nano-hardness were tested.Correlation between the Vickers micro-hardness and the nano-hardness and the dependence of the observed hardening on the irradiation dose were investigated.Finally,irradiation hardening data from other RAFM steels were compiled and compared.

    2.Experimental

    The material used in the present study was a Chinese RAFM steel CLF-1.The chemical composition of CLF-1 is listed in table 1.Details about the manufacturing process for CLF-1 have been described in previous papers [3,11–13].Before irradiation,a block of CLF-1 was sliced into specimens of 1 cm × 1 cm with a thickness of about 1 mm and mechanically ground with SiC abrasive paper (from grades 800 to 2400) then carefully polished with diamond suspensions(~1 μm)to obtain smooth surfaces.The final thickness of the sample was about 200 μm.

    The irradiation experiment was carried out at a terminal chamber of the Sector-focused Cyclotron at the Heavy Ion Research Facility in Lanzhou located in the Institute of Modern Physics of the Chinese Academy of Sciences.The chamber was equipped with a beam intensity monitoring assembly,an energy degrader and a liquid nitrogen-cooled specimen stage.The beam current was monitored with a Au foil assembly placed in the beam line before the energy degrader,consisting of a 1 μm thick Au foil to collect electric charge,a circular aperture of diameter 15 mm to limit the irradiation area and a circular aperture of diameter 18 mm with a bias voltage of-300 V to suppress secondary electron emission.At the beginning and the end of the irradiation,the beam current monitoring assembly was calibrated using a Faraday cup mounted at the end of the chamber.The incident mono-energetic heavy ions were dispersed into 11 different energies by an energy degrader in front of the specimen stage,which includes a rotatable wheel consisting of several aluminum foils of different thicknesses.During irradiation the thickness of the aluminum foil varies as the wheel rotates at a speed of 12 rpm,dispersing the incident ions with different energies and thus producing a nearly uniform distribution of displacement damage in the specimens.Further details about irradiation terminals are given in our previous paper [14].

    In the present study,14N and56Fe ions with kinetic energies of 63 MeV and 336 MeV,respectively,and a beam flux of around 5 × 1010ions cm–2s–1were used.Three successively increasing damage levels [0.05,0.1 and 0.2 displacements per atom (dpa)]were applied.The lowest and intermediate damage levels were due to N ion irradiation at a damage rate of about 0.01 dpa h-1.While the highest dose(0.2 dpa)was from Fe ion irradiation at a damage rate of about 0.02 dpa h-1.Depth profiles of atomic displacement damage (in dpa) in the CLF-1 specimens,irradiated with N ions to the lowest dose and Fe ions to the highest dose,are shown in figure 1,according to an estimation using the SRIM-2013 code (quick calculation,displacement threshold energy Ed=40 eV) [15].The dpa is obtained as the average displacement damage of the superposed value located at damage peak of multi-energy irradiation.The specimens were mounted on a stage cooled with liquid nitrogen so that the effects of beam heating are efficiently suppressed.A thermocouple was mounted on the sample stage to monitor the temperature during irradiation.The position of the specimen stage is adjustable,enabling a switch from one specimen to another.During irradiation,the temperature of the specimen stage was stabilized at about -50°C.Numerical analysis shows that beam heating causes the specimen temperature to be about 20°C higher than that of the specimen stage during irradiation.The vacuum of the sample chamber is around 2.5 × 10-5Pa.

    Figure 1.Depth profiles of the displacement damage in CLF-1 specimens according to SRIM-2013 simulation,corresponding to a dose level of(a)0.05 dpa by N ions and(b)0.2 dpa by Fe ions.The dashed red line shows the superposed effect.A series of different Al foil thicknesses(in micrometers) of the energy degrader is shown in the right column.

    After irradiation,the samples were preserved in the chamber in a rough vacuum at room temperature for 172 and 105 days corresponding to N and Fe irradiation,respectively,so as to take the radioactivity down to the background level.Then they were used for the nano-indentation test and Vickers hardness test.

    Testing the nano-hardness with the nano-indentation technique was described in our previous paper [16].The soft substrate effect,which is usually observed in low-energy ion irradiation experiments,was not seen in the present work.The broad quasi-uniform damage plateau from near the surface to about 25 μm (figure 1) facilitates direct measurement of the Vickers hardness.In the present study,a Vickers hardness tester (Wilson T2500,Buehler Ltd.,USA) was used.A standard sample was used for calibration before the test.Eight different loads (98 mN,196 mN,490 mN,980 mN,1.96 N,4.9 N,9.8 N and 19.6 N)were applied to the sample surface for 10 s each to measure the Vickers hardness of each specimen.The corresponding indentation depth varied in the range from 1.2 to 18.6 μm.For each load three indentation points were randomly selected on the specimen surface with a minimum distance of 200 μm,and the average value was taken.The Vickers hardness tests were conducted at room temperature.

    3.Results and discussion

    3.1.Irradiation hardening

    Figure 2.Average Vickers hardness versus indentation depth of CLF-1 specimens under different conditions.

    Figure 2 shows typical indentation depth profiles of the average Vickers hardness of three indents under each load for CLF-1 before and after irradiation.It can be seen that the measured hardness of all the specimens decreases with increasing indentation depth,known as the indentation size effect (ISE) [17].Moreover,hardening is observable in the irradiated specimens and increases with increase in the damage level.In figure 3,the extent of irradiation hardening at different doses is depicted by the hardness ratio of irradiated and unirradiated specimens.It can be seen that the ratio has a peak value at an indentation depth of about 3.8 μm.At this indentation depth,the hardening percentage is about 14%,23% and 28% for damage levels of 0.05,0.1 and 0.2 dpa,respectively.The ratio decreases monotonically at deeper indentation depths.

    Nix and Gao[18]developed a model based on geometrically necessary dislocation to explain the ISE,in which the hardness as a function of depth is given by the following equation:

    Figure 3.Ratio of/ versus indentation depth corresp-onding to different doses.

    Figure 4.Plots of HV2 versus 1/h for the average Vickers hardness of unirradiated and irradiated CLF-1 specimens.

    where HV is the measured hardness of the material,HV0is the hardness at infinite depth(i.e.bulk equivalent hardness),h is the indentation depth and h*is a characteristic length that depends on the material and shape of the indenter.It can be found from the equation that the square of the hardness varies inversely with the indentation depth.

    For further analysis,the hardness data versus indentation depth in figure 2 were replotted accordingly as HV2against 1/h,as shown in figure 4.Plots for the unirradiated specimen show a good linearity in the overall indentation depth range.However,plots for the specimens irradiated with heavy ions exhibit a distinct bilinearity,with an inflection point at a depth of around 3.6 μm,which coincides with the depth of the maximum ratio in figure 3.In the test,eight different loads(i.e.98 mN,196 mN,490 mN,980 mN,1.96 N,4.9 N,9.8 N and 19.6 N) were used,corresponding to indentation depths ranging from 1.2 μm to 18.6 μm.Since the zone affected by elastic deformation is generally a few times broader than the indentation depth,the undamaged substrate starts to contribute to the hardness test when the indentation depth exceeds the inflection point [19,20].From figure 2,the indentation depth of the initial five loads (i.e.98 mN,196 mN,490 mN,980 mN,1.96 N) was about 1.2 μm,1.7 μm,2.8 μm,3.6 μm and 5.8 μm,respectively.The corresponding elastic deformation zones below the indenter are generally about four to seven times deeper than the indentation depth.The elastic deformation zones of the initial four loads should be within the damaged layer (which is 25 μm thick) of the irradiated specimens,while that of the fifth load(1.96 N) should exceed the boundary of the damaged layer.Under larger loads the unirradiated soft substrates make a greater contribution to the hardness test,causing a different depth dependence of the hardness data [21].

    Table 2.HV0 and h* for CLF-1 steel calculated by the Nix–Gao model.Data are averages from three indents under each load.

    Figure 5.Bulk equivalent hardness HV0 as a function of damage level for CLF-1 steel.

    The bulk equivalent hardness HV0can therefore be obtained by extrapolating from the least-squares fitting of hardness data in the range of 1.2 μm < h < 3.6 μm for the irradiated specimens,according to equation (1).Values of HV0and h*are given in table 2.

    The dependence of HV0on the irradiation damage level(dpa) is plotted in figure 5.Fitting of the data suggests a power-law relationship:

    where the unit of HV0in the equation is GPa.The hardness initially increases quickly with dose (<0.05 dpa) and then slows down further with doses up to 0.2 dpa,showing a hardening saturation trend.

    The Vickers micro-hardness data are further compared with the nano-hardness obtained previously by nano-indentation tests from the same CLF-1 specimens [16].As shown in figure 6,the Vickers micro-hardness data reveal a linear relationship with nano-hardness,which can be described by the following equation:

    Figure 6.The Vickers hardness(HV0)as a function of nano-hardness(H0) for unirradiated and irradiated CLF-1 specimens.

    A similar linear relationship was found for various steels in our previous work[22,23]and also by Yabuuchi et al[10].The projection contact area is used in the analysis of nanoindentation data,while the residual projection area is used in Vickers hardness analysis [9].Therefore,the coefficient is only related to the geometric size of the indenter and hardness unit when Vickers hardness and nano-hardness are defined in the same way.

    In order to compare the irradiation hardening with other RAFM steels,data on the increase in yield strength were compiled from previous neutron and ion irradiation experiments.Based on the relationship between Vickers hardness and yield stress [4],data on the increase in Vickers hardness of CLF-1 in the present work and those of CLAM in[24]are converted to increase in yield stress by the following equations [8]:

    where Δσyis the increase in the yield stress in units of MPa,ΔHv is the increase in Vickers hardness in units of kgf mm-2and ΔHV is the the increase in Vickers hardness in units of GPa.Equation (5) shows the relationship between ΔHv and ΔHV.

    The results are shown in figure 7,together with data from the tensile tests of other RAFM steels irradiated with fast neutrons or protons reported in[25–27].Despite the variety of irradiation sources and the minor difference in the compositions/manufacturing routes of the RAFM steels,the increase in yield strength versus the level of irradiation damage generally follows a similar power-law function.The dose dependence of the increase in yield strength of CLF-1 steel in the present work shows a similar power exponent to the data for RAFM steels,including neutron- or proton-irradiated modified JLF-1,F82H and Optimax A.The temperature and dose rate have a minor effect on the irradiation hardening of RAFM steels,possibly because at temperatures below 300°C the mobility of the major defect species (interstitial-type clusters,vacancies) is limited and does not significantly alter the microstructures caused by primitive cascade damage.

    The power exponent in the case of the neutron-irradiated Eurofer97 is significantly higher than for other RAFM steels.The difference in the power exponents of the dose dependence is mainly due to the microstructures of the RAFM steels before irradiation.A further comparison of the microstructures prior to irradiation,including the density of dislocations and precipitates and grain-boundary structures,should be helpful for understanding the differences in dose dependence of irradiation hardening between the RAFM steels.

    4.Conclusions

    The irradiation hardening behavior of CLF-1 steel irradiated by high-energy heavy ions to successively increasing damage levels (i.e.0.05,0.1 and 0.2 dpa) was studied.The broad thickness of the damaged layer (about 25 μm) facilitates the direct measurement of Vickers hardness.The depth distribution of Vickers hardness was obtained by applying eight different loads on the specimens with a hardness tester.The Vickers hardness data were analyzed by the Nix–Gao model and the bulk equivalent hardness values corresponding to different conditions were obtained.The bulk equivalent hardness HV0is linearly related to the previous nano-indentation test results by HV0=0.83H0.Hardening is observable at the lowest damage level,and increases with increasing irradiation dose.A power-law dependence of the irradiation damage level,HV0=1.49 + 0.76 dpa0.31,was observed.A comparison with other RAFM steels under neutron or charged particle irradiation conditions shows that most RAFM steels show similar power-law exponents in the dose dependence of irradiation hardening.The differences in irradiation hardening may be attributed to difference in microstructure prior to irradiation,which requires further investigations.

    Acknowledgments

    This work was sponsored by the National Magnetic Confinement Fusion Program(No.2011GB108003)and National Natural Science Foundation of China (No.U1532262).We are grateful for the experimental conditions provided by the Heavy Ion Research Facility in Lanzhou (HIRFL).

    ORCID iDs

    猜你喜歡
    廣南通達(dá)
    廣南壩美 一個(gè)藏在青山綠水間的世外桃源
    大廣南高速視頻云聯(lián)網(wǎng)技術(shù)探討
    “神子”如何通達(dá)藏地——論格絨追美的長(zhǎng)篇小說(shuō)《隱蔽的臉》
    On the heating mechanism of electron cyclotron resonance thruster immerged in a non-uniform magnetic field
    廣南、廣巴高速公路連接線項(xiàng)目通過(guò)竣工驗(yàn)收
    石油瀝青(2019年1期)2019-03-05 08:25:46
    通達(dá)青島
    商周刊(2017年23期)2017-11-24 03:23:33
    博物洽聞,通達(dá)古今——記奉節(jié)縣博物館群
    LED燈在湖北大廣南高速公路隧道照明中的應(yīng)用
    兩年出欄的廣南高峰牛身價(jià)過(guò)萬(wàn)元
    達(dá)業(yè)速度為則通達(dá)
    久久久国产精品麻豆| 久久久久精品国产欧美久久久| 啦啦啦观看免费观看视频高清| 日本熟妇午夜| 在线视频色国产色| 天天添夜夜摸| 熟女人妻精品中文字幕| 真人做人爱边吃奶动态| 此物有八面人人有两片| 亚洲熟妇熟女久久| 18禁黄网站禁片午夜丰满| 精品久久久久久成人av| 欧美日韩精品网址| 国产主播在线观看一区二区| 我要搜黄色片| 精品日产1卡2卡| 香蕉久久夜色| 精品久久久久久,| 精品久久久久久久毛片微露脸| 1024手机看黄色片| 国产1区2区3区精品| 不卡一级毛片| 美女高潮喷水抽搐中文字幕| 欧美色视频一区免费| 日本三级黄在线观看| 亚洲va日本ⅴa欧美va伊人久久| av中文乱码字幕在线| 欧美性猛交黑人性爽| 午夜精品久久久久久毛片777| 九色国产91popny在线| 变态另类成人亚洲欧美熟女| 国产欧美日韩一区二区三| 啪啪无遮挡十八禁网站| 国产精品久久电影中文字幕| 国产精品1区2区在线观看.| 男女下面进入的视频免费午夜| 精品免费久久久久久久清纯| 色综合欧美亚洲国产小说| 亚洲专区字幕在线| avwww免费| 亚洲欧美日韩卡通动漫| 国产成人欧美在线观看| 白带黄色成豆腐渣| 久久中文看片网| 18禁美女被吸乳视频| 亚洲欧美日韩卡通动漫| 亚洲人成网站在线播放欧美日韩| 久久久久国产精品人妻aⅴ院| 99视频精品全部免费 在线 | 美女黄网站色视频| 欧美性猛交黑人性爽| 天天添夜夜摸| 亚洲九九香蕉| 国产精品久久久久久人妻精品电影| cao死你这个sao货| 亚洲成av人片免费观看| 青草久久国产| av女优亚洲男人天堂 | 成年女人看的毛片在线观看| 欧美三级亚洲精品| 日韩免费av在线播放| 99国产极品粉嫩在线观看| 美女免费视频网站| 日韩 欧美 亚洲 中文字幕| 天堂√8在线中文| 久久九九热精品免费| 黑人欧美特级aaaaaa片| 精品电影一区二区在线| 少妇裸体淫交视频免费看高清| 女人被狂操c到高潮| 又黄又粗又硬又大视频| 国产又色又爽无遮挡免费看| 18禁裸乳无遮挡免费网站照片| 国产 一区 欧美 日韩| 中文亚洲av片在线观看爽| 宅男免费午夜| 欧美日韩福利视频一区二区| 无限看片的www在线观看| 亚洲国产精品999在线| 男女之事视频高清在线观看| 国产高清videossex| 久久香蕉精品热| 国产私拍福利视频在线观看| 国产欧美日韩一区二区精品| 国产伦在线观看视频一区| 亚洲国产精品sss在线观看| 18禁美女被吸乳视频| 欧美极品一区二区三区四区| 精品福利观看| 长腿黑丝高跟| 欧美3d第一页| 白带黄色成豆腐渣| 国产欧美日韩精品亚洲av| av女优亚洲男人天堂 | 亚洲aⅴ乱码一区二区在线播放| 亚洲男人的天堂狠狠| av福利片在线观看| 久久久久久久久久黄片| 人人妻人人澡欧美一区二区| 国产精品 国内视频| 成人18禁在线播放| 久久久久久九九精品二区国产| 成年女人永久免费观看视频| 精品午夜福利视频在线观看一区| 日韩中文字幕欧美一区二区| 中文字幕熟女人妻在线| 日本在线视频免费播放| 亚洲 欧美 日韩 在线 免费| 日韩三级视频一区二区三区| www国产在线视频色| 国产精品国产高清国产av| 久久99热这里只有精品18| a在线观看视频网站| 国产成人av激情在线播放| ponron亚洲| 嫩草影院精品99| 少妇的丰满在线观看| 亚洲国产精品合色在线| 亚洲熟妇熟女久久| 最新在线观看一区二区三区| 国产毛片a区久久久久| 在线永久观看黄色视频| 狂野欧美白嫩少妇大欣赏| 国产午夜精品论理片| 最新中文字幕久久久久 | 国产精品乱码一区二三区的特点| 亚洲,欧美精品.| av女优亚洲男人天堂 | 国模一区二区三区四区视频 | 国产精品精品国产色婷婷| 久久草成人影院| 国产精品98久久久久久宅男小说| 女生性感内裤真人,穿戴方法视频| 久久久久性生活片| 午夜两性在线视频| 国产精品精品国产色婷婷| 色av中文字幕| 每晚都被弄得嗷嗷叫到高潮| 搡老妇女老女人老熟妇| 午夜精品一区二区三区免费看| 国产精品久久久久久亚洲av鲁大| 亚洲五月天丁香| 国内精品久久久久精免费| 国产三级中文精品| 欧美xxxx黑人xx丫x性爽| 亚洲在线观看片| 欧美又色又爽又黄视频| www.www免费av| 99精品在免费线老司机午夜| 久久精品夜夜夜夜夜久久蜜豆| 高清毛片免费观看视频网站| 欧美日本视频| 18禁国产床啪视频网站| 桃色一区二区三区在线观看| 成年女人看的毛片在线观看| 岛国在线免费视频观看| 欧美最黄视频在线播放免费| 一a级毛片在线观看| 免费看十八禁软件| 色综合婷婷激情| 欧美av亚洲av综合av国产av| 嫁个100分男人电影在线观看| 国产激情偷乱视频一区二区| 一区福利在线观看| 美女 人体艺术 gogo| 不卡av一区二区三区| 他把我摸到了高潮在线观看| av女优亚洲男人天堂 | 国产精华一区二区三区| 免费看光身美女| 国产精品一及| 女人被狂操c到高潮| 精品不卡国产一区二区三区| 噜噜噜噜噜久久久久久91| 精品久久久久久成人av| 午夜福利在线在线| 日本 欧美在线| 国产精品电影一区二区三区| 国产精品久久久人人做人人爽| 欧美色视频一区免费| 欧美乱色亚洲激情| 19禁男女啪啪无遮挡网站| 首页视频小说图片口味搜索| 夜夜看夜夜爽夜夜摸| 中文字幕熟女人妻在线| 国产精品一区二区免费欧美| 巨乳人妻的诱惑在线观看| 一本久久中文字幕| 亚洲最大成人中文| 国产欧美日韩精品亚洲av| 久久久国产成人精品二区| 女同久久另类99精品国产91| 露出奶头的视频| 国产久久久一区二区三区| 久久久久久九九精品二区国产| 精品免费久久久久久久清纯| 99国产精品99久久久久| 91麻豆精品激情在线观看国产| 欧美日韩福利视频一区二区| 国产精品电影一区二区三区| 成年版毛片免费区| 最新中文字幕久久久久 | 日本撒尿小便嘘嘘汇集6| 99国产精品一区二区三区| 99热只有精品国产| 亚洲欧美精品综合久久99| 三级国产精品欧美在线观看 | 动漫黄色视频在线观看| 成人午夜高清在线视频| 亚洲国产欧美网| 免费av毛片视频| 99热6这里只有精品| 女同久久另类99精品国产91| 51午夜福利影视在线观看| 淫妇啪啪啪对白视频| 午夜福利18| 男插女下体视频免费在线播放| 欧美日韩国产亚洲二区| 国产三级黄色录像| 国产综合懂色| 一a级毛片在线观看| 午夜精品久久久久久毛片777| 757午夜福利合集在线观看| 床上黄色一级片| 国产成人啪精品午夜网站| 国产乱人视频| 亚洲成av人片免费观看| 麻豆成人av在线观看| 国产精品爽爽va在线观看网站| 国产av一区在线观看免费| 国产精品影院久久| 真人一进一出gif抽搐免费| 99国产精品一区二区三区| 久久精品影院6| 亚洲国产中文字幕在线视频| 免费看a级黄色片| 日本一二三区视频观看| 亚洲色图av天堂| 午夜福利免费观看在线| 午夜精品一区二区三区免费看| 99re在线观看精品视频| 国产麻豆成人av免费视频| 一级黄色大片毛片| 亚洲aⅴ乱码一区二区在线播放| 99国产精品99久久久久| АⅤ资源中文在线天堂| 99热这里只有精品一区 | 97人妻精品一区二区三区麻豆| www.www免费av| 亚洲自偷自拍图片 自拍| 久久精品影院6| 国产久久久一区二区三区| 亚洲真实伦在线观看| 国产亚洲av嫩草精品影院| 免费看光身美女| 国产亚洲欧美在线一区二区| 精品久久久久久久久久免费视频| 久久精品国产亚洲av香蕉五月| 夜夜夜夜夜久久久久| 国产一区二区三区视频了| 日日干狠狠操夜夜爽| 天堂av国产一区二区熟女人妻| 黄色女人牲交| 少妇的丰满在线观看| 老司机在亚洲福利影院| 91麻豆精品激情在线观看国产| xxxwww97欧美| 成人国产一区最新在线观看| 99在线视频只有这里精品首页| 白带黄色成豆腐渣| 亚洲av熟女| 国产激情偷乱视频一区二区| 亚洲熟妇熟女久久| 啦啦啦观看免费观看视频高清| 久久这里只有精品中国| 久久久久国产一级毛片高清牌| 久久精品人妻少妇| 国产亚洲av嫩草精品影院| 国产毛片a区久久久久| 听说在线观看完整版免费高清| 国产又黄又爽又无遮挡在线| 亚洲成人中文字幕在线播放| 国产单亲对白刺激| 国产精品久久久久久亚洲av鲁大| 蜜桃久久精品国产亚洲av| 看黄色毛片网站| 日本与韩国留学比较| 黄频高清免费视频| 亚洲av电影不卡..在线观看| 国产亚洲精品一区二区www| 久久精品91蜜桃| 亚洲熟妇熟女久久| 黄频高清免费视频| 99久国产av精品| av福利片在线观看| 床上黄色一级片| 又爽又黄无遮挡网站| 三级男女做爰猛烈吃奶摸视频| 变态另类丝袜制服| 欧美黄色淫秽网站| 亚洲欧美精品综合一区二区三区| 国产欧美日韩一区二区三| 女警被强在线播放| 免费在线观看视频国产中文字幕亚洲| 久久精品国产亚洲av香蕉五月| 18禁黄网站禁片午夜丰满| 久久国产精品影院| 久久中文字幕一级| 一本精品99久久精品77| 亚洲专区中文字幕在线| 女生性感内裤真人,穿戴方法视频| 国产单亲对白刺激| av福利片在线观看| 亚洲精品国产精品久久久不卡| 狂野欧美白嫩少妇大欣赏| 99久久成人亚洲精品观看| 国产三级在线视频| 国产精品自产拍在线观看55亚洲| 久久久久精品国产欧美久久久| 久久欧美精品欧美久久欧美| 性色av乱码一区二区三区2| 国产成人啪精品午夜网站| 动漫黄色视频在线观看| 男女床上黄色一级片免费看| 在线观看免费午夜福利视频| 国产亚洲精品一区二区www| 国产成年人精品一区二区| 特大巨黑吊av在线直播| 国产极品精品免费视频能看的| 国产一区二区激情短视频| 亚洲欧美激情综合另类| 看片在线看免费视频| 国产男靠女视频免费网站| 日本a在线网址| 国产激情偷乱视频一区二区| 在线免费观看的www视频| 亚洲欧美精品综合久久99| 此物有八面人人有两片| 给我免费播放毛片高清在线观看| 欧美激情久久久久久爽电影| 精品久久久久久久毛片微露脸| 91老司机精品| 五月伊人婷婷丁香| 18美女黄网站色大片免费观看| 成人永久免费在线观看视频| 久久精品国产清高在天天线| 亚洲一区高清亚洲精品| 12—13女人毛片做爰片一| 国产成人精品久久二区二区91| 淫妇啪啪啪对白视频| 97人妻精品一区二区三区麻豆| 亚洲成av人片免费观看| 99国产精品一区二区三区| 亚洲精品国产精品久久久不卡| 婷婷丁香在线五月| 每晚都被弄得嗷嗷叫到高潮| 日本免费a在线| 女人被狂操c到高潮| 国产99白浆流出| 51午夜福利影视在线观看| 国产成人精品久久二区二区免费| 久久精品国产亚洲av香蕉五月| 在线观看免费午夜福利视频| 三级男女做爰猛烈吃奶摸视频| 极品教师在线免费播放| 日韩大尺度精品在线看网址| 国产免费av片在线观看野外av| 国产69精品久久久久777片 | 我要搜黄色片| 免费在线观看日本一区| 国产三级在线视频| 99久久国产精品久久久| 日本黄大片高清| 最近最新免费中文字幕在线| 亚洲va日本ⅴa欧美va伊人久久| 国产av不卡久久| 99久久综合精品五月天人人| 国产精品久久久久久亚洲av鲁大| 18美女黄网站色大片免费观看| 色老头精品视频在线观看| 极品教师在线免费播放| 国产aⅴ精品一区二区三区波| 婷婷精品国产亚洲av在线| 久久精品人妻少妇| 18美女黄网站色大片免费观看| 成人高潮视频无遮挡免费网站| 最近视频中文字幕2019在线8| 欧美最黄视频在线播放免费| 欧美黄色片欧美黄色片| 亚洲欧洲精品一区二区精品久久久| 午夜福利18| 黄片大片在线免费观看| 亚洲中文日韩欧美视频| 国产一区二区在线av高清观看| 久久国产精品人妻蜜桃| 亚洲精品一区av在线观看| 日本一二三区视频观看| 老司机在亚洲福利影院| or卡值多少钱| 国产伦精品一区二区三区四那| 精品乱码久久久久久99久播| www.精华液| 国产一区在线观看成人免费| aaaaa片日本免费| 国产午夜福利久久久久久| 香蕉丝袜av| 国产精品亚洲av一区麻豆| 国产极品精品免费视频能看的| 香蕉丝袜av| 高潮久久久久久久久久久不卡| 天天躁狠狠躁夜夜躁狠狠躁| 男人的好看免费观看在线视频| 岛国在线观看网站| 欧美性猛交黑人性爽| 日本一本二区三区精品| 巨乳人妻的诱惑在线观看| 国产成人aa在线观看| 三级男女做爰猛烈吃奶摸视频| 舔av片在线| 一级毛片女人18水好多| 亚洲片人在线观看| 亚洲一区高清亚洲精品| 久久久久久九九精品二区国产| 丝袜人妻中文字幕| 国产免费男女视频| 国产精品日韩av在线免费观看| 丰满人妻熟妇乱又伦精品不卡| 2021天堂中文幕一二区在线观| 1024手机看黄色片| 又紧又爽又黄一区二区| 黄频高清免费视频| 欧美大码av| 久久久久久人人人人人| 国产三级黄色录像| 欧美黄色淫秽网站| 亚洲人成网站高清观看| 美女大奶头视频| av女优亚洲男人天堂 | 欧美在线一区亚洲| 一个人看视频在线观看www免费 | 嫩草影视91久久| 久久久久亚洲av毛片大全| 国产探花在线观看一区二区| 久久香蕉精品热| 国产精品爽爽va在线观看网站| 色视频www国产| 曰老女人黄片| 黄片小视频在线播放| 欧美色欧美亚洲另类二区| 色老头精品视频在线观看| 十八禁网站免费在线| 欧美3d第一页| 九九在线视频观看精品| 国产欧美日韩一区二区三| 99在线视频只有这里精品首页| 国产精品电影一区二区三区| 国产黄片美女视频| 男女床上黄色一级片免费看| 亚洲天堂国产精品一区在线| 亚洲国产看品久久| 三级毛片av免费| 国产99白浆流出| 日本 欧美在线| 久久精品亚洲精品国产色婷小说| 中文字幕人妻丝袜一区二区| 久久久久精品国产欧美久久久| 啦啦啦免费观看视频1| 日本撒尿小便嘘嘘汇集6| 日韩免费av在线播放| 两性夫妻黄色片| 国产亚洲av高清不卡| 91久久精品国产一区二区成人 | 午夜精品在线福利| av天堂中文字幕网| 免费人成视频x8x8入口观看| 两性午夜刺激爽爽歪歪视频在线观看| 19禁男女啪啪无遮挡网站| 夜夜躁狠狠躁天天躁| 午夜免费观看网址| 高清在线国产一区| 久久香蕉国产精品| 欧美日韩瑟瑟在线播放| 美女cb高潮喷水在线观看 | 午夜福利成人在线免费观看| 亚洲av美国av| 亚洲国产日韩欧美精品在线观看 | 成熟少妇高潮喷水视频| 亚洲18禁久久av| 9191精品国产免费久久| 最近最新免费中文字幕在线| 日韩免费av在线播放| 国产v大片淫在线免费观看| 18禁国产床啪视频网站| 色综合婷婷激情| 91久久精品国产一区二区成人 | 国产三级在线视频| 国产av一区在线观看免费| 麻豆国产97在线/欧美| 一个人看视频在线观看www免费 | 欧美一级a爱片免费观看看| 国产精品精品国产色婷婷| 黄色日韩在线| 国产美女午夜福利| 男女下面进入的视频免费午夜| 夜夜躁狠狠躁天天躁| 99国产综合亚洲精品| 国产乱人伦免费视频| 亚洲欧美日韩高清专用| 日韩欧美精品v在线| 国产综合懂色| av在线天堂中文字幕| 国产精品一区二区精品视频观看| 亚洲成人久久爱视频| www日本黄色视频网| 国产 一区 欧美 日韩| 天天添夜夜摸| 亚洲人成网站在线播放欧美日韩| 三级毛片av免费| 国内揄拍国产精品人妻在线| 窝窝影院91人妻| 国产成人精品久久二区二区91| 精品一区二区三区视频在线观看免费| 亚洲一区高清亚洲精品| 岛国视频午夜一区免费看| 国产亚洲精品一区二区www| 久久久久国内视频| 亚洲真实伦在线观看| 天堂影院成人在线观看| 听说在线观看完整版免费高清| 变态另类成人亚洲欧美熟女| 亚洲人成伊人成综合网2020| 精品国产美女av久久久久小说| 一级毛片高清免费大全| 夜夜爽天天搞| 亚洲专区中文字幕在线| 成年女人毛片免费观看观看9| 18禁黄网站禁片免费观看直播| 色av中文字幕| 国产欧美日韩一区二区三| 久久热在线av| 麻豆国产97在线/欧美| 人人妻人人看人人澡| 国内毛片毛片毛片毛片毛片| 超碰成人久久| 精品久久久久久久末码| 999久久久精品免费观看国产| 后天国语完整版免费观看| 国内少妇人妻偷人精品xxx网站 | 一个人看的www免费观看视频| 51午夜福利影视在线观看| 老熟妇乱子伦视频在线观看| 又大又爽又粗| 色哟哟哟哟哟哟| 精品熟女少妇八av免费久了| 午夜免费成人在线视频| 亚洲第一欧美日韩一区二区三区| 久久精品aⅴ一区二区三区四区| 精品久久久久久久久久久久久| 岛国视频午夜一区免费看| 国产精品野战在线观看| 香蕉丝袜av| 国语自产精品视频在线第100页| 啪啪无遮挡十八禁网站| av天堂中文字幕网| 麻豆国产av国片精品| 国产精品影院久久| 色av中文字幕| 岛国视频午夜一区免费看| 国产激情偷乱视频一区二区| 中国美女看黄片| 国产野战对白在线观看| 久久久精品大字幕| 免费搜索国产男女视频| 伊人久久大香线蕉亚洲五| 亚洲天堂国产精品一区在线| 国产伦人伦偷精品视频| 两个人的视频大全免费| 精品久久蜜臀av无| 19禁男女啪啪无遮挡网站| 免费av不卡在线播放| 最新在线观看一区二区三区| 久久精品影院6| 国产精品98久久久久久宅男小说| 两人在一起打扑克的视频| 一二三四社区在线视频社区8| 亚洲色图av天堂| 国产视频内射| 波多野结衣高清作品| h日本视频在线播放| 亚洲成a人片在线一区二区| 亚洲国产欧洲综合997久久,| 曰老女人黄片| 97超级碰碰碰精品色视频在线观看| 中文字幕人妻丝袜一区二区| 欧美日韩精品网址| 桃色一区二区三区在线观看| 久久精品影院6| 三级男女做爰猛烈吃奶摸视频| 欧美3d第一页| 亚洲国产欧美人成| 精品不卡国产一区二区三区| 久久久久国产一级毛片高清牌| 亚洲av日韩精品久久久久久密| 一区二区三区激情视频| 老司机福利观看| 九九热线精品视视频播放| 精品国产超薄肉色丝袜足j| 欧美另类亚洲清纯唯美| 黄色视频,在线免费观看| 人妻夜夜爽99麻豆av| 成人18禁在线播放| 18禁美女被吸乳视频| 男人舔奶头视频| 夜夜躁狠狠躁天天躁| 欧美xxxx黑人xx丫x性爽|