• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamical quantum phase transition in XY chains with the Dzyaloshinskii–Moriya and XZY–Y ZX three-site interactions

    2022-06-29 08:53:46KaiyuanCao曹凱源MingZhong鐘鳴andPeiqingTong童培慶
    Chinese Physics B 2022年6期
    關(guān)鍵詞:鐘鳴

    Kaiyuan Cao(曹凱源) Ming Zhong(鐘鳴) and Peiqing Tong(童培慶)

    1Department of Physics and Institute of Theoretical Physics,Nanjing Normal University,Nanjing 210023,China

    2Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems,Nanjing Normal University,Nanjing 210023,China

    Keywords: dynamical quantum phase transition,gapless phase,asymmetry excitation spectra

    1. Introduction

    Quantum phase transitions (QPTs) are one of the most significant phenomena in quantum many-body physics.[1,2]It is characterized by a nonanalytic behavior of some physical observable at a quantum critical point due to the change of the external control parameter. Recently,the dynamical quantum phase transitions(DQPTs)that in the quantum many-body systems have attracted extendedly both the theoretical[3–31]and experimental[32–37]interests. Unlike the QPTs driven by the external control parameters, the DQPTs describe the nonanalytic behavior of the Loschmidt echo (LE) during the time evolution, where a common protocol for driven a system out of equilibrium is called quantum quench. In many cases, the DQPTs are found to have a strong connection with the QPTs. The DQPTs are present in the cases of sudden quenches crossing the quantum critical points[3,4]and the topology changes,[5,8]although it is also found that the DQPTs occur in the cases of quenches without crossing any quantum critical point.[6,12]Therefore,it is still an open and debated issue whether the quench crossing the critical points of QPTs is a necessary condition to induce a DQPT.[22,27]

    Up to now, many works have investigated the quench from gapped phase to gapped phase,whereas few studies have focused on the case of quench from the gapless phase. The gapless phase is of general existence in the quantum systems,such as theXYchain with the Dzyaloshinskii–Moriya (DM)interaction,[38–41]theXYchain withXZY–YZXtype of threesite interactions[42,43]and Kitaev model.[44]Unlike the case of the gapped phase, the ground states of the system in the gapless phase corresponds to the configuration where all the states with negative excitation spectra are filled and nonnegative are empty.[45–47]Recently, Cheraghi and Mahdavifar studied the DQPTs in the quantum Ising chain with DM interaction.[16]They only considered the case of quench from gapped phase to gapped phase and did not consider the quench from the gapless phase,so that they concluded that the DM interaction does not affect the DQPT.In a recent paper,[27]the authors studied the DQPTs in theXYchain with DM interaction in the alternating external transverse field. They also did not discuss the case of quench starting from the gapless phase, because they said that it is difficult to study the initial condition in the gapless phase in their models.[27]Therefore, it is still unknown when the quench is from the gapless phase.

    Recently, Jafari has studied the DQPTs in the extendedXYchain withXZX+YZYtype of three-site interaction in the staggered transverse field.[22]He found that the DQPTs may not occur when the quench is from the gapped phase to gapless phase. The model has the gapless phase due to the staggered external field and the quasiparticle excitation spectra are symmetrical.[22]In this paper,we investigate the DQPTs in the extendedXYchains with DM interaction andXZY–YZXtype of three site interactions. Both the models have asymmetrical quasiparticle excitation spectra(εk/=ε-k),which are different from the model in Ref.[22].We study all possible situations of ground states of pre-quench Hamiltonian and obtain the general expression of LE for the systems with gapless phases(see Section 2). This allows our discussion to be generalized to the general quantum spin models. For the homogeneous system,the LE can be given byL(t)=∏k>0Lk(t),whereLk(t)equals unity corresponding to the quasiparticle excitation spectra of pre-quench Hamiltonian satisfyingεk·ε-k <0 in the momentum subspacek >0. Therefore,we obtain general conditions for the occurrence of DQPTs. In Sections 3 and 4,we discuss the behaviors of DQPTs for two extendedXYchains by given numerical results. It is found that the DQPTs may not occur in the quench across the quantum phase transitions regardless of whether the quench is from the gapless phase to gapped phase or from gapped phase to gapless phase. A brief conclusion is given in Section 5.

    2. Models and DQPT

    We consider two kinds of the extendedXYchains (with periodic boundary) in a transverse field: one with the added DM interaction and the other with addedXZY–YZXtype of three-site interaction. The Hamiltonian is written as

    Fig.1. (a)The typical phase diagram of the XY chain with DM interaction in the (h,γ) plane for D=0.2. (b) Three typical quasiparticle excitation spectra εk for points A,B,and C in(a). (c)The typical phase diagram of the XY chain with XZY–YZX type of three-site interaction for ξ =0.5. (d)Three typical εk for points A,B,and C in(a). Regions CP,PM,FMx and FMy between the solid lines correspond to the gapless chiral phase, gapped paramagnetic phase, gapped ferromagnetic phase along x direction and gapped ferromagnetic phase along y direction,respectively.The orange areas denote the negative quasiparticle excitation spectrum intervals(εk <0).

    In Figs.1(a)and 1(c),we show the phase diagrams in the(h–γ)plane for theXYchain with DM interaction(D=0.2)[47]andXZY–YZXtype of three-site interaction (ξ= 0.5),[48]respectively. Both the phase diagrams consist of four parts[see Figs. 1(a) and 1(c)]: gapless chiral (CP) phase, gapped paramagnetic(PM)phase,gapped ferromagnetic phase alongx(FMx) direction, and gapped ferromagnetic phase alongy(FMy)direction,where for gapless CP phase,εk <0 for somek, but for gapped phases,εk >0 for allk. In Figs. 1(b) and 1(d),we show three typical excitation spectra for points A,B,and C(see Figs.1(a)and 1(c))for theXYchain with DM interaction(D=0.2)andXZY–YZXtype of three-site interaction

    3. The DQPT in the XY chain with DM interaction

    For the quench from theH(h0,γ0) toH(h,γ), we define the domain?(h0,γ0)in the plane(h,γ),where the conditions(17) and (18) are satisfied. The domain?(h0,γ0) covers all the parameters of the post-quench Hamiltonian, in which the DQPT will occur for the quench from(h0,γ0). In the following,we discuss the cases of quenches from the gapless phase and the gapped phase,respectively.

    3.1. Quench from the gapless phase

    First, we consider the case of quench from the gapless phase. As a typical example, Fig. 2(a) shows the domain?(h0= 0.5,γ0= 0.2) for the quench from the gapless CP phase, where the domain is shown as the red region. It can be seen that the domain?(h0=0.5,γ0=0.2)does not cover all the areas of the PM,FMxand FMyphases,and also covers a part of the area in the CP phase. This means that the DQPT may occur for the quench within the gapless CP phase, and may not occur for the quench from the CP phase to the PM,FMxand FMyphases.

    Fig.2. (a)Domain ?(h0,γ0)(the red region)covering the post-quench Hamiltonian parameters where the DQPTs appear for the quench from the initial points(h0,γ0). (b)–(e)The Fisher zeros for the quench paths A–D shown in(a). (f)The corresponding rate functions for the quench paths A–D.

    To show the behaviors of DQPTs more clearly,we show four examples of the Fisher zeroszn(k)in Figs.2(b)–2(e)for the quench paths A–D marked in Fig.2(a),and the corresponding rate functions are given in Fig.2(f). The paths A and B are within the CP phase, and the paths C and D are from the CP phase to the PM phase and FMyphase,respectively. It should be noticed that all the Fisher zeros for the paths A–D are separated into two parts,because those wave vectors corresponding toεk·ε-k <0 do not contribute to the Fisher zeros for the quench from the gapless CP phase. For the quench path A,one branch of the Fisher zeroszn(k) is seen to intersect with the imaginary axis in the complex time plane.However,for the quench paths B and C,the Fisher zeroszn(k)have no intersection with the imaginary axis. While for the quench path D,all two branches of Fisher zeroszn(k)will intersect with the imaginary axis. Meanwhile,for the quench paths A and D,we can find the corresponding cusp-like peaks of the rate functions at the critical times of the DQPTs [see Fig. 2(f)], which are in good agreement with the intersections between the Fisher zeros and the imaginary axis. However, for the quench paths B and C,the rate functions are smooth curves.

    Fig.3. Values of|tanαk|for the paths A,B,C,and D in Fig.2(a),respectively. The orange block denotes the wave vectors k corresponding to εk <0.

    To understand the reason of the behavior of DQPT for the quench from the gapless phase,we draw|tanαk|as a function ofkin Fig. 3 for the quench path A to D, respectively. The wave vectors intervalk ∈(1.73,2.39),in whichεk <0 of the pre-quench HamiltonianH(h0=0.5,γ0=0.2), is marked by the orange block. According to Eqs.(17)and(18),the DQPT will occur when|tanαk| reach 1 at the critical wave vectors outside the orange block. For the path A, it can be seen that there are two wave vectors satisfying|tanαk|=1, but one is inside the orange block and the other is outside. Therefore,there is one critical wave vectork*of the DQPT in the quench path A. For paths B and C, the wave vectors for|tanαk|=1 are located in the orange block, so the DQPT can not occur for the quench paths B and C.While for the path D,there are two critical wave vectorsk*for|tanαk*|=1 outside the orange block, which is exactly corresponding to two groups of DQPTs shown in Fig.2(e). In summary,for the quench from the gapless phase, the occurrence of DQPT must satisfy the conditions(17)and(18)simultaneously.

    3.2. Quench from the gapped phase

    Now, we consider the case of quench from the gapped phase(FM phase and PM phase). It is found that the situation for the quench from the FM phase is essentially the same as that for the quench from the PM phase, so we take the case of quench from the FM phase as an example to discuss the behavior of DQPT in the quench from the gapped phase.

    In Fig. 4(a), we display the domain?(h0,γ0) from the ground state of the pre-quench HamiltonianH(h0=0.5,γ0=-0.5), that is, from the FMyphase. It can be seen that the domain?(h0=0.5,γ0=-0.5)does not cover all the area of the CP phase, but cover all the area of the PM phase and the FMxphase. This indicates that the DQPT will always occur for the quench from the FMyphase to the PM phase and the FMxphase,but may not occur for the quench from the gapless CP phase. We find that the case of quench from the gapped phase to the gapped phase is similar to that in theXYchain,[6]so we focus on the case of quench from the gapped phase to the gapless phase.

    We consider the case of quench from the FM phase to the gapless CP phase. As two examples, we show the Fisher zeros for the quench paths A and B in the Figs. 4(b) and 4(c),and the corresponding rate functions are shown in Fig. 4(d).Unlike the case of the quench from the gapless phase, the quasiparticle excitation spectraεk >0 for all the wave vectorsk. Therefore, the Fisher zeros lines for the paths A and B are both continuous lines in the complex time plane. For the path A, the Fisher zeros are found having no intersection with imaginary axis[see Fig.4(b)],and the rate function is the smooth function. There is no DQPT in the path A.However,for the path B,each Fisher zeros linezn(k)have two intersections with the imaginary axis.The corresponding critical times of DQPTs are seen as the cusp-like peeks of the rate function[see Fig.4(d)].

    Similarly, we show the values of|tanαk| for the quench paths A and B in Fig. 5. For the path A, all the values of|tanαk| are smaller than 1, so the DQPT can not occur because the condition(17)is not satisfied. However,for the path B,there are two critical wave vectorsk*for|tanαk|=1,which is exactly corresponding to two intersections between each Fisher zeros line and the imaginary axis[see Fig.4(c)].Unlike the case of the quench from the gapless phase,the quasiparticle excitation spectra of the pre-quench Hamiltonian satisfyεk >0 for all the wave vectorskwhen the quench is from the gapped phase. Therefore,the occurrence of DQPT is actually determined by the condition(17).

    Fig.5. Values of|tanαk|for the paths A and B in Fig.4(a),which are from the FM to the CP phase.

    4. The DQPT in the XY chain with three-site interaction

    Now, we discuss the behavior of the DQPT in theXYchain withXZY–YZXtype of three-site interaction.

    4.1. Quench from the gapless CP phase

    First,we consider the case of quench from the gapless CP phase. In Fig. 6(a), we show the domain?(0.5,0.1) which indicates that the DQPTs occur in the case of quench from the ground states of pre-quench HamiltonianH(0.5,0.1). It is found that the domain?(0.5,0.1) does not cover the areah >1, and leaves the blank blocks in the gapped FMxphase and FMyphase [see Fig. 6(a)]. This means that the DQPTs may not occur when the quench is from the ground state ofH(0.5,0.1) and across the QPTs. Similarly, we take four examples of the Fisher zeros for the quenches from gapless phase in Figs. 6(b)–6(e) corresponding to paths A–D in Fig. 6(a),and the rate functions are shown in Fig.6(f). The Fisher zeros lineszn(k)in Figs.6(b)–6(e)are found to be separated into two branches,because for somekthe quasiparticle excitation spectra of the initial Hamiltonian satisfyεk·ε-k <0[see Fig.1(d)].For the paths A and B in which the system is quenched to the covered area by domain?(0.5,0.1),the Fisher zeros lines have intersections with the imaginary axis,and the nonanalytic points can be seen in the rate functions. For the paths B and C,the Fisher zeros do not intersect with the imaginary axis,and the rate functions are seen to be smooth. At this moment,the DQPT does not occur even if the quench crosses the QPTs.

    Similarly,we draw the values of|tanαk|in Fig.7 for the paths A, B, C, and D to explain the occurrence and the absence of the DQPTs. It is found that the values of|tanαk|for all four paths have intersections with the line|tanαk|=1.However,for the paths B and C,the intersections are located in the orange block, where the wave vectorskdo not contribute to the Fisher zeros. Therefore,the DQPTs do not occur in the quench paths B and C. For the paths A and D, the values of|tanαk| have one intersection outside the orange block. The corresponding wave vectorsk*of the intersections are exactly the critical wave vectors of the DQPTs.

    Fig. 6. (a) Domains ?(h0,γ0) (the red region) for quench from the initial points (h0,γ0) in the XY chain with XZY–YZX type of three-site interaction. The initial point is (h0 =0.5,γ0 =0.1). (b)–(e) The Fisher zeros for the quench paths A–D shown in(a). (f)The corresponding rate functions for the quench paths A–D.

    Fig.7. Values of|tanαk|for the paths A,B,C,and D in Fig.6(a),respectively. The orange block denotes the wave vectors k corresponding to εk <0 of the pre-quench Hamiltonian.

    4.2. Quench from the gapped phase

    Now, we consider the case of quench from the gapped phase. Here we take the case of quench from the FM phase as an example. In Figs. 8(a), we show the domain?(h0=0.5,γ0=-0.5)that is from the FMyphase. It is found that the domain?(h0=0.5,γ0=-0.5)does not cover all the area of the gapless CP phase,but covers all the gapped phases which are not the initial points belonging to. This indicates that the DQPTs may not occur when the quench from the gapped phase to the gapless phase, but will always occur in the case of quench from the gapped phase to the gapped phase.

    Fig. 8. (a) Domain ?(h0,γ0) (the red region) for the quench from the FM phase. (b) and (c) Fisher zeros lines zn(k) for the quench paths A and B marked in(a). (d)Corresponding rate functions for the quench paths A and B.

    Fig.9. Values of|tanαk|for the paths A and B in Fig.8(a),which are from the FM to the CP phase.

    As two examples, we show the Fisher zeros for the quench paths A and B marked in Fig. 8(a). It can be seen that for the quench path A, the Fisher zeros do not cross the imaginary axis. Meanwhile, the corresponding rate function is smooth. For the quench path B, each Fisher zeros lineszn(k) has two intersections with the imaginary axis, and the sharp peaks are seen in the rate function at the critical times of the DQPTs. Similarly, we display the values of|tanαk|for the paths A and B in Fig. 9. It is found that for the path A the values of|tanαk| are smaller than 1. However, for the path B the values of|tanαk| change from zero to the infinity(|tanαk|∈[0,+∞))and have the intersections with the line|tanαk|=1.

    5. Summary and conclusion

    We study the properties of DQPTs in theXYchains with DM interaction andXZY–YZXtype of three-site interaction,in which the systems have gapless phases and asymmetrical quasiparticle excitation spectra. By considering the quench starting from different initial states, we find that the factorsLk(t) of LE equal unity where the quasiparticle excitation spectra of pre-quench Hamiltonian satisfyεk·ε-k <0. Therefore, we obtain the general conditions for the occurrence of DQPT,that is, the occurrence of DQPT not only requires the Bogoliubov angle to satisfy|tanαk|=1,but also requires the quasiparticle excitation spectra of the pre-quench Hamiltonian to satisfyεk·ε-k ≥0.

    Although we consider two specifical models in our paper,the conclusion can also be extended to a group of integral quantum spin chain, which can be mapped into the spinless free fermion model with the quadratic form by the Jordan–Wigner transformation. From the above discussion and the previous results,[22,27]we summarize the connection between the DQPT and the QPT as follows: For the system only with gapped phase,the DQPTs will occur when the quench crosses the critical lines of QPTs. For the system with the gapless phase,the DQPT may not occur in the quench from the gapped phase to the gapless phase or from the gapless phase to the gapped phase. For the systems with symmetrical quasiparticle excitation spectra,the reason for the absence of the DQPT is that there is noksatisfying|tanαk| = 1. However, for the systems with asymmetrical quasiparticle excitation spectra, the reason for the absence of the DQPT is that no wave vectorksatisfies|tanαk|=1,or the wave vectorsksatisfying|tanαk|=1 correspond toεk·ε-k <0.

    Acknowledgement

    This work was supported by the National Natural Science Foundation of China(Grant Nos.11975126 and 11575087).

    猜你喜歡
    鐘鳴
    PHOTO FINISH
    Photo Finish
    漢語世界(2023年4期)2023-12-16 09:16:40
    鐘鳴陶瓷藝術(shù)
    鐘鳴藝術(shù)作品欣賞
    鐘鳴陶瓷藝術(shù)
    鐘鳴藝術(shù)作品欣賞
    鐘鳴藝術(shù)作品欣賞
    Orthonormality of Volkov Solutions and the Sufficient Condition?
    鐘鳴藝術(shù)作品欣賞
    鐘鳴陶瓷藝術(shù)
    中文字幕人妻熟人妻熟丝袜美| 免费av不卡在线播放| 日韩国内少妇激情av| 高清午夜精品一区二区三区 | 国产精品av视频在线免费观看| 黑人高潮一二区| 欧美最新免费一区二区三区| 男女啪啪激烈高潮av片| av又黄又爽大尺度在线免费看 | 男女下面进入的视频免费午夜| 五月伊人婷婷丁香| 老司机影院成人| 日韩一区二区视频免费看| 一级二级三级毛片免费看| 婷婷六月久久综合丁香| 男人舔奶头视频| 国产精品,欧美在线| 成人三级黄色视频| 听说在线观看完整版免费高清| 亚洲精品国产av成人精品| 国产日本99.免费观看| 国产精品永久免费网站| 国产毛片a区久久久久| 欧美精品一区二区大全| av国产免费在线观看| 久久中文看片网| 日韩成人av中文字幕在线观看| 亚洲国产欧美在线一区| 国产精品久久电影中文字幕| 一本一本综合久久| 97热精品久久久久久| 亚洲欧美中文字幕日韩二区| 国产av不卡久久| eeuss影院久久| 亚洲经典国产精华液单| 最后的刺客免费高清国语| 国产黄色小视频在线观看| 热99在线观看视频| 中文精品一卡2卡3卡4更新| 美女内射精品一级片tv| 国产精品久久久久久久久免| 国语自产精品视频在线第100页| 五月伊人婷婷丁香| 卡戴珊不雅视频在线播放| 99久国产av精品| 亚洲,欧美,日韩| 中文欧美无线码| 成人漫画全彩无遮挡| 能在线免费观看的黄片| 联通29元200g的流量卡| 精品久久久噜噜| 成年女人永久免费观看视频| 国产精品久久久久久精品电影| 久久中文看片网| 国产亚洲av嫩草精品影院| 一个人看的www免费观看视频| 69av精品久久久久久| 最近中文字幕高清免费大全6| 日日干狠狠操夜夜爽| 69人妻影院| 波野结衣二区三区在线| 精品少妇黑人巨大在线播放 | 乱系列少妇在线播放| 久久草成人影院| 亚洲精华国产精华液的使用体验 | 久久久国产成人精品二区| 亚洲国产日韩欧美精品在线观看| av国产免费在线观看| 日韩成人av中文字幕在线观看| 99久国产av精品| 免费看光身美女| 村上凉子中文字幕在线| 嫩草影院新地址| 国产麻豆成人av免费视频| 毛片一级片免费看久久久久| 在线观看免费视频日本深夜| 久久久久久久久久成人| 欧美不卡视频在线免费观看| 如何舔出高潮| 欧美极品一区二区三区四区| 女的被弄到高潮叫床怎么办| 国内久久婷婷六月综合欲色啪| 国产午夜精品一二区理论片| 日日啪夜夜撸| 国产黄片视频在线免费观看| 久久精品国产鲁丝片午夜精品| 国产白丝娇喘喷水9色精品| 精品国产三级普通话版| 亚洲四区av| 丝袜喷水一区| 久久欧美精品欧美久久欧美| 亚洲欧美日韩卡通动漫| 真实男女啪啪啪动态图| 日韩av不卡免费在线播放| 97在线视频观看| 中国美白少妇内射xxxbb| 日本与韩国留学比较| 超碰av人人做人人爽久久| 国产美女午夜福利| 精品人妻熟女av久视频| 日韩中字成人| 哪个播放器可以免费观看大片| 99久久中文字幕三级久久日本| 在线天堂最新版资源| 日本色播在线视频| 夜夜爽天天搞| 精品人妻一区二区三区麻豆| 少妇高潮的动态图| 亚洲自偷自拍三级| 亚洲成a人片在线一区二区| 国产欧美日韩精品一区二区| 亚洲乱码一区二区免费版| 国产精品女同一区二区软件| 欧洲精品卡2卡3卡4卡5卡区| 两个人的视频大全免费| av在线天堂中文字幕| 国产一级毛片在线| 成人特级黄色片久久久久久久| 日韩欧美一区二区三区在线观看| 熟女人妻精品中文字幕| 欧美高清成人免费视频www| .国产精品久久| 三级男女做爰猛烈吃奶摸视频| 日本成人三级电影网站| 国产一区二区三区av在线 | 最近的中文字幕免费完整| 噜噜噜噜噜久久久久久91| 国产69精品久久久久777片| 特级一级黄色大片| 精品一区二区免费观看| 麻豆成人午夜福利视频| 国产精品乱码一区二三区的特点| 男人舔女人下体高潮全视频| 久久久久九九精品影院| 亚洲国产日韩欧美精品在线观看| 免费av毛片视频| 麻豆成人午夜福利视频| 国产精品乱码一区二三区的特点| 黑人高潮一二区| 中文字幕精品亚洲无线码一区| 日韩成人伦理影院| 成人三级黄色视频| 日本欧美国产在线视频| 国产午夜精品论理片| 热99在线观看视频| 亚洲成人久久爱视频| 欧美人与善性xxx| av在线观看视频网站免费| 欧美性感艳星| 美女xxoo啪啪120秒动态图| 一级二级三级毛片免费看| 99国产精品一区二区蜜桃av| 精品欧美国产一区二区三| 秋霞在线观看毛片| 国产精品一二三区在线看| 日韩视频在线欧美| 国产真实伦视频高清在线观看| 日日干狠狠操夜夜爽| 国产 一区 欧美 日韩| 麻豆久久精品国产亚洲av| 国产一区二区亚洲精品在线观看| 亚洲人成网站在线播| 亚洲av二区三区四区| 国产国拍精品亚洲av在线观看| 熟女人妻精品中文字幕| 免费av不卡在线播放| 中文精品一卡2卡3卡4更新| 夜夜夜夜夜久久久久| 伊人久久精品亚洲午夜| 我的女老师完整版在线观看| 又爽又黄无遮挡网站| 亚洲经典国产精华液单| 国产精品爽爽va在线观看网站| 欧美另类亚洲清纯唯美| 国产免费一级a男人的天堂| 亚洲精品国产成人久久av| 国产精品久久电影中文字幕| 国产乱人视频| 亚洲av.av天堂| 91久久精品国产一区二区成人| 久久人妻av系列| 亚洲av中文av极速乱| 日日干狠狠操夜夜爽| 国产成人a区在线观看| 免费看a级黄色片| 好男人视频免费观看在线| 精品国内亚洲2022精品成人| 欧美bdsm另类| 免费在线观看成人毛片| 白带黄色成豆腐渣| 中文字幕熟女人妻在线| 欧美极品一区二区三区四区| 国产三级中文精品| 亚洲精品影视一区二区三区av| 啦啦啦观看免费观看视频高清| 久久国产乱子免费精品| 午夜福利视频1000在线观看| 色5月婷婷丁香| 高清日韩中文字幕在线| 久久精品国产99精品国产亚洲性色| 小说图片视频综合网站| а√天堂www在线а√下载| 久久人妻av系列| 国产av在哪里看| 好男人视频免费观看在线| 国产精品野战在线观看| 美女国产视频在线观看| 亚洲欧美精品综合久久99| 国产午夜福利久久久久久| 一级二级三级毛片免费看| 久久人妻av系列| 日本五十路高清| 欧美成人一区二区免费高清观看| 国产探花极品一区二区| 成年女人永久免费观看视频| 中文在线观看免费www的网站| 蜜臀久久99精品久久宅男| 亚洲五月天丁香| 国产午夜精品一二区理论片| 免费不卡的大黄色大毛片视频在线观看 | 欧美日韩在线观看h| 午夜免费激情av| 久久久欧美国产精品| 精品一区二区免费观看| 国产精品蜜桃在线观看 | av卡一久久| 久久精品91蜜桃| 国产精品无大码| 丰满乱子伦码专区| 午夜精品在线福利| 国产大屁股一区二区在线视频| 免费无遮挡裸体视频| www日本黄色视频网| 国产毛片a区久久久久| 精品久久久久久久久久久久久| 精品久久久久久久人妻蜜臀av| 亚洲欧美中文字幕日韩二区| av黄色大香蕉| 国产成人一区二区在线| 日产精品乱码卡一卡2卡三| 淫秽高清视频在线观看| 国产老妇伦熟女老妇高清| 免费黄网站久久成人精品| 成年版毛片免费区| 免费观看a级毛片全部| 久久久精品94久久精品| 非洲黑人性xxxx精品又粗又长| 国产免费男女视频| 国产黄a三级三级三级人| 日本三级黄在线观看| 91午夜精品亚洲一区二区三区| 亚洲五月天丁香| 18+在线观看网站| 国产精品一及| 精品久久久久久成人av| 成人毛片60女人毛片免费| avwww免费| 九草在线视频观看| 人人妻人人澡人人爽人人夜夜 | 久久久国产成人免费| 两个人视频免费观看高清| 黄色欧美视频在线观看| 美女国产视频在线观看| 成熟少妇高潮喷水视频| 此物有八面人人有两片| 1024手机看黄色片| 在线a可以看的网站| 少妇裸体淫交视频免费看高清| av在线老鸭窝| 菩萨蛮人人尽说江南好唐韦庄 | 女的被弄到高潮叫床怎么办| 国产精品综合久久久久久久免费| 一边摸一边抽搐一进一小说| 99久久九九国产精品国产免费| 最近视频中文字幕2019在线8| 男女那种视频在线观看| 最新中文字幕久久久久| 嘟嘟电影网在线观看| 一进一出抽搐gif免费好疼| 六月丁香七月| 网址你懂的国产日韩在线| 噜噜噜噜噜久久久久久91| 又黄又爽又刺激的免费视频.| 亚洲精品亚洲一区二区| 超碰av人人做人人爽久久| 成人av在线播放网站| 国产综合懂色| 精品不卡国产一区二区三区| 亚洲内射少妇av| av黄色大香蕉| 国产精品一区二区性色av| 麻豆久久精品国产亚洲av| 亚洲欧美日韩卡通动漫| 欧美人与善性xxx| 麻豆国产97在线/欧美| 十八禁国产超污无遮挡网站| 日韩精品有码人妻一区| 晚上一个人看的免费电影| 大型黄色视频在线免费观看| 日本欧美国产在线视频| 亚洲人成网站在线播放欧美日韩| 亚洲高清免费不卡视频| 色综合色国产| 狠狠狠狠99中文字幕| 久久亚洲国产成人精品v| 久久精品影院6| 国产又黄又爽又无遮挡在线| 精品一区二区免费观看| 九九爱精品视频在线观看| 成人三级黄色视频| 美女 人体艺术 gogo| 在线天堂最新版资源| 欧美成人a在线观看| 欧美人与善性xxx| 国产一区二区亚洲精品在线观看| 久久这里有精品视频免费| 免费电影在线观看免费观看| 国产精品久久久久久久久免| 五月伊人婷婷丁香| 国产一级毛片在线| 欧美又色又爽又黄视频| 免费搜索国产男女视频| 亚洲第一电影网av| 赤兔流量卡办理| 熟女电影av网| 国产私拍福利视频在线观看| 99久国产av精品国产电影| 亚洲丝袜综合中文字幕| 又粗又爽又猛毛片免费看| 国产一区二区三区在线臀色熟女| 我的老师免费观看完整版| 99热全是精品| 干丝袜人妻中文字幕| 中国美白少妇内射xxxbb| 久久99精品国语久久久| 亚洲最大成人av| 啦啦啦啦在线视频资源| 三级经典国产精品| 丰满的人妻完整版| 男人的好看免费观看在线视频| 在线播放国产精品三级| 天堂中文最新版在线下载 | 看非洲黑人一级黄片| 久久午夜亚洲精品久久| 亚洲在久久综合| 久久99热这里只有精品18| 国产精品伦人一区二区| 亚洲成人久久性| 听说在线观看完整版免费高清| 国内精品久久久久精免费| 黑人高潮一二区| 日韩欧美国产在线观看| 91麻豆精品激情在线观看国产| 别揉我奶头 嗯啊视频| 久久精品国产自在天天线| 欧美丝袜亚洲另类| 日本五十路高清| 99热全是精品| 日本五十路高清| 最近的中文字幕免费完整| 国产高潮美女av| 免费一级毛片在线播放高清视频| 丰满人妻一区二区三区视频av| 久久精品国产亚洲av天美| 亚洲成人精品中文字幕电影| 精品日产1卡2卡| 人人妻人人澡欧美一区二区| 日本撒尿小便嘘嘘汇集6| 日日啪夜夜撸| 日韩一区二区三区影片| 欧美又色又爽又黄视频| 婷婷色av中文字幕| 哪个播放器可以免费观看大片| 国产69精品久久久久777片| 久久人人精品亚洲av| a级毛色黄片| 99国产极品粉嫩在线观看| 亚洲四区av| 精品久久久久久久人妻蜜臀av| 性欧美人与动物交配| 久久久久国产网址| 美女国产视频在线观看| 人妻少妇偷人精品九色| 国产黄片美女视频| 18禁在线无遮挡免费观看视频| 国产精品久久视频播放| 人人妻人人看人人澡| 男女啪啪激烈高潮av片| 97超碰精品成人国产| 亚洲激情五月婷婷啪啪| 国产一区二区亚洲精品在线观看| 国产单亲对白刺激| 成年版毛片免费区| 国产一区二区在线av高清观看| 国产久久久一区二区三区| 男人舔奶头视频| 午夜免费激情av| 内射极品少妇av片p| 久久精品影院6| 男女那种视频在线观看| 国产成人精品婷婷| 国产伦精品一区二区三区四那| 国产精品三级大全| 色5月婷婷丁香| 免费大片18禁| 黄色一级大片看看| 国产成人影院久久av| 在线观看66精品国产| 日韩欧美精品免费久久| 麻豆久久精品国产亚洲av| 麻豆成人午夜福利视频| 亚洲av中文av极速乱| 夜夜夜夜夜久久久久| 国产真实伦视频高清在线观看| 久久草成人影院| 成人国产麻豆网| 亚洲人成网站在线播| 国产伦精品一区二区三区视频9| 国产久久久一区二区三区| www.色视频.com| 国产亚洲av片在线观看秒播厂 | 在线播放无遮挡| 深爱激情五月婷婷| 岛国毛片在线播放| 午夜老司机福利剧场| 国产成人精品久久久久久| 国产片特级美女逼逼视频| 亚洲精品自拍成人| 简卡轻食公司| 亚洲欧美精品自产自拍| 美女xxoo啪啪120秒动态图| 国产黄a三级三级三级人| 日韩一区二区三区影片| 老熟妇乱子伦视频在线观看| 亚洲av男天堂| 夜夜夜夜夜久久久久| www.av在线官网国产| 91久久精品国产一区二区三区| 国产精品久久电影中文字幕| 乱人视频在线观看| 国产成人精品婷婷| 直男gayav资源| 久久人人精品亚洲av| 欧美三级亚洲精品| 久久中文看片网| 美女高潮的动态| 日本黄大片高清| 免费观看人在逋| 久久这里有精品视频免费| av国产免费在线观看| 国产美女午夜福利| 三级男女做爰猛烈吃奶摸视频| 国产黄色小视频在线观看| 看片在线看免费视频| 美女黄网站色视频| 国产精品久久久久久久久免| avwww免费| 国产亚洲av片在线观看秒播厂 | 日韩,欧美,国产一区二区三区 | 亚洲图色成人| 亚洲国产欧洲综合997久久,| 人人妻人人看人人澡| 深夜精品福利| 国产伦精品一区二区三区四那| 一级毛片我不卡| 日韩视频在线欧美| www.色视频.com| 女的被弄到高潮叫床怎么办| 蜜臀久久99精品久久宅男| 一本久久中文字幕| 日韩国内少妇激情av| 久久久久久国产a免费观看| 国产在线精品亚洲第一网站| 国产一区二区在线观看日韩| 色视频www国产| 日韩精品青青久久久久久| 国产精品嫩草影院av在线观看| 国产免费男女视频| 中文字幕熟女人妻在线| 啦啦啦韩国在线观看视频| 国产一区二区激情短视频| 在线播放无遮挡| 国产精品久久久久久av不卡| 身体一侧抽搐| 夜夜夜夜夜久久久久| 久久婷婷人人爽人人干人人爱| 久久草成人影院| 亚洲一区二区三区色噜噜| 国产三级在线视频| 高清毛片免费观看视频网站| 看黄色毛片网站| 成年女人永久免费观看视频| a级一级毛片免费在线观看| 国国产精品蜜臀av免费| 精品人妻一区二区三区麻豆| 一进一出抽搐gif免费好疼| 久久6这里有精品| 久久这里有精品视频免费| 国产私拍福利视频在线观看| 免费黄网站久久成人精品| 日韩高清综合在线| 色5月婷婷丁香| 日韩av不卡免费在线播放| www日本黄色视频网| 国产美女午夜福利| 成年女人看的毛片在线观看| 色播亚洲综合网| 看免费成人av毛片| 天美传媒精品一区二区| 91狼人影院| 国产精品女同一区二区软件| 亚洲欧美成人精品一区二区| 淫秽高清视频在线观看| 国产午夜精品一二区理论片| 亚洲欧洲日产国产| 国产欧美日韩精品一区二区| 亚洲国产欧美人成| 黄色一级大片看看| 成人av在线播放网站| 久久国产乱子免费精品| 精品久久久噜噜| 深爱激情五月婷婷| 久久精品91蜜桃| 青春草国产在线视频 | 一个人观看的视频www高清免费观看| 国产成人精品久久久久久| 夜夜夜夜夜久久久久| 精品一区二区免费观看| 欧美一级a爱片免费观看看| 国产男人的电影天堂91| 精品国内亚洲2022精品成人| 亚洲精品乱码久久久v下载方式| 国产精品久久久久久亚洲av鲁大| 简卡轻食公司| 你懂的网址亚洲精品在线观看 | 少妇人妻一区二区三区视频| 久久久色成人| 一进一出抽搐gif免费好疼| 日本一二三区视频观看| 欧美激情国产日韩精品一区| 波多野结衣巨乳人妻| 美女国产视频在线观看| 九九爱精品视频在线观看| 国产一区亚洲一区在线观看| 国产激情偷乱视频一区二区| 久久久久久大精品| 免费人成在线观看视频色| 床上黄色一级片| 免费观看精品视频网站| 亚洲精品色激情综合| 午夜精品一区二区三区免费看| 久久精品影院6| 啦啦啦韩国在线观看视频| 床上黄色一级片| 在线播放无遮挡| 丰满乱子伦码专区| 国产精品1区2区在线观看.| 最近2019中文字幕mv第一页| 国产成人91sexporn| 99精品在免费线老司机午夜| 一个人观看的视频www高清免费观看| 国产精品一区二区性色av| 极品教师在线视频| 久久久久久国产a免费观看| 看十八女毛片水多多多| 久久精品国产亚洲网站| 丰满的人妻完整版| 欧美日本视频| 日韩亚洲欧美综合| 久久国产乱子免费精品| 亚洲丝袜综合中文字幕| 国产精品久久久久久av不卡| 男人舔奶头视频| 久久人妻av系列| 观看美女的网站| 91久久精品电影网| 亚洲不卡免费看| av在线天堂中文字幕| 亚洲国产高清在线一区二区三| 国产精品一二三区在线看| 国产精品一区二区三区四区久久| 国产免费男女视频| 国产片特级美女逼逼视频| 草草在线视频免费看| 亚洲av中文字字幕乱码综合| 性色avwww在线观看| 久久人人精品亚洲av| 大又大粗又爽又黄少妇毛片口| 一区二区三区四区激情视频 | 日韩亚洲欧美综合| 26uuu在线亚洲综合色| 麻豆一二三区av精品| 久久久久九九精品影院| 深夜a级毛片| 中文字幕久久专区| 亚洲高清免费不卡视频| 只有这里有精品99| 国产成人精品一,二区 | 两个人的视频大全免费| 亚洲久久久久久中文字幕| 亚洲最大成人av| 亚洲一区二区三区色噜噜| 午夜精品国产一区二区电影 | 联通29元200g的流量卡| 亚洲婷婷狠狠爱综合网| 国产精品福利在线免费观看| 黄色欧美视频在线观看| 18禁在线无遮挡免费观看视频| 日韩欧美精品v在线| 国产伦精品一区二区三区四那| 高清毛片免费观看视频网站| 国产不卡一卡二| 国产伦理片在线播放av一区 | 日本黄色视频三级网站网址| 欧美另类亚洲清纯唯美|