• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Most probable transition paths in eutrophicated lake ecosystem under Gaussian white noise and periodic force

    2022-06-29 08:52:52JinlianJiang姜金連WeiXu徐偉PingHan韓平andLizhiNiu牛立志
    Chinese Physics B 2022年6期
    關(guān)鍵詞:徐偉立志

    Jinlian Jiang(姜金連), Wei Xu(徐偉), Ping Han(韓平), and Lizhi Niu(牛立志)

    School of Mathematics and Statistics,Northwestern Polytechnical University,Xi’an 710072,China

    Keywords: eutrophicated lake ecosystem,Freidlin–Wentzell action functional,Onsager–Machlup action functional,most probable transition path

    1. Introduction

    The evolution of the lake system is a natural process and may take decades to hundreds of years from the state dominated by phytoplankton to the state governed by higher aquatic plants. However, disturbances and forces from outside the ecosystem can quickly break the natural evolution process.[1]Many investigations have manifested that ecosystem sometimes experience rapid regime shifts, as shown by transition from one stable state to another. This transition will change the nature of the ecosystem, leading to the degradation of ecosystem services.[2–5]For example, eutrophication due to excessive inputs of nutrients, mainly phosphorus, is a common problem in lakes, rivers, estuaries and coastal oceans.[6]Excess phosphorus will cause the clear-water attractor of lake change to the turbid one, which comes from sewage and industrial discharges.[7,8]Lake eutrophication has proven to be a stubborn environmental problem,[9]which seriously affects the ecological balance of the lake system. In addition,it may induce important social,economic,and environmental consequences.

    Eutrophicated lake ecosystems have two stable attractors for specific parameters,corresponding to the oligotrophic and eutrophic states.[8,10]The stable states are generally related to the circulation of phosphorus between sediment and water.[8]Recently, an extensive number of researches have been conducted to explore the early warning indicators, in order to predict and describe the beginning of tipping points or critical transitions. Carpenteret al.indicated that the increase in the variance of dynamical variables can predict the upcoming catastrophic changes in the lake eutrophication model in advance.[11]Dakoset al.suggested that the flickering could serve as a warning indicator which could predict the critical transition to the eutrophic state.[12,13]Maet al.considered the amplitude difference, phase lag, largest Lyapunov exponent and the Shannon entropy to detect early-warning signals of the regime shifts of the lake eutrophication system. In addition, Maet al.showed that it is possible to slow down the upcoming critical transition in lake eutrophication system by Gaussian white noise and periodic excitation.[14–16]Unlike the existing works in detecting the early warning signals,we study the most probable transition paths to characterize the rapid regime shifts in lake eutrophication system between the two stable states as time goes on.

    For a system with multiple attractors,the random perturbation will cause the sample trajectories of the system to depart from the basin of attraction and cross the boundary of the attract basin,or even lead to the system to transfer among multiple steady states.[17–21]Generally speaking, we utilize the deterministic trajectories to characterize the deterministic system. However, it is hard to find useful information from the trajectories to analyze the dynamics of the stochastic systems.Consequently, the most probable transition paths[22]will be introduced to research the dynamics of the stochastic system.The most probable transition path has been widely applied to many scientific fields.[23–27]However,for the ecosystem,it has few documents to research the most probable transition path.In an attempt to further characterize the state transition mechanism between the oligotrophic state and the eutrophic state in the lake eutrophication system, we employ the most probable transition path to research the impact of the noise on the eutrophicated lake ecosystem.

    Based on the above researches, it is worthy of further study on the most probable transition paths of the lake eutrophication system under the random perturbation. This paper is organized as follows. In Section 2, we introduce the lake eutrophication model with and without period force, whose deterministic structure are discussed. Furthermore, the system under white noises is provided. Next,we give two kinds of action functionals,that is,Freidlin–Wentzell(FW)and Onsager–Machlup (OM) action functionals, to obtain the most probable transition paths in Section 3. Section 4 presents the most probable transition paths for the lake eutrophication system under Gaussian white noise and periodic excitations. Finally,we summarize the above results in Section 5.

    2. Lake eutrophication system

    2.1. Lake eutrophication model

    We firstly introduce the one-dimensional lake eutrophication model established by Carpenteret al.[8]The lake eutrophication model considers the phosphorus exchange between the interface of water and sediment in the lake as one of the main sources of water nutrients,and represents the level of eutrophication with the dynamic changes in the water environment of the lake. It has the following form:

    The bifurcation diagram for the parameterαis given in Fig. 1(a). Its middle-dashed line indicates the unstable equilibrium points.In the bistable region(shaded part),Eq.(2)has three equilibria under certain control parametersα. We usexSto represent the unstable equilibrium point,and usexLandxHto represent the oligotrophic state and the eutrophic state,respectively.

    Figure 1(b) shows the potentials of Eq. (2) for three differentα, whereU(x) =-f(x)dxrepresents the potential function of system (2). From the perspective of the potential well, the oligotrophic state is more stable than the eutrophic stateα=0.40.Nevertheless,the eutrophic state is more stable than the oligotrophic state atα=0.64. Specially,the stability ofxLandxHis almost the same whenα=0.52.

    Fig. 1. (a) Bifurcation diagram for the parameter α of the system (2).The cyan shaded part defines the bistable region,where the system has three equilibria. (b)The potential of the lake eutrophication system for different α.

    2.2. Lake eutrophication model with period force

    The change of season,annual cycle,rainfall and so on all affect the ecosystem. And research shows that periodic force can slow down the upcoming critical transition of the lake eutrophication system.[16]The effect of the periodic excitation on the ecosystem is worthy of the further study,

    in whichAcos(ωt)represents the periodic force with the amplitudeAand the frequencyω.

    The time history diagram shows that nullclinesf(x,t)=0 have different features for differentAandα,in the(t,x)-plane in Fig.2.

    In Fig. 2(a), the nullines consist of three independent curves and divide the(x,t)plane into four parts,which means thatf(x,t) = 0 has three different roots at any time. And given the parameters, the system (3) has two stable periodic solutions and one unstable periodic solution. Letx*Landx*Hcorrespond to the oligotrophic stable periodic solution and the eutrophic stable periodic solution, respectively, andx*Scorresponds to the unstable periodic solution.

    In Figs. 2(b) and 2(c),f(x,t) = 0 has three different solutions at some times, and only one solution at other times. Which means the double well structure of the original system is temporarily lost during certain stages. And the number of periodic solutions is affected by parameterω. In Fig.2(b),the nulline divides the(x,t)plane into two parts by a curve. In Fig. 2(c), the nullines are composed of several independent curves, among which one nulline always exists,while other closed curves only appear in certain periods.

    Fig.2. The nullclines(f(x,t)=0)of the system(3)with ω =0.2. (a)A=0.1,α =0.52;(b)A=0.15,α =0.52;(c)A=0.1,α =0.58;(d)A=0.1,α =0.8.

    In Fig.2(d),a nulline divides the(x,t)plane into two parts by a curve.In this region,f(x,t)=0 there is only one root at any time, and the system has only one eutrophic stable periodic solution.

    2.3. Lake eutrophication system with Gaussian white

    In order to describe the ecological model of lake eutrophication more accurately, the influence of environmental disturbance must be considered. Environmental disturbance has always been considered as an important factor in ecosystem modeling.On the one hand,it is the inherent uncertainty of the ecosystem.On the other hand,anthropogenic disturbances add to the uncertainty of the ecosystem.[28]In lake eutrophication system, Carpenter and Brock[29]pointed out that phosphorus input rates are affected by external fluctuations. This means that the phosphorus input rateαis a random variable. Consequently,we consider the systems(2)and(3)with Gaussian white noise

    whereξ(t)satisfies〈ξ(t)〉=0,〈ξ(t)ξ(t+τ)〉=σδ(τ).

    With three representative potentials as shown in Fig. 2,we consider the most probable transition paths under Gaussian white noise. For system with periodic excitation,the double well structure is temporarily lost and the periodic solution is affected by parameters. Hence, we choose two groups of appropriate parameters to study the most probable paths of the periodic excitation system.

    3. Two kinds of action functionals

    3.1. Freidlin–Wentzell action functional

    For the stochastic bistable system, noise could lead to transitions from one stable state to another stable state. If the noise intensityσis small, the large deviation theory is a powerful method to study the noise induced transition. Freidlin and Wentzell introduced the action functional with path as the variable, which describes the probability of sample trajectory[22]

    Equation(11)is an auxiliary Hamiltonian system,[33]andprepresents the disturbance term in the original equation.Thus,the most probable transition path can be obtained from Eq. (11). If the original fixed point is a stable equilibrium point, the noise disturbance can add an unstable manifold; if the original fixed point is an unstable equilibrium point, the noise disturbance can lead to a stable manifold. We apply the action plot to get the FW action functionals of the escape paths. From this we can acquire the minimum of the FW action functional and the corresponding most probable transition path.

    3.2. Onsager–Machlup action functional

    The noise intensity also has an important effect on lake eutrophication system, so it is worthy to further discuss the most probable transition paths under different noise intensities. We obtain the most probable transition path by minimizing the OM action functional[34–36]for the stochastic lake eutrophication systems(4)and(5). According to the principle of least action principle,the most probable transition pathxmcan be obtained by Therefore,the most probable transition pathxm(t)satisfies the following equation:

    4. Results

    In this section, we use the above two methods to compute the most probable transition paths. The characteristics of the most probable transition path can help analyze how the lake transfers between the oligotrophic state and the eutrophic state. For stochastic systems,we utilize FW action functional to get the most probable transition paths in weak noise. In addition,we use the OM action functional to study the influence of the noise intensity on the most probable transition path.

    4.1. Lake eutrophication system under Gaussian white noise

    For system (4), we display the most probable transition paths betweenxLandxHfor differentα. According to the FW large deviation theory,we acquire the most probable transition paths and the momentum required to transition fromxLtoxHwith different parameters. Furthermore, by minimizing OM functional,the most probable transition paths betweenxLandxHunder different noise intensity can be obtained.

    As can be seen from Fig.3,the changes of the most probable path and momentum have same characteristics. The most probable transition paths start at the stable equilibrium pointxL, and it wanders in the basins ofxLand the momentumpstarts at zero and grows slowly. As time goes on,the momentumpsuddenly increases and the large momentum makes the system transition fromxLtoxS.Then the momentumprapidly decreases to zero,while the system stays atxS(unstable state)for a long time. But because of the attraction ofxH,the system will eventually reachxH.

    Under different parametersα, the relative stability between the attractors is different,and the maximum momentum required for transition are different. The value of theY-axis on the right of Fig. 3 represents the momentum of the system. The larger momentumpis, the more energy is needed to escape from the stable equilibrium point. By comparing Figs. 3(a)–3(c), it can be seen that the maximum momentum decreases successively, indicating that within a certain range,with the increase of parameterα, the lake system is easier to transition from the oligotrophic state to the eutrophic state.

    Fig. 3. The most probable paths and momentum of lake eutrophication system from xL to xH under different parameters α. The black lines represent the most probable escape paths,and the red lines represents the momentum change during transition. (a)α =0.40;(b)α =0.52;(c)α =0.64.

    In Fig. 4, it is easy to understand that the most probable transition path is a heteroclinic orbit connecting three fixed points. Heterotonic orbitals visually show that the momentumpchanges the topology of the original system. The most probable paths connect the three equilibrium points of the system,but not just along thex-axis. Because of the influence ofp,the system transition occurs. The most probable path of the system fromxLtoxSis an arc orbit containing the manifold of the auxiliary Hamiltonian system.Once the system reachesxS,the disturbance forcepbecomes zero and the system will relax to another equilibrium point. With the increase of parameterα,the heteroclinic orbitals fromxLtoxHare shrinking,while the heteroclinic orbitals fromxHtoxLare increasing. With the increase of parameterα, the lake system transition from the oligotrophic state to the eutrophic state requiring less energy.The results of Fig.4 confirm the conclusion of Fig.3.

    Fig.4. Phase portrait of the Hamilton equation. The green and magenta curves represent the most probable paths from xL to xH and from xH to xL,respectively. (a)α =0.40;(b)α =0.52;(c)α =0.64.

    In Fig. 5, we obtain the most probable transition pathsxm(t) beginning at the oligotrophic statexLand ending at the eutrophic statexHwith different noise intensities. On the whole, the residence time of the system in oligotrophic state became shorter with the increase of parameterα. And with the increase of noise intensity,the transition time occurs earlier and the residence time in the unstable equilibriumxSbecomes shorter.

    The inset diagrams of Figs. 5(a) and 5(b) show that the most probable paths transition between the two stable equilibrium states. Whenα=0.40,although the potential well in the eutrophic state is not deep,the system will still stay in the eutrophic state for some time. Whenα=0.52, the system will wander in the eutrophic state for a longer time. Although the difference between the depths of potential well is not great,the eutrophic state is more stable than the oligotrophic state from the perspective of the transition path. That is, eutrophication is a very difficult problem to solve. Whenα=0.64, the system switches from the oligotrophic statexLto the eutrophic statexHquickly,because eutrophic state is more stable at this parameter.

    Fig.5. Most probable transition paths xm(t)starting at the oligotrophic state xL and ending at the eutrophic state xH for different noise intensities. (a) α =0.40, the inset figure displays the most probable path between xL and xH at σ =0.03. (b)α =0.52,the inset figure displays the most probable path between xL and xH at σ =0.01. (c)α =0.64.

    4.2. Lake eutrophication system under Gaussian white noise and periodic excitations

    Now,we consider not only white Gaussian noise but also periodic excitation on the most probable transition path between the oligotrophic state and the eutrophic state. Based on the characteristic of the nullines of the periodic system, the most probable paths of the system with two sets of parameters are considered in this paper.

    According to Subsection 3.1, we have the Hamiltonian for Eq.(4)as follows:

    Fig.6. Freidlin–Wentzell action functionals of escape paths from x*L to x*H. The minimum of Freidlin–Wentzell action functional is marked by the red asterisk. (a)α=0.52,A=0.1,ω=0.1;(b)α=0.58,A=0.1,ω =0.5.

    Figure 6 shows the action functional for different (x,θ).Its global minimum, indicated by a red asterisk, corresponds to the most probable path of the system.

    In Fig.7,the thick solid red line represents the most probable escape path. It can be seen that the transition of the most probable path occurs at the closest distance betweenx*Landx*S. And the most probable path tox*His near the intersection of the nulline and periodic solution.

    For Fig.7(a),the most probable path does not move along the unstable periodic solution after exiting fromx*Ltox*H,but directly reachesx*H. As can be seen from other escape paths,they firstly move towards the unstable periodic solutionx*Sbut their momenta are too small to escape. Then they will fluctuate between the original stable periodic solution and the unstable periodic solution to prepare for a next trial to escape. For Fig.7(b),after the most probable path switches fromx*Ltox*S,it moves along the unstable periodic solutionx*S,and the most probable path begins to transition tox*Hnear the intersection of the unstable periodic solution and the nulline.

    Fig. 7. Escape paths from x*L to x*H. The solid cyan lines represent the two stable periodic solutions and the dotted cyan line represents the unstable periodic solutions. The black lines represent the nullclines.The red thick line represents most probable transition path, and the other lines for other escape paths. (a) α =0.52, A=0.1, ω =0.1;(b)α =0.58,A=0.1,ω =0.5.

    In Fig.8,we compare the most probable transition paths obtained from Eq.(19)for various values ofσ. Herein,for all the most probable transition paths, we choose the same start pointx*L(0), the same end pointx*H(T) and the total time for five periods. Given the parameters,the nullines are very close to the periodic solutions but they do not overlap. The nullines only intersect the highest and lowest points of the periodic solutions. The insets in Fig.8 indicate that the transition occurs in the gap between the stable periodic solution and nullcline,where the flow of the period solutions will change directions.

    Fig. 8. Most probable transition paths for different σ with α =0.52,A=0.1,ω=0.1. The solid cyan lines represent the two stable periodic solutions and the dotted cyan line represents the unstable periodic solution,the black lines represent the nullclines. The arrow-1 to arrow-3 mark where paths arrive at x*S,and the arrow-4 to arrow-6 mark where paths leave x*L and x*H. And the insets indicate that the transition occurs in the gap between the stable periodic solution and the nullcline.

    We observe that the transition of the system occurs between two stable periodic solutions three times in five periods.The first transition is fromx*Ltox*H,and the places leavingx*Land reachingx*Sare not different with the change of noise intensity. The second transition is fromx*Htox*L. The residence time inx*Landx*Hvaries greatly under different noise intensities. Whenσ=0.05, the most probable path stays longer inx*H, while forσ=0 andσ=0.01, the most probable paths stay longer inx*L. The third transition is fromx*Ltox*H. Every transition indicates that the transition occurs near the nearest distance between the stable periodic solution and the unstable periodic solution.

    Whenσ= 0, the most probable transition path moves alongx*Sfor a half cycle after reaching the unstable periodic solution.Nevertheless,the most probable transition paths switch quickly to the other stable period solution forσ=0.01 andσ=0.05. And there have interesting phenomenon forσ=0 andσ=0.01. For each transition, the most probable transition paths follow a similar trajectory to the unstable periodic solutionx*S, marked by arrow-1 to arrow-3. And the transitions begin at a similar point at stable periodic solutions,that is, they all leave the stable periodic solutionx*Landx*Haround the same phase,marked by arrow-4 to arrow-6.

    In Fig.9,we compare the most probable transition paths obtained from Eq.(15)for various values ofσ. Herein,for all the most probable transition paths, we choose the same start pointx*L(0), the same end pointx*H(T) and the total time for four periods.

    As shown in Fig. 9, the influence of noise intensity on the most probable paths is not very large. Basically,the most probable paths move alongx*Lto the red square and transition tox*H. The place where the most probable paths transition is the same,and the higher the noise intensity,the earlier the system reachesx*H. Whenσ=0, the most probable transition path moves alongx*Sfor a half cycle, while whenσ/=0, the most probable paths hardly stay atx*S.

    Fig.9.Most probable transition paths for different σ with α=0.58,A=0.1,ω =0.5. The solid cyan lines represent the two stable periodic solutions and the dotted cyan line represents the unstable periodic solution,the black lines represent the nullclines. The red square indicates the most probable paths transition occurs at the same place under different noise intensity.

    The most probable paths will deviate fromx*Lwhere the double-well structure disappears. In particular, where the double-well structure of the system disappears,the most probable path atσ=0 initially moves up tox*Sand along it. After the unstable periodic solution intersects the nulline,the system begins to move down tox*Lunder the action of the deterministic vector field. It can be seen that when the double-well structure disappears,the distance betweenx*Landx*Sis closest,and the system is prone to transition.

    5. Conclusions

    In this paper,we have investigated the most probable transition paths of the lake eutrophication system under Gaussian white noise and the periodic force. The characterization of the most probable paths provides a new perspective for the study of the lake eutrophication system. We visualized transitions between the eutrophic state and the oligotrophic state. We introduced two kinds of action functionals,FW action functional and OM action functional,for the calculation of the most probable transition paths under different noise intensities.

    Firstly,the influence of noise is only considered.We used large deviation theory to observe the most probable transition paths. In weak noise intensity, the Hamilton–Jacobi equation is obtained by using WKB approximation for the system,and the FW action functional is obtained by using the method of characteristics. We used the minimum of the FW action functional to obtain the most probable transition paths between the oligotrophic state the eutrophic state. Further, we examined the most probable transition pathsxm(t)from the oligotrophic statexLto the eutrophic statexHwith different noise intensities by minimizing the OM action functional. By characterizing the most probable transition paths under certain parameters,we have found that the stability of the eutrophic state and the oligotrophic state has different results from the two perspectives of potential well and the most probable transition path.

    Then,Gaussian white noise and periodic excitation were considered. Considering the influence of parameters on the periodic solutions and nullines of the system,we have chosen two groups of parameters to study the most probable path of the system with periodic excitation. The most probable transition paths fromx*Ltox*Hwere obtained by using the large deviation theory. In addition, by minimizing the OM functional,we obtained the most probable transition paths starting at the same initial point onx*Land terminating onx*Hfor different noise intensities. The transition points in periodic lake eutrophication system have same characteristics,and the transition is more likely to occur near the closest distance between stable and unstable periodic solutions.

    Acknowledgement

    Projected supported by the National Natural Science Foundation of China(Grant Nos.12072261 and 11872305).

    猜你喜歡
    徐偉立志
    徐偉:野菊
    立志鄉(xiāng)村振興的筑夢人
    華人時刊(2021年15期)2021-11-27 09:16:34
    姚立志繪畫作品
    感悟關(guān)懷厚望 立志跟黨前進
    少先隊活動(2021年5期)2021-07-22 08:59:46
    An investigation on improving the homogeneity of plasma generated by linear microwave plasma source with a length of 1550 mm
    蘇夢飛
    書香兩岸(2020年3期)2020-06-29 12:33:45
    Theory and method of dual-energy x-ray grating phase-contrast imaging?
    依靠新科技、新理念“易騎”立志殺出重圍!
    Quantification of CP4-EPSPS in genetically modifiedNicotianatabacum leaves by LC-MS/MS with 18O-labeling
    張立志將軍:把美好年華奉獻給祖國
    中國火炬(2014年7期)2014-07-24 14:21:26
    久久精品国产99精品国产亚洲性色 | 黄片小视频在线播放| 亚洲精品成人av观看孕妇| 成人18禁高潮啪啪吃奶动态图| 国产成人一区二区三区免费视频网站| 日本a在线网址| 人妻一区二区av| 亚洲国产毛片av蜜桃av| 亚洲熟女毛片儿| 国产亚洲欧美精品永久| 男女下面插进去视频免费观看| 动漫黄色视频在线观看| 91大片在线观看| 成人黄色视频免费在线看| videosex国产| 欧美av亚洲av综合av国产av| 欧美精品啪啪一区二区三区| 最新美女视频免费是黄的| 一级作爱视频免费观看| 久久99一区二区三区| 丰满的人妻完整版| 午夜视频精品福利| 精品福利观看| 在线观看舔阴道视频| 成人18禁在线播放| 狠狠狠狠99中文字幕| 欧美av亚洲av综合av国产av| 国产精品1区2区在线观看. | 91九色精品人成在线观看| 免费一级毛片在线播放高清视频 | 韩国av一区二区三区四区| 午夜久久久在线观看| 亚洲av欧美aⅴ国产| 欧美日韩中文字幕国产精品一区二区三区 | 美女国产高潮福利片在线看| 亚洲成a人片在线一区二区| 大香蕉久久成人网| 国产成人精品久久二区二区91| 亚洲人成77777在线视频| 女人久久www免费人成看片| 亚洲美女黄片视频| 国产高清国产精品国产三级| 在线天堂中文资源库| 欧美性长视频在线观看| 99热国产这里只有精品6| 90打野战视频偷拍视频| 亚洲国产精品sss在线观看 | 性少妇av在线| 日本wwww免费看| 免费观看a级毛片全部| 久久性视频一级片| 老鸭窝网址在线观看| 国产男女超爽视频在线观看| 欧美国产精品va在线观看不卡| 男人操女人黄网站| 国产一区二区激情短视频| 搡老岳熟女国产| 在线观看免费视频日本深夜| 啦啦啦视频在线资源免费观看| 欧美一级毛片孕妇| 欧美日韩视频精品一区| 亚洲欧美一区二区三区黑人| 天堂√8在线中文| 亚洲欧美色中文字幕在线| 天天躁夜夜躁狠狠躁躁| 激情视频va一区二区三区| 一本大道久久a久久精品| 脱女人内裤的视频| 人人妻人人添人人爽欧美一区卜| 99久久综合精品五月天人人| 免费不卡黄色视频| 日本wwww免费看| 免费观看人在逋| 欧美日本中文国产一区发布| 国产精品99久久99久久久不卡| 伊人久久大香线蕉亚洲五| 日韩免费高清中文字幕av| 精品卡一卡二卡四卡免费| 黄色怎么调成土黄色| 色尼玛亚洲综合影院| bbb黄色大片| 亚洲色图 男人天堂 中文字幕| 欧美精品人与动牲交sv欧美| 午夜福利在线免费观看网站| 欧美激情极品国产一区二区三区| 一本一本久久a久久精品综合妖精| 两个人免费观看高清视频| av在线播放免费不卡| 两个人免费观看高清视频| 久久精品aⅴ一区二区三区四区| 一级a爱视频在线免费观看| 一区二区三区国产精品乱码| 成年人黄色毛片网站| 国产欧美日韩精品亚洲av| 日韩欧美一区二区三区在线观看 | 亚洲精品在线美女| 欧美不卡视频在线免费观看 | 成年人免费黄色播放视频| 国产精品免费一区二区三区在线 | 91成年电影在线观看| 亚洲精品美女久久久久99蜜臀| 一a级毛片在线观看| 丝瓜视频免费看黄片| 日日摸夜夜添夜夜添小说| 色综合欧美亚洲国产小说| 亚洲精华国产精华精| 亚洲中文av在线| 国产av一区二区精品久久| 精品电影一区二区在线| 欧美成人午夜精品| 超碰成人久久| 亚洲中文日韩欧美视频| 免费观看精品视频网站| 伦理电影免费视频| 国产精品一区二区在线不卡| 一级作爱视频免费观看| 黄片大片在线免费观看| 亚洲av电影在线进入| 亚洲av日韩精品久久久久久密| 岛国毛片在线播放| 一个人免费在线观看的高清视频| 亚洲一码二码三码区别大吗| 亚洲av欧美aⅴ国产| 久久久久国内视频| 视频在线观看一区二区三区| 国产伦人伦偷精品视频| 免费高清在线观看日韩| 老汉色av国产亚洲站长工具| 中文字幕人妻丝袜一区二区| 十八禁网站免费在线| 人人妻人人爽人人添夜夜欢视频| 国产精品久久久人人做人人爽| 欧美黄色片欧美黄色片| 国产精品二区激情视频| 俄罗斯特黄特色一大片| 99国产综合亚洲精品| 成在线人永久免费视频| 天天添夜夜摸| 男女之事视频高清在线观看| 电影成人av| 中国美女看黄片| 国产91精品成人一区二区三区| 动漫黄色视频在线观看| 色综合婷婷激情| 大片电影免费在线观看免费| 黄片大片在线免费观看| 午夜亚洲福利在线播放| 日韩视频一区二区在线观看| 成人亚洲精品一区在线观看| 国产亚洲精品久久久久5区| 亚洲av第一区精品v没综合| 亚洲精华国产精华精| 成人手机av| 久99久视频精品免费| 一区在线观看完整版| 丝袜人妻中文字幕| 在线天堂中文资源库| 精品一区二区三卡| 麻豆成人av在线观看| 9191精品国产免费久久| 国产aⅴ精品一区二区三区波| 亚洲第一欧美日韩一区二区三区| 精品国产一区二区久久| 国产91精品成人一区二区三区| 国产日韩欧美亚洲二区| 午夜福利,免费看| 国产精品一区二区在线观看99| 国产一区二区三区综合在线观看| 欧美黄色片欧美黄色片| 一区二区日韩欧美中文字幕| 免费少妇av软件| 亚洲片人在线观看| 欧美日本中文国产一区发布| 国产av精品麻豆| 天天添夜夜摸| 午夜福利免费观看在线| 久久中文看片网| 美女高潮到喷水免费观看| cao死你这个sao货| 久久精品国产亚洲av高清一级| 99riav亚洲国产免费| 欧美日韩成人在线一区二区| 久久久国产成人免费| 少妇的丰满在线观看| 在线播放国产精品三级| 丰满人妻熟妇乱又伦精品不卡| 最新美女视频免费是黄的| 欧美精品av麻豆av| 熟女少妇亚洲综合色aaa.| 99久久综合精品五月天人人| 两个人看的免费小视频| 99久久99久久久精品蜜桃| 不卡av一区二区三区| 中文亚洲av片在线观看爽 | 99re在线观看精品视频| www.999成人在线观看| 国产精品av久久久久免费| 国产精品 国内视频| 后天国语完整版免费观看| 亚洲成a人片在线一区二区| √禁漫天堂资源中文www| 亚洲色图综合在线观看| 热99国产精品久久久久久7| 亚洲欧美一区二区三区久久| 夫妻午夜视频| 亚洲欧美激情综合另类| 久久香蕉激情| 中文欧美无线码| 国产成人精品久久二区二区91| 露出奶头的视频| 一个人免费在线观看的高清视频| 国产免费现黄频在线看| 欧美激情极品国产一区二区三区| 捣出白浆h1v1| 夜夜爽天天搞| 日韩大码丰满熟妇| 国产精品秋霞免费鲁丝片| 夜夜夜夜夜久久久久| 狂野欧美激情性xxxx| 大片电影免费在线观看免费| 可以免费在线观看a视频的电影网站| 99久久精品国产亚洲精品| 中亚洲国语对白在线视频| 十八禁人妻一区二区| 中文欧美无线码| bbb黄色大片| 少妇的丰满在线观看| 成人18禁在线播放| 怎么达到女性高潮| 91在线观看av| 精品福利观看| 久久久久久久国产电影| 巨乳人妻的诱惑在线观看| 19禁男女啪啪无遮挡网站| 久久人妻熟女aⅴ| 午夜精品在线福利| 成人三级做爰电影| 国产99久久九九免费精品| 欧美激情久久久久久爽电影 | 亚洲久久久国产精品| 亚洲精品中文字幕一二三四区| 久9热在线精品视频| 国产单亲对白刺激| 久久青草综合色| 国产精品久久久久成人av| 国产精品亚洲一级av第二区| tube8黄色片| 久久久久久久午夜电影 | 亚洲av成人av| 国产男女超爽视频在线观看| 最新的欧美精品一区二区| 制服诱惑二区| 女警被强在线播放| 久久久久视频综合| 夜夜躁狠狠躁天天躁| 精品久久久精品久久久| 身体一侧抽搐| 国产不卡一卡二| 国产精品久久久人人做人人爽| 人人妻人人澡人人爽人人夜夜| 在线看a的网站| 99热网站在线观看| 18禁黄网站禁片午夜丰满| 成年女人毛片免费观看观看9 | 在线观看日韩欧美| 69精品国产乱码久久久| 国产人伦9x9x在线观看| 热99国产精品久久久久久7| 中文字幕制服av| av欧美777| 亚洲精品国产精品久久久不卡| 亚洲精品自拍成人| 国产精品免费大片| 精品卡一卡二卡四卡免费| 亚洲欧美日韩另类电影网站| 久久人人97超碰香蕉20202| 久久精品aⅴ一区二区三区四区| 99国产精品免费福利视频| 国产成人精品久久二区二区91| 精品无人区乱码1区二区| 制服人妻中文乱码| 热99国产精品久久久久久7| www.自偷自拍.com| 亚洲全国av大片| 日韩成人在线观看一区二区三区| 精品人妻1区二区| 欧美av亚洲av综合av国产av| 国产一区有黄有色的免费视频| 久久国产精品男人的天堂亚洲| 精品乱码久久久久久99久播| 18禁美女被吸乳视频| 99精品久久久久人妻精品| 欧美精品av麻豆av| 美女国产高潮福利片在线看| 国产精品香港三级国产av潘金莲| 午夜福利免费观看在线| 亚洲一卡2卡3卡4卡5卡精品中文| 国产高清videossex| www日本在线高清视频| 免费看a级黄色片| 成人免费观看视频高清| 青草久久国产| x7x7x7水蜜桃| 亚洲精品久久午夜乱码| 又黄又粗又硬又大视频| 999久久久国产精品视频| avwww免费| 国产欧美亚洲国产| 欧美激情高清一区二区三区| 香蕉国产在线看| 婷婷丁香在线五月| 窝窝影院91人妻| 国产亚洲av高清不卡| 搡老岳熟女国产| 亚洲精品国产精品久久久不卡| 国产黄色免费在线视频| 国产97色在线日韩免费| av国产精品久久久久影院| 亚洲欧美激情在线| 精品人妻1区二区| 女人久久www免费人成看片| 国产精品美女特级片免费视频播放器 | 国产不卡av网站在线观看| 18禁美女被吸乳视频| 两人在一起打扑克的视频| 黄色毛片三级朝国网站| 每晚都被弄得嗷嗷叫到高潮| 天天影视国产精品| 久久国产精品大桥未久av| 99久久国产精品久久久| 国产激情欧美一区二区| 亚洲熟女毛片儿| 婷婷精品国产亚洲av在线 | 免费av中文字幕在线| 国产精品国产高清国产av | 色婷婷av一区二区三区视频| 免费在线观看日本一区| 午夜激情av网站| 伊人久久大香线蕉亚洲五| 他把我摸到了高潮在线观看| av网站免费在线观看视频| 日本vs欧美在线观看视频| 黄色毛片三级朝国网站| 国产精品久久久久久精品古装| 国产精品免费一区二区三区在线 | 中出人妻视频一区二区| 无限看片的www在线观看| 日韩成人在线观看一区二区三区| 欧美日韩乱码在线| 国产亚洲欧美98| 午夜日韩欧美国产| 国产99白浆流出| 一进一出好大好爽视频| 国产精品久久视频播放| 国产亚洲欧美精品永久| 亚洲欧美精品综合一区二区三区| 国产高清激情床上av| 中文字幕人妻丝袜制服| 操美女的视频在线观看| 天天躁日日躁夜夜躁夜夜| 亚洲精品在线观看二区| 亚洲九九香蕉| 熟女少妇亚洲综合色aaa.| 亚洲专区国产一区二区| 午夜福利一区二区在线看| 18在线观看网站| 欧美久久黑人一区二区| 热re99久久精品国产66热6| 91精品三级在线观看| tocl精华| 国产精品永久免费网站| 亚洲成人手机| 超碰97精品在线观看| 免费少妇av软件| 色94色欧美一区二区| 又大又爽又粗| 亚洲欧美激情综合另类| 9色porny在线观看| 欧美日韩亚洲高清精品| 国产野战对白在线观看| 亚洲av第一区精品v没综合| 欧美黄色淫秽网站| 欧美性长视频在线观看| 在线观看免费视频网站a站| 在线观看午夜福利视频| 我的亚洲天堂| 亚洲伊人色综图| 亚洲av日韩在线播放| 欧美大码av| 久久久久久人人人人人| 天堂中文最新版在线下载| 丰满人妻熟妇乱又伦精品不卡| 国产精品久久久久久精品古装| 免费高清在线观看日韩| 亚洲第一欧美日韩一区二区三区| 又黄又爽又免费观看的视频| 国产又爽黄色视频| 男人的好看免费观看在线视频 | 中文字幕制服av| 精品久久久久久久毛片微露脸| 午夜老司机福利片| av电影中文网址| 国产不卡一卡二| 18在线观看网站| 人妻丰满熟妇av一区二区三区 | 中文字幕人妻丝袜一区二区| 国产成人一区二区三区免费视频网站| 亚洲av成人一区二区三| 亚洲精品在线观看二区| 狠狠狠狠99中文字幕| 亚洲欧美日韩高清在线视频| 少妇粗大呻吟视频| 女性生殖器流出的白浆| 久久久久国产一级毛片高清牌| 国产精品1区2区在线观看. | 最近最新中文字幕大全免费视频| www.精华液| 在线观看66精品国产| 国产91精品成人一区二区三区| 午夜精品久久久久久毛片777| 热re99久久国产66热| 精品一区二区三卡| 久久九九热精品免费| 夜夜躁狠狠躁天天躁| 悠悠久久av| 五月开心婷婷网| 狂野欧美激情性xxxx| 亚洲熟女毛片儿| 视频区欧美日本亚洲| 91麻豆av在线| 亚洲精品国产区一区二| 日本黄色日本黄色录像| 欧美日韩一级在线毛片| 在线观看舔阴道视频| 欧美在线黄色| 成年人黄色毛片网站| 国产成+人综合+亚洲专区| 免费看a级黄色片| 性色av乱码一区二区三区2| 亚洲第一欧美日韩一区二区三区| 又紧又爽又黄一区二区| 亚洲中文av在线| 精品午夜福利视频在线观看一区| 在线观看66精品国产| 欧美激情极品国产一区二区三区| av片东京热男人的天堂| 欧美精品亚洲一区二区| 国产欧美日韩精品亚洲av| 人人妻人人澡人人看| 欧美黄色淫秽网站| 一级黄色大片毛片| 色94色欧美一区二区| 日韩欧美在线二视频 | 国产亚洲精品久久久久5区| 成人18禁高潮啪啪吃奶动态图| 国产精品综合久久久久久久免费 | 大香蕉久久成人网| 91大片在线观看| 国产精品久久久久久精品古装| 19禁男女啪啪无遮挡网站| 精品熟女少妇八av免费久了| 中文字幕高清在线视频| 女人高潮潮喷娇喘18禁视频| 免费观看人在逋| 怎么达到女性高潮| 久久国产乱子伦精品免费另类| 丝袜人妻中文字幕| 国产亚洲精品一区二区www | 午夜成年电影在线免费观看| 欧美日韩亚洲高清精品| 满18在线观看网站| 看黄色毛片网站| 久久久精品免费免费高清| 国产精品秋霞免费鲁丝片| 国产亚洲av高清不卡| 精品国产乱码久久久久久男人| 50天的宝宝边吃奶边哭怎么回事| 巨乳人妻的诱惑在线观看| 免费观看a级毛片全部| 午夜激情av网站| 久久精品人人爽人人爽视色| 黑人猛操日本美女一级片| 午夜精品国产一区二区电影| 欧美在线一区亚洲| 少妇猛男粗大的猛烈进出视频| 国产在线一区二区三区精| 午夜福利在线免费观看网站| 色尼玛亚洲综合影院| 好男人电影高清在线观看| 母亲3免费完整高清在线观看| 亚洲精品av麻豆狂野| 99re在线观看精品视频| 欧美人与性动交α欧美精品济南到| 午夜福利影视在线免费观看| 日韩欧美三级三区| 首页视频小说图片口味搜索| 国产成人欧美| 亚洲黑人精品在线| 高清在线国产一区| 纯流量卡能插随身wifi吗| 人成视频在线观看免费观看| 中文字幕高清在线视频| 欧美黄色片欧美黄色片| 91麻豆av在线| 日韩制服丝袜自拍偷拍| 欧美亚洲 丝袜 人妻 在线| 久久精品亚洲熟妇少妇任你| 女性生殖器流出的白浆| 丰满迷人的少妇在线观看| 精品一品国产午夜福利视频| 性少妇av在线| 嫩草影视91久久| 欧美色视频一区免费| 一区二区三区激情视频| 久久久久国内视频| 国产亚洲精品一区二区www | 色婷婷av一区二区三区视频| 欧美日韩黄片免| 午夜福利在线观看吧| 757午夜福利合集在线观看| 国产免费现黄频在线看| 免费在线观看日本一区| 1024香蕉在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 男人舔女人的私密视频| 又大又爽又粗| 九色亚洲精品在线播放| 午夜亚洲福利在线播放| 91精品国产国语对白视频| 日韩欧美三级三区| 法律面前人人平等表现在哪些方面| 色在线成人网| av福利片在线| 国产精品亚洲一级av第二区| 久久人妻熟女aⅴ| 国产1区2区3区精品| 欧美日本中文国产一区发布| 成人影院久久| av欧美777| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲全国av大片| 在线观看免费日韩欧美大片| 又黄又爽又免费观看的视频| 亚洲七黄色美女视频| 搡老熟女国产l中国老女人| 亚洲成av片中文字幕在线观看| 欧美另类亚洲清纯唯美| videos熟女内射| 黄色片一级片一级黄色片| 亚洲精品在线美女| 久久精品91无色码中文字幕| 亚洲专区字幕在线| 国产男女超爽视频在线观看| 男男h啪啪无遮挡| 欧美激情极品国产一区二区三区| 亚洲在线自拍视频| 一区二区日韩欧美中文字幕| 成熟少妇高潮喷水视频| 亚洲国产毛片av蜜桃av| 日韩有码中文字幕| 一区二区三区激情视频| 在线观看午夜福利视频| 国产精品一区二区精品视频观看| 中文字幕另类日韩欧美亚洲嫩草| 男男h啪啪无遮挡| 久久久久精品人妻al黑| 久久人妻av系列| 久热这里只有精品99| 91麻豆av在线| 久久国产乱子伦精品免费另类| av片东京热男人的天堂| 十八禁高潮呻吟视频| 国产国语露脸激情在线看| 老熟妇仑乱视频hdxx| 午夜精品久久久久久毛片777| 久久久精品区二区三区| 这个男人来自地球电影免费观看| 欧美日韩瑟瑟在线播放| 男女下面插进去视频免费观看| 超碰成人久久| 日韩欧美免费精品| 真人做人爱边吃奶动态| 视频区欧美日本亚洲| 免费在线观看日本一区| 日本精品一区二区三区蜜桃| 成人影院久久| 国产精品免费一区二区三区在线 | 国产99久久九九免费精品| 精品国产美女av久久久久小说| 在线av久久热| 亚洲精品在线观看二区| 国产av又大| 在线观看免费视频日本深夜| 亚洲精华国产精华精| 9热在线视频观看99| 精品国产乱码久久久久久男人| 久久精品亚洲精品国产色婷小说| 女人久久www免费人成看片| 我的亚洲天堂| 免费在线观看完整版高清| 99久久综合精品五月天人人| 国产又爽黄色视频| 自拍欧美九色日韩亚洲蝌蚪91| 一级a爱片免费观看的视频| 精品久久蜜臀av无| 一区二区三区激情视频| 捣出白浆h1v1| 亚洲成国产人片在线观看| 嫩草影视91久久| 精品久久久久久电影网| 天天躁夜夜躁狠狠躁躁| 在线观看午夜福利视频| 天天躁日日躁夜夜躁夜夜| 99在线人妻在线中文字幕 | 成人av一区二区三区在线看|