• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Most probable transition paths in eutrophicated lake ecosystem under Gaussian white noise and periodic force

    2022-06-29 08:52:52JinlianJiang姜金連WeiXu徐偉PingHan韓平andLizhiNiu牛立志
    Chinese Physics B 2022年6期
    關(guān)鍵詞:徐偉立志

    Jinlian Jiang(姜金連), Wei Xu(徐偉), Ping Han(韓平), and Lizhi Niu(牛立志)

    School of Mathematics and Statistics,Northwestern Polytechnical University,Xi’an 710072,China

    Keywords: eutrophicated lake ecosystem,Freidlin–Wentzell action functional,Onsager–Machlup action functional,most probable transition path

    1. Introduction

    The evolution of the lake system is a natural process and may take decades to hundreds of years from the state dominated by phytoplankton to the state governed by higher aquatic plants. However, disturbances and forces from outside the ecosystem can quickly break the natural evolution process.[1]Many investigations have manifested that ecosystem sometimes experience rapid regime shifts, as shown by transition from one stable state to another. This transition will change the nature of the ecosystem, leading to the degradation of ecosystem services.[2–5]For example, eutrophication due to excessive inputs of nutrients, mainly phosphorus, is a common problem in lakes, rivers, estuaries and coastal oceans.[6]Excess phosphorus will cause the clear-water attractor of lake change to the turbid one, which comes from sewage and industrial discharges.[7,8]Lake eutrophication has proven to be a stubborn environmental problem,[9]which seriously affects the ecological balance of the lake system. In addition,it may induce important social,economic,and environmental consequences.

    Eutrophicated lake ecosystems have two stable attractors for specific parameters,corresponding to the oligotrophic and eutrophic states.[8,10]The stable states are generally related to the circulation of phosphorus between sediment and water.[8]Recently, an extensive number of researches have been conducted to explore the early warning indicators, in order to predict and describe the beginning of tipping points or critical transitions. Carpenteret al.indicated that the increase in the variance of dynamical variables can predict the upcoming catastrophic changes in the lake eutrophication model in advance.[11]Dakoset al.suggested that the flickering could serve as a warning indicator which could predict the critical transition to the eutrophic state.[12,13]Maet al.considered the amplitude difference, phase lag, largest Lyapunov exponent and the Shannon entropy to detect early-warning signals of the regime shifts of the lake eutrophication system. In addition, Maet al.showed that it is possible to slow down the upcoming critical transition in lake eutrophication system by Gaussian white noise and periodic excitation.[14–16]Unlike the existing works in detecting the early warning signals,we study the most probable transition paths to characterize the rapid regime shifts in lake eutrophication system between the two stable states as time goes on.

    For a system with multiple attractors,the random perturbation will cause the sample trajectories of the system to depart from the basin of attraction and cross the boundary of the attract basin,or even lead to the system to transfer among multiple steady states.[17–21]Generally speaking, we utilize the deterministic trajectories to characterize the deterministic system. However, it is hard to find useful information from the trajectories to analyze the dynamics of the stochastic systems.Consequently, the most probable transition paths[22]will be introduced to research the dynamics of the stochastic system.The most probable transition path has been widely applied to many scientific fields.[23–27]However,for the ecosystem,it has few documents to research the most probable transition path.In an attempt to further characterize the state transition mechanism between the oligotrophic state and the eutrophic state in the lake eutrophication system, we employ the most probable transition path to research the impact of the noise on the eutrophicated lake ecosystem.

    Based on the above researches, it is worthy of further study on the most probable transition paths of the lake eutrophication system under the random perturbation. This paper is organized as follows. In Section 2, we introduce the lake eutrophication model with and without period force, whose deterministic structure are discussed. Furthermore, the system under white noises is provided. Next,we give two kinds of action functionals,that is,Freidlin–Wentzell(FW)and Onsager–Machlup (OM) action functionals, to obtain the most probable transition paths in Section 3. Section 4 presents the most probable transition paths for the lake eutrophication system under Gaussian white noise and periodic excitations. Finally,we summarize the above results in Section 5.

    2. Lake eutrophication system

    2.1. Lake eutrophication model

    We firstly introduce the one-dimensional lake eutrophication model established by Carpenteret al.[8]The lake eutrophication model considers the phosphorus exchange between the interface of water and sediment in the lake as one of the main sources of water nutrients,and represents the level of eutrophication with the dynamic changes in the water environment of the lake. It has the following form:

    The bifurcation diagram for the parameterαis given in Fig. 1(a). Its middle-dashed line indicates the unstable equilibrium points.In the bistable region(shaded part),Eq.(2)has three equilibria under certain control parametersα. We usexSto represent the unstable equilibrium point,and usexLandxHto represent the oligotrophic state and the eutrophic state,respectively.

    Figure 1(b) shows the potentials of Eq. (2) for three differentα, whereU(x) =-f(x)dxrepresents the potential function of system (2). From the perspective of the potential well, the oligotrophic state is more stable than the eutrophic stateα=0.40.Nevertheless,the eutrophic state is more stable than the oligotrophic state atα=0.64. Specially,the stability ofxLandxHis almost the same whenα=0.52.

    Fig. 1. (a) Bifurcation diagram for the parameter α of the system (2).The cyan shaded part defines the bistable region,where the system has three equilibria. (b)The potential of the lake eutrophication system for different α.

    2.2. Lake eutrophication model with period force

    The change of season,annual cycle,rainfall and so on all affect the ecosystem. And research shows that periodic force can slow down the upcoming critical transition of the lake eutrophication system.[16]The effect of the periodic excitation on the ecosystem is worthy of the further study,

    in whichAcos(ωt)represents the periodic force with the amplitudeAand the frequencyω.

    The time history diagram shows that nullclinesf(x,t)=0 have different features for differentAandα,in the(t,x)-plane in Fig.2.

    In Fig. 2(a), the nullines consist of three independent curves and divide the(x,t)plane into four parts,which means thatf(x,t) = 0 has three different roots at any time. And given the parameters, the system (3) has two stable periodic solutions and one unstable periodic solution. Letx*Landx*Hcorrespond to the oligotrophic stable periodic solution and the eutrophic stable periodic solution, respectively, andx*Scorresponds to the unstable periodic solution.

    In Figs. 2(b) and 2(c),f(x,t) = 0 has three different solutions at some times, and only one solution at other times. Which means the double well structure of the original system is temporarily lost during certain stages. And the number of periodic solutions is affected by parameterω. In Fig.2(b),the nulline divides the(x,t)plane into two parts by a curve. In Fig. 2(c), the nullines are composed of several independent curves, among which one nulline always exists,while other closed curves only appear in certain periods.

    Fig.2. The nullclines(f(x,t)=0)of the system(3)with ω =0.2. (a)A=0.1,α =0.52;(b)A=0.15,α =0.52;(c)A=0.1,α =0.58;(d)A=0.1,α =0.8.

    In Fig.2(d),a nulline divides the(x,t)plane into two parts by a curve.In this region,f(x,t)=0 there is only one root at any time, and the system has only one eutrophic stable periodic solution.

    2.3. Lake eutrophication system with Gaussian white

    In order to describe the ecological model of lake eutrophication more accurately, the influence of environmental disturbance must be considered. Environmental disturbance has always been considered as an important factor in ecosystem modeling.On the one hand,it is the inherent uncertainty of the ecosystem.On the other hand,anthropogenic disturbances add to the uncertainty of the ecosystem.[28]In lake eutrophication system, Carpenter and Brock[29]pointed out that phosphorus input rates are affected by external fluctuations. This means that the phosphorus input rateαis a random variable. Consequently,we consider the systems(2)and(3)with Gaussian white noise

    whereξ(t)satisfies〈ξ(t)〉=0,〈ξ(t)ξ(t+τ)〉=σδ(τ).

    With three representative potentials as shown in Fig. 2,we consider the most probable transition paths under Gaussian white noise. For system with periodic excitation,the double well structure is temporarily lost and the periodic solution is affected by parameters. Hence, we choose two groups of appropriate parameters to study the most probable paths of the periodic excitation system.

    3. Two kinds of action functionals

    3.1. Freidlin–Wentzell action functional

    For the stochastic bistable system, noise could lead to transitions from one stable state to another stable state. If the noise intensityσis small, the large deviation theory is a powerful method to study the noise induced transition. Freidlin and Wentzell introduced the action functional with path as the variable, which describes the probability of sample trajectory[22]

    Equation(11)is an auxiliary Hamiltonian system,[33]andprepresents the disturbance term in the original equation.Thus,the most probable transition path can be obtained from Eq. (11). If the original fixed point is a stable equilibrium point, the noise disturbance can add an unstable manifold; if the original fixed point is an unstable equilibrium point, the noise disturbance can lead to a stable manifold. We apply the action plot to get the FW action functionals of the escape paths. From this we can acquire the minimum of the FW action functional and the corresponding most probable transition path.

    3.2. Onsager–Machlup action functional

    The noise intensity also has an important effect on lake eutrophication system, so it is worthy to further discuss the most probable transition paths under different noise intensities. We obtain the most probable transition path by minimizing the OM action functional[34–36]for the stochastic lake eutrophication systems(4)and(5). According to the principle of least action principle,the most probable transition pathxmcan be obtained by Therefore,the most probable transition pathxm(t)satisfies the following equation:

    4. Results

    In this section, we use the above two methods to compute the most probable transition paths. The characteristics of the most probable transition path can help analyze how the lake transfers between the oligotrophic state and the eutrophic state. For stochastic systems,we utilize FW action functional to get the most probable transition paths in weak noise. In addition,we use the OM action functional to study the influence of the noise intensity on the most probable transition path.

    4.1. Lake eutrophication system under Gaussian white noise

    For system (4), we display the most probable transition paths betweenxLandxHfor differentα. According to the FW large deviation theory,we acquire the most probable transition paths and the momentum required to transition fromxLtoxHwith different parameters. Furthermore, by minimizing OM functional,the most probable transition paths betweenxLandxHunder different noise intensity can be obtained.

    As can be seen from Fig.3,the changes of the most probable path and momentum have same characteristics. The most probable transition paths start at the stable equilibrium pointxL, and it wanders in the basins ofxLand the momentumpstarts at zero and grows slowly. As time goes on,the momentumpsuddenly increases and the large momentum makes the system transition fromxLtoxS.Then the momentumprapidly decreases to zero,while the system stays atxS(unstable state)for a long time. But because of the attraction ofxH,the system will eventually reachxH.

    Under different parametersα, the relative stability between the attractors is different,and the maximum momentum required for transition are different. The value of theY-axis on the right of Fig. 3 represents the momentum of the system. The larger momentumpis, the more energy is needed to escape from the stable equilibrium point. By comparing Figs. 3(a)–3(c), it can be seen that the maximum momentum decreases successively, indicating that within a certain range,with the increase of parameterα, the lake system is easier to transition from the oligotrophic state to the eutrophic state.

    Fig. 3. The most probable paths and momentum of lake eutrophication system from xL to xH under different parameters α. The black lines represent the most probable escape paths,and the red lines represents the momentum change during transition. (a)α =0.40;(b)α =0.52;(c)α =0.64.

    In Fig. 4, it is easy to understand that the most probable transition path is a heteroclinic orbit connecting three fixed points. Heterotonic orbitals visually show that the momentumpchanges the topology of the original system. The most probable paths connect the three equilibrium points of the system,but not just along thex-axis. Because of the influence ofp,the system transition occurs. The most probable path of the system fromxLtoxSis an arc orbit containing the manifold of the auxiliary Hamiltonian system.Once the system reachesxS,the disturbance forcepbecomes zero and the system will relax to another equilibrium point. With the increase of parameterα,the heteroclinic orbitals fromxLtoxHare shrinking,while the heteroclinic orbitals fromxHtoxLare increasing. With the increase of parameterα, the lake system transition from the oligotrophic state to the eutrophic state requiring less energy.The results of Fig.4 confirm the conclusion of Fig.3.

    Fig.4. Phase portrait of the Hamilton equation. The green and magenta curves represent the most probable paths from xL to xH and from xH to xL,respectively. (a)α =0.40;(b)α =0.52;(c)α =0.64.

    In Fig. 5, we obtain the most probable transition pathsxm(t) beginning at the oligotrophic statexLand ending at the eutrophic statexHwith different noise intensities. On the whole, the residence time of the system in oligotrophic state became shorter with the increase of parameterα. And with the increase of noise intensity,the transition time occurs earlier and the residence time in the unstable equilibriumxSbecomes shorter.

    The inset diagrams of Figs. 5(a) and 5(b) show that the most probable paths transition between the two stable equilibrium states. Whenα=0.40,although the potential well in the eutrophic state is not deep,the system will still stay in the eutrophic state for some time. Whenα=0.52, the system will wander in the eutrophic state for a longer time. Although the difference between the depths of potential well is not great,the eutrophic state is more stable than the oligotrophic state from the perspective of the transition path. That is, eutrophication is a very difficult problem to solve. Whenα=0.64, the system switches from the oligotrophic statexLto the eutrophic statexHquickly,because eutrophic state is more stable at this parameter.

    Fig.5. Most probable transition paths xm(t)starting at the oligotrophic state xL and ending at the eutrophic state xH for different noise intensities. (a) α =0.40, the inset figure displays the most probable path between xL and xH at σ =0.03. (b)α =0.52,the inset figure displays the most probable path between xL and xH at σ =0.01. (c)α =0.64.

    4.2. Lake eutrophication system under Gaussian white noise and periodic excitations

    Now,we consider not only white Gaussian noise but also periodic excitation on the most probable transition path between the oligotrophic state and the eutrophic state. Based on the characteristic of the nullines of the periodic system, the most probable paths of the system with two sets of parameters are considered in this paper.

    According to Subsection 3.1, we have the Hamiltonian for Eq.(4)as follows:

    Fig.6. Freidlin–Wentzell action functionals of escape paths from x*L to x*H. The minimum of Freidlin–Wentzell action functional is marked by the red asterisk. (a)α=0.52,A=0.1,ω=0.1;(b)α=0.58,A=0.1,ω =0.5.

    Figure 6 shows the action functional for different (x,θ).Its global minimum, indicated by a red asterisk, corresponds to the most probable path of the system.

    In Fig.7,the thick solid red line represents the most probable escape path. It can be seen that the transition of the most probable path occurs at the closest distance betweenx*Landx*S. And the most probable path tox*His near the intersection of the nulline and periodic solution.

    For Fig.7(a),the most probable path does not move along the unstable periodic solution after exiting fromx*Ltox*H,but directly reachesx*H. As can be seen from other escape paths,they firstly move towards the unstable periodic solutionx*Sbut their momenta are too small to escape. Then they will fluctuate between the original stable periodic solution and the unstable periodic solution to prepare for a next trial to escape. For Fig.7(b),after the most probable path switches fromx*Ltox*S,it moves along the unstable periodic solutionx*S,and the most probable path begins to transition tox*Hnear the intersection of the unstable periodic solution and the nulline.

    Fig. 7. Escape paths from x*L to x*H. The solid cyan lines represent the two stable periodic solutions and the dotted cyan line represents the unstable periodic solutions. The black lines represent the nullclines.The red thick line represents most probable transition path, and the other lines for other escape paths. (a) α =0.52, A=0.1, ω =0.1;(b)α =0.58,A=0.1,ω =0.5.

    In Fig.8,we compare the most probable transition paths obtained from Eq.(19)for various values ofσ. Herein,for all the most probable transition paths, we choose the same start pointx*L(0), the same end pointx*H(T) and the total time for five periods. Given the parameters,the nullines are very close to the periodic solutions but they do not overlap. The nullines only intersect the highest and lowest points of the periodic solutions. The insets in Fig.8 indicate that the transition occurs in the gap between the stable periodic solution and nullcline,where the flow of the period solutions will change directions.

    Fig. 8. Most probable transition paths for different σ with α =0.52,A=0.1,ω=0.1. The solid cyan lines represent the two stable periodic solutions and the dotted cyan line represents the unstable periodic solution,the black lines represent the nullclines. The arrow-1 to arrow-3 mark where paths arrive at x*S,and the arrow-4 to arrow-6 mark where paths leave x*L and x*H. And the insets indicate that the transition occurs in the gap between the stable periodic solution and the nullcline.

    We observe that the transition of the system occurs between two stable periodic solutions three times in five periods.The first transition is fromx*Ltox*H,and the places leavingx*Land reachingx*Sare not different with the change of noise intensity. The second transition is fromx*Htox*L. The residence time inx*Landx*Hvaries greatly under different noise intensities. Whenσ=0.05, the most probable path stays longer inx*H, while forσ=0 andσ=0.01, the most probable paths stay longer inx*L. The third transition is fromx*Ltox*H. Every transition indicates that the transition occurs near the nearest distance between the stable periodic solution and the unstable periodic solution.

    Whenσ= 0, the most probable transition path moves alongx*Sfor a half cycle after reaching the unstable periodic solution.Nevertheless,the most probable transition paths switch quickly to the other stable period solution forσ=0.01 andσ=0.05. And there have interesting phenomenon forσ=0 andσ=0.01. For each transition, the most probable transition paths follow a similar trajectory to the unstable periodic solutionx*S, marked by arrow-1 to arrow-3. And the transitions begin at a similar point at stable periodic solutions,that is, they all leave the stable periodic solutionx*Landx*Haround the same phase,marked by arrow-4 to arrow-6.

    In Fig.9,we compare the most probable transition paths obtained from Eq.(15)for various values ofσ. Herein,for all the most probable transition paths, we choose the same start pointx*L(0), the same end pointx*H(T) and the total time for four periods.

    As shown in Fig. 9, the influence of noise intensity on the most probable paths is not very large. Basically,the most probable paths move alongx*Lto the red square and transition tox*H. The place where the most probable paths transition is the same,and the higher the noise intensity,the earlier the system reachesx*H. Whenσ=0, the most probable transition path moves alongx*Sfor a half cycle, while whenσ/=0, the most probable paths hardly stay atx*S.

    Fig.9.Most probable transition paths for different σ with α=0.58,A=0.1,ω =0.5. The solid cyan lines represent the two stable periodic solutions and the dotted cyan line represents the unstable periodic solution,the black lines represent the nullclines. The red square indicates the most probable paths transition occurs at the same place under different noise intensity.

    The most probable paths will deviate fromx*Lwhere the double-well structure disappears. In particular, where the double-well structure of the system disappears,the most probable path atσ=0 initially moves up tox*Sand along it. After the unstable periodic solution intersects the nulline,the system begins to move down tox*Lunder the action of the deterministic vector field. It can be seen that when the double-well structure disappears,the distance betweenx*Landx*Sis closest,and the system is prone to transition.

    5. Conclusions

    In this paper,we have investigated the most probable transition paths of the lake eutrophication system under Gaussian white noise and the periodic force. The characterization of the most probable paths provides a new perspective for the study of the lake eutrophication system. We visualized transitions between the eutrophic state and the oligotrophic state. We introduced two kinds of action functionals,FW action functional and OM action functional,for the calculation of the most probable transition paths under different noise intensities.

    Firstly,the influence of noise is only considered.We used large deviation theory to observe the most probable transition paths. In weak noise intensity, the Hamilton–Jacobi equation is obtained by using WKB approximation for the system,and the FW action functional is obtained by using the method of characteristics. We used the minimum of the FW action functional to obtain the most probable transition paths between the oligotrophic state the eutrophic state. Further, we examined the most probable transition pathsxm(t)from the oligotrophic statexLto the eutrophic statexHwith different noise intensities by minimizing the OM action functional. By characterizing the most probable transition paths under certain parameters,we have found that the stability of the eutrophic state and the oligotrophic state has different results from the two perspectives of potential well and the most probable transition path.

    Then,Gaussian white noise and periodic excitation were considered. Considering the influence of parameters on the periodic solutions and nullines of the system,we have chosen two groups of parameters to study the most probable path of the system with periodic excitation. The most probable transition paths fromx*Ltox*Hwere obtained by using the large deviation theory. In addition, by minimizing the OM functional,we obtained the most probable transition paths starting at the same initial point onx*Land terminating onx*Hfor different noise intensities. The transition points in periodic lake eutrophication system have same characteristics,and the transition is more likely to occur near the closest distance between stable and unstable periodic solutions.

    Acknowledgement

    Projected supported by the National Natural Science Foundation of China(Grant Nos.12072261 and 11872305).

    猜你喜歡
    徐偉立志
    徐偉:野菊
    立志鄉(xiāng)村振興的筑夢人
    華人時刊(2021年15期)2021-11-27 09:16:34
    姚立志繪畫作品
    感悟關(guān)懷厚望 立志跟黨前進
    少先隊活動(2021年5期)2021-07-22 08:59:46
    An investigation on improving the homogeneity of plasma generated by linear microwave plasma source with a length of 1550 mm
    蘇夢飛
    書香兩岸(2020年3期)2020-06-29 12:33:45
    Theory and method of dual-energy x-ray grating phase-contrast imaging?
    依靠新科技、新理念“易騎”立志殺出重圍!
    Quantification of CP4-EPSPS in genetically modifiedNicotianatabacum leaves by LC-MS/MS with 18O-labeling
    張立志將軍:把美好年華奉獻給祖國
    中國火炬(2014年7期)2014-07-24 14:21:26
    黄片小视频在线播放| 亚洲国产精品合色在线| 99热这里只有精品一区 | 亚洲av熟女| 国产欧美日韩一区二区三| 亚洲av日韩精品久久久久久密| 久久久久久久午夜电影| а√天堂www在线а√下载| 黄片大片在线免费观看| 99riav亚洲国产免费| 亚洲精品美女久久av网站| 亚洲成人久久性| 国产一区二区三区视频了| 午夜免费成人在线视频| 琪琪午夜伦伦电影理论片6080| 欧美又色又爽又黄视频| 久热爱精品视频在线9| 国产午夜福利久久久久久| 欧美一区二区精品小视频在线| 久久久久久免费高清国产稀缺| 一边摸一边做爽爽视频免费| 777久久人妻少妇嫩草av网站| 黄色成人免费大全| 999久久久国产精品视频| 欧美日韩黄片免| 国内少妇人妻偷人精品xxx网站 | 在线看三级毛片| x7x7x7水蜜桃| www国产在线视频色| 国产久久久一区二区三区| 亚洲男人的天堂狠狠| 黄色a级毛片大全视频| 日韩欧美在线二视频| 国产激情偷乱视频一区二区| 国产av一区在线观看免费| 成人亚洲精品av一区二区| 一本精品99久久精品77| 国产成人欧美| 久久久精品欧美日韩精品| 操出白浆在线播放| 精品高清国产在线一区| 国产亚洲精品第一综合不卡| 亚洲av熟女| 精品午夜福利视频在线观看一区| 亚洲一区中文字幕在线| 久久狼人影院| 国产成人影院久久av| 丰满人妻熟妇乱又伦精品不卡| 亚洲av五月六月丁香网| 黄色女人牲交| 真人一进一出gif抽搐免费| 亚洲在线自拍视频| 成人国产一区最新在线观看| av在线天堂中文字幕| 99热6这里只有精品| 看免费av毛片| 亚洲av成人不卡在线观看播放网| 91av网站免费观看| 欧美黄色淫秽网站| 日本熟妇午夜| 91麻豆精品激情在线观看国产| av超薄肉色丝袜交足视频| 午夜久久久在线观看| 欧美不卡视频在线免费观看 | 国产高清有码在线观看视频 | 丰满人妻熟妇乱又伦精品不卡| av免费在线观看网站| 男女做爰动态图高潮gif福利片| 欧美在线一区亚洲| svipshipincom国产片| 亚洲精品一卡2卡三卡4卡5卡| 久久婷婷人人爽人人干人人爱| av超薄肉色丝袜交足视频| 高清在线国产一区| 丝袜在线中文字幕| 亚洲九九香蕉| 亚洲成国产人片在线观看| 日韩国内少妇激情av| 久久久国产欧美日韩av| 免费搜索国产男女视频| 日本一本二区三区精品| 18禁观看日本| 黄频高清免费视频| www.熟女人妻精品国产| 亚洲成人久久性| 国产精品九九99| 女警被强在线播放| 国产精品乱码一区二三区的特点| 国产精品久久久久久精品电影 | 好男人电影高清在线观看| 久久久久久久午夜电影| 精品午夜福利视频在线观看一区| 黄网站色视频无遮挡免费观看| 免费在线观看完整版高清| 久9热在线精品视频| 啦啦啦韩国在线观看视频| 男人舔女人的私密视频| 成人午夜高清在线视频 | 久久精品影院6| 在线观看免费午夜福利视频| 亚洲av成人一区二区三| av在线播放免费不卡| 欧美黑人巨大hd| 国产精品 欧美亚洲| 亚洲成人免费电影在线观看| 成人亚洲精品一区在线观看| 亚洲avbb在线观看| 国产高清视频在线播放一区| 国产伦人伦偷精品视频| 亚洲avbb在线观看| 99久久久亚洲精品蜜臀av| 亚洲av日韩精品久久久久久密| 国产视频内射| 久久国产精品影院| 一二三四社区在线视频社区8| 久久久国产成人免费| 一级毛片高清免费大全| 男女下面进入的视频免费午夜 | 欧美精品啪啪一区二区三区| 欧美午夜高清在线| tocl精华| 亚洲专区字幕在线| 国产精品免费一区二区三区在线| 中文字幕精品亚洲无线码一区 | 老汉色av国产亚洲站长工具| 热99re8久久精品国产| 久久 成人 亚洲| 免费看a级黄色片| 亚洲精品国产精品久久久不卡| 美女 人体艺术 gogo| 亚洲国产日韩欧美精品在线观看 | 久久国产精品人妻蜜桃| av中文乱码字幕在线| 国产高清有码在线观看视频 | 国产1区2区3区精品| 国产成人系列免费观看| 麻豆av在线久日| 50天的宝宝边吃奶边哭怎么回事| 免费看a级黄色片| 欧美激情高清一区二区三区| 99热这里只有精品一区 | 精品国产乱子伦一区二区三区| 国产爱豆传媒在线观看 | 非洲黑人性xxxx精品又粗又长| av电影中文网址| 日韩精品免费视频一区二区三区| av福利片在线| 老熟妇乱子伦视频在线观看| 久久香蕉国产精品| 国产国语露脸激情在线看| 国产成+人综合+亚洲专区| 日韩欧美一区视频在线观看| 中文字幕精品亚洲无线码一区 | 亚洲人成77777在线视频| 狂野欧美激情性xxxx| 久久国产精品影院| 俄罗斯特黄特色一大片| 两个人看的免费小视频| 97人妻精品一区二区三区麻豆 | 老司机深夜福利视频在线观看| 国产真人三级小视频在线观看| 18禁裸乳无遮挡免费网站照片 | 久久精品国产清高在天天线| 夜夜夜夜夜久久久久| 成年版毛片免费区| 国产精品日韩av在线免费观看| 国产成人欧美在线观看| 亚洲国产欧美日韩在线播放| 少妇裸体淫交视频免费看高清 | 成人一区二区视频在线观看| av欧美777| 香蕉国产在线看| 国产亚洲精品av在线| 在线观看一区二区三区| 别揉我奶头~嗯~啊~动态视频| 欧美绝顶高潮抽搐喷水| 国产精品香港三级国产av潘金莲| 亚洲成av人片免费观看| 日韩精品中文字幕看吧| 琪琪午夜伦伦电影理论片6080| 99久久综合精品五月天人人| 久久久久久九九精品二区国产 | 精品欧美一区二区三区在线| 午夜视频精品福利| 两个人视频免费观看高清| 国产精品一区二区免费欧美| 国产不卡一卡二| tocl精华| 国产精品免费视频内射| 久久中文字幕人妻熟女| 一本精品99久久精品77| 久久国产精品男人的天堂亚洲| 嫁个100分男人电影在线观看| 国产1区2区3区精品| 日韩精品免费视频一区二区三区| 亚洲人成伊人成综合网2020| 在线观看www视频免费| 亚洲狠狠婷婷综合久久图片| 精品久久久久久久久久免费视频| 一级a爱片免费观看的视频| 桃红色精品国产亚洲av| av电影中文网址| 在线免费观看的www视频| 国产成人一区二区三区免费视频网站| 老熟妇乱子伦视频在线观看| 久久中文字幕人妻熟女| 我的亚洲天堂| 久久亚洲精品不卡| 久久久久久亚洲精品国产蜜桃av| 亚洲国产欧美日韩在线播放| 一个人观看的视频www高清免费观看 | 免费一级毛片在线播放高清视频| 18禁国产床啪视频网站| 国产日本99.免费观看| 亚洲专区国产一区二区| 叶爱在线成人免费视频播放| 亚洲人成网站高清观看| 久久婷婷人人爽人人干人人爱| 99久久国产精品久久久| 国产午夜福利久久久久久| 搡老妇女老女人老熟妇| 成人精品一区二区免费| 亚洲精品色激情综合| 欧美色欧美亚洲另类二区| 国产视频一区二区在线看| 日韩成人在线观看一区二区三区| 免费高清在线观看日韩| 久久久久久亚洲精品国产蜜桃av| 窝窝影院91人妻| 精品国产一区二区三区四区第35| av超薄肉色丝袜交足视频| 国产久久久一区二区三区| 欧美乱码精品一区二区三区| 欧美亚洲日本最大视频资源| 日韩三级视频一区二区三区| 久9热在线精品视频| 国产1区2区3区精品| 欧美+亚洲+日韩+国产| 亚洲人成77777在线视频| 97超级碰碰碰精品色视频在线观看| 看片在线看免费视频| 欧美三级亚洲精品| 亚洲成人国产一区在线观看| 欧美成人一区二区免费高清观看 | 深夜精品福利| 久久天躁狠狠躁夜夜2o2o| 一进一出抽搐动态| 免费一级毛片在线播放高清视频| 亚洲中文字幕一区二区三区有码在线看 | 免费在线观看亚洲国产| 精品高清国产在线一区| 久久欧美精品欧美久久欧美| 精品国产美女av久久久久小说| 欧美成人一区二区免费高清观看 | 成人一区二区视频在线观看| 久久精品国产亚洲av香蕉五月| 国产国语露脸激情在线看| 黑人巨大精品欧美一区二区mp4| 欧美日韩亚洲综合一区二区三区_| 夜夜躁狠狠躁天天躁| 日韩 欧美 亚洲 中文字幕| 黄色片一级片一级黄色片| 精品不卡国产一区二区三区| 色播亚洲综合网| 在线观看舔阴道视频| 色综合亚洲欧美另类图片| e午夜精品久久久久久久| 精品一区二区三区视频在线观看免费| 一边摸一边抽搐一进一小说| 亚洲av五月六月丁香网| 成人午夜高清在线视频 | 夜夜爽天天搞| 无限看片的www在线观看| 亚洲精品美女久久久久99蜜臀| 狂野欧美激情性xxxx| 国内少妇人妻偷人精品xxx网站 | 最近最新免费中文字幕在线| 国产精品乱码一区二三区的特点| 国产精品av久久久久免费| 高潮久久久久久久久久久不卡| 久久精品夜夜夜夜夜久久蜜豆 | 日本三级黄在线观看| 国产男靠女视频免费网站| 麻豆国产av国片精品| 国产精品99久久99久久久不卡| 久久中文字幕人妻熟女| 黑人操中国人逼视频| 哪里可以看免费的av片| 国产在线精品亚洲第一网站| 一区福利在线观看| 亚洲av电影不卡..在线观看| 搡老岳熟女国产| 免费在线观看成人毛片| 91字幕亚洲| 久久性视频一级片| 国产亚洲精品久久久久久毛片| 精品免费久久久久久久清纯| 搞女人的毛片| 国产精品自产拍在线观看55亚洲| 国内精品久久久久精免费| 他把我摸到了高潮在线观看| 国产精品 欧美亚洲| 成人三级黄色视频| aaaaa片日本免费| 精品电影一区二区在线| 青草久久国产| 国产黄片美女视频| 亚洲黑人精品在线| 超碰成人久久| 极品教师在线免费播放| 久久精品国产综合久久久| 亚洲精品粉嫩美女一区| 久久青草综合色| 亚洲,欧美精品.| 亚洲国产精品久久男人天堂| 一区二区日韩欧美中文字幕| 国产精品 欧美亚洲| 99re在线观看精品视频| 午夜福利成人在线免费观看| 亚洲欧美日韩无卡精品| 国产区一区二久久| 精品人妻1区二区| 操出白浆在线播放| 999久久久国产精品视频| 男人操女人黄网站| 黄色 视频免费看| 一本久久中文字幕| 亚洲精品在线美女| 禁无遮挡网站| 妹子高潮喷水视频| 亚洲色图 男人天堂 中文字幕| 又紧又爽又黄一区二区| 久久亚洲真实| 亚洲专区国产一区二区| 日韩大码丰满熟妇| 亚洲国产高清在线一区二区三 | 欧美日韩瑟瑟在线播放| 最近最新中文字幕大全免费视频| 色婷婷久久久亚洲欧美| 色播亚洲综合网| 欧美日韩瑟瑟在线播放| cao死你这个sao货| av免费在线观看网站| 大型av网站在线播放| 日本熟妇午夜| 亚洲黑人精品在线| 国产精品98久久久久久宅男小说| 亚洲精华国产精华精| 手机成人av网站| 一夜夜www| 欧美乱色亚洲激情| 男女之事视频高清在线观看| 欧美激情久久久久久爽电影| 欧美黑人巨大hd| 午夜激情av网站| 国产成人精品久久二区二区91| 又黄又粗又硬又大视频| 亚洲精品中文字幕一二三四区| 国产伦一二天堂av在线观看| 亚洲七黄色美女视频| 中文字幕精品免费在线观看视频| 国产亚洲精品久久久久5区| 久久精品国产综合久久久| 一个人免费在线观看的高清视频| 91在线观看av| 国产真人三级小视频在线观看| 久9热在线精品视频| 色哟哟哟哟哟哟| 国产色视频综合| 亚洲中文字幕日韩| 亚洲色图 男人天堂 中文字幕| 国产99白浆流出| 午夜精品在线福利| 不卡一级毛片| 一进一出抽搐动态| 人人妻人人澡欧美一区二区| 少妇的丰满在线观看| 亚洲国产精品sss在线观看| 亚洲成国产人片在线观看| 在线视频色国产色| 国产激情久久老熟女| 午夜a级毛片| 亚洲国产精品久久男人天堂| 国产精品,欧美在线| 中文在线观看免费www的网站 | 久久久久久久久久黄片| 国产99久久九九免费精品| 久久天堂一区二区三区四区| www国产在线视频色| 男人舔奶头视频| 日本撒尿小便嘘嘘汇集6| 女人高潮潮喷娇喘18禁视频| 成年女人毛片免费观看观看9| 97人妻精品一区二区三区麻豆 | av中文乱码字幕在线| 国产97色在线日韩免费| 在线观看一区二区三区| 国产人伦9x9x在线观看| 欧美激情 高清一区二区三区| 两个人看的免费小视频| 黄色视频不卡| 91九色精品人成在线观看| 久久中文字幕一级| 老熟妇乱子伦视频在线观看| 99riav亚洲国产免费| 精品一区二区三区视频在线观看免费| 日韩有码中文字幕| 91成人精品电影| 亚洲欧美精品综合久久99| 午夜a级毛片| 精品久久久久久久久久久久久 | 国产激情久久老熟女| 黄色女人牲交| 国内精品久久久久精免费| 美女高潮到喷水免费观看| 男男h啪啪无遮挡| 亚洲人成77777在线视频| 国产伦一二天堂av在线观看| 夜夜爽天天搞| 妹子高潮喷水视频| 国产成人一区二区三区免费视频网站| 国产成人系列免费观看| 精品久久久久久久久久久久久 | 欧洲精品卡2卡3卡4卡5卡区| 香蕉av资源在线| 久久热在线av| 国产亚洲欧美在线一区二区| 国产熟女xx| 女生性感内裤真人,穿戴方法视频| 精品第一国产精品| 丰满的人妻完整版| 久久久久久久午夜电影| 日韩欧美免费精品| 色综合欧美亚洲国产小说| 国产精品亚洲一级av第二区| 国产精品久久久久久人妻精品电影| 黄片播放在线免费| 在线永久观看黄色视频| 亚洲男人天堂网一区| 欧美日韩乱码在线| 亚洲中文日韩欧美视频| 久久婷婷人人爽人人干人人爱| 最新在线观看一区二区三区| 大型黄色视频在线免费观看| 禁无遮挡网站| 午夜激情av网站| 一夜夜www| 91在线观看av| 波多野结衣高清作品| 国内久久婷婷六月综合欲色啪| 午夜免费成人在线视频| 别揉我奶头~嗯~啊~动态视频| 亚洲专区国产一区二区| 日日干狠狠操夜夜爽| 中文字幕高清在线视频| 日韩欧美一区二区三区在线观看| 在线看三级毛片| 久久久久久九九精品二区国产 | 亚洲av第一区精品v没综合| 我的亚洲天堂| 两个人免费观看高清视频| 国产熟女午夜一区二区三区| 欧美不卡视频在线免费观看 | a级毛片在线看网站| 超碰成人久久| videosex国产| 免费观看精品视频网站| 精品国产美女av久久久久小说| 黑人欧美特级aaaaaa片| 露出奶头的视频| 日本熟妇午夜| 久久性视频一级片| 国产男靠女视频免费网站| 亚洲男人的天堂狠狠| 99精品欧美一区二区三区四区| 中文字幕高清在线视频| 亚洲黑人精品在线| 亚洲成人久久性| 欧美黄色淫秽网站| 国产一卡二卡三卡精品| 真人做人爱边吃奶动态| 亚洲av第一区精品v没综合| 亚洲人成网站在线播放欧美日韩| 国产成人一区二区三区免费视频网站| www日本黄色视频网| 国产又黄又爽又无遮挡在线| 美女高潮到喷水免费观看| 天天一区二区日本电影三级| 91国产中文字幕| 神马国产精品三级电影在线观看 | 白带黄色成豆腐渣| 国产熟女午夜一区二区三区| 国产精品久久久av美女十八| 国产精品一区二区免费欧美| 俄罗斯特黄特色一大片| 一边摸一边做爽爽视频免费| 日韩一卡2卡3卡4卡2021年| 国产不卡一卡二| 精品一区二区三区av网在线观看| 久久久精品欧美日韩精品| 午夜激情av网站| 中文字幕人妻熟女乱码| 巨乳人妻的诱惑在线观看| 一本精品99久久精品77| 国产精品自产拍在线观看55亚洲| 变态另类成人亚洲欧美熟女| bbb黄色大片| 男人舔女人下体高潮全视频| 成人一区二区视频在线观看| 亚洲欧美一区二区三区黑人| 999精品在线视频| www国产在线视频色| 国产精品免费一区二区三区在线| 日日夜夜操网爽| 午夜福利免费观看在线| 欧美乱码精品一区二区三区| 国产伦人伦偷精品视频| 欧美日韩瑟瑟在线播放| 国产一区二区三区在线臀色熟女| 国产精品野战在线观看| 国产一区二区三区在线臀色熟女| 色播在线永久视频| 日韩欧美免费精品| 欧美精品啪啪一区二区三区| 亚洲国产欧美一区二区综合| 亚洲精品一卡2卡三卡4卡5卡| 午夜福利视频1000在线观看| 777久久人妻少妇嫩草av网站| 99国产精品一区二区蜜桃av| 美女国产高潮福利片在线看| 51午夜福利影视在线观看| 99国产精品一区二区三区| 男女之事视频高清在线观看| 成人国产综合亚洲| 精品久久久久久久末码| 黑人巨大精品欧美一区二区mp4| 桃红色精品国产亚洲av| 国产一级毛片七仙女欲春2 | 欧美日韩黄片免| 日本一区二区免费在线视频| 国产精品影院久久| av片东京热男人的天堂| 国产野战对白在线观看| 精品欧美一区二区三区在线| avwww免费| 国产高清videossex| 亚洲男人天堂网一区| 啦啦啦韩国在线观看视频| 成人亚洲精品一区在线观看| 搡老熟女国产l中国老女人| 亚洲av第一区精品v没综合| 曰老女人黄片| 欧美zozozo另类| 精品不卡国产一区二区三区| 欧美乱妇无乱码| 久久久久久九九精品二区国产 | 欧美中文综合在线视频| 欧美黄色片欧美黄色片| 欧美绝顶高潮抽搐喷水| 中文字幕人妻熟女乱码| 国产av一区二区精品久久| 国产亚洲精品av在线| 国产精华一区二区三区| 巨乳人妻的诱惑在线观看| 亚洲精品av麻豆狂野| 亚洲五月天丁香| 亚洲精品在线观看二区| 日本一本二区三区精品| av视频在线观看入口| 国产爱豆传媒在线观看 | 黑人巨大精品欧美一区二区mp4| xxxwww97欧美| 亚洲精品色激情综合| 女性被躁到高潮视频| bbb黄色大片| 国产欧美日韩一区二区三| 国产熟女xx| 后天国语完整版免费观看| 欧美在线黄色| 亚洲中文日韩欧美视频| 桃红色精品国产亚洲av| 久久国产精品男人的天堂亚洲| 日日摸夜夜添夜夜添小说| 视频在线观看一区二区三区| 色在线成人网| 九色国产91popny在线| 欧美成人性av电影在线观看| 日本免费一区二区三区高清不卡| 日本三级黄在线观看| 极品教师在线免费播放| 老汉色∧v一级毛片| 日韩欧美在线二视频| 俄罗斯特黄特色一大片| 免费在线观看影片大全网站| 久久伊人香网站| 精品国产乱码久久久久久男人| 亚洲国产欧美日韩在线播放| 色尼玛亚洲综合影院| 欧美日韩乱码在线| 日本免费一区二区三区高清不卡| 午夜久久久久精精品| 一夜夜www| 欧美+亚洲+日韩+国产| 男女那种视频在线观看| 日韩av在线大香蕉| 久久欧美精品欧美久久欧美| 人人澡人人妻人| 欧美黑人巨大hd| 午夜福利18| 国产1区2区3区精品| 黄片大片在线免费观看| av在线播放免费不卡| 韩国av一区二区三区四区| 麻豆成人午夜福利视频| 1024香蕉在线观看|