• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    西方蜜蜂工蜂不同蟲態(tài)發(fā)育的轉錄組學分析

    2022-06-15 06:05:40宋文菲胡宗文苗春輝余玉生楊爽李亞輝
    南方農業(yè)學報 2022年3期
    關鍵詞:差異表達基因信號通路生長發(fā)育

    宋文菲 胡宗文 苗春輝 余玉生 楊爽 李亞輝

    摘要:【目的】基于轉錄組學對西方蜜蜂工蜂不同蟲態(tài)間的差異表達基因(DEGs)進行篩選和功能注釋分析,揭示與工蜂生長發(fā)育相關的信號通路,為深入解析工蜂生長發(fā)育的分子調控機理提供基礎數(shù)據。【方法】以西方蜜蜂工蜂的3日齡幼蟲、1日齡蛹和1日齡羽化工蜂3個蟲態(tài)為研究對象,利用llumina NovaSeq 6000平臺進行轉錄組測序,采用DESeq2篩選不同蟲態(tài)樣品間的表達差異基因,然后分別進行GO功能注釋分析及KEGG信號通路富集分析,并通過實時熒光定量PCR進行驗證?!窘Y果】經轉錄組測序,在西方蜜蜂工蜂3日齡幼蟲與1日齡蛹間篩選出4823個差異表達基因(51.86%上調,48.14%下調),在1日齡蛹與1日齡羽化工蜂間篩選出3295個差異表達基因(57.51%上調,42.49%下調),在3日齡幼蟲與1日齡羽化工蜂間篩選出5267個差異表達基因(52.95%上調,47.05%下調)。GO功能注釋分析結果顯示,3日齡幼蟲與1日齡蛹間的差異表達基因注釋到43個GO功能條目,1日齡蛹與1日齡羽化工蜂間的差異表達基因注釋到45個GO功能條目,3日齡幼蟲與1日齡羽化工蜂間的差異表達基因注釋到44個GO功能條目,主要涉及細胞過程、細胞部分及結合等。KEGG信號通路富集分析發(fā)現(xiàn),3日齡幼蟲與1日齡蛹間有2905個差異表達基因富集到332條KEGG信號通路上,其中17條KEGG信號通路呈顯著富集,涉及核糖體、氧化磷酸化和昆蟲激素生物合成等;1日齡蛹與1日齡羽化工蜂間有1644個差異表達基因富集到331條KEGG信號通路上,其中45條KEGG信號通路呈顯著富集,涉及氧化磷酸化、生熱作用和胰島素分泌等;3日齡幼蟲與1日齡羽化工蜂間有2958個差異表達基因富集到337條KEGG信號通路上,其中14條KEGG信號通路呈顯著富集,涉及核糖體、蛋白酶體和胰島素分泌等。6個隨機挑選差異表達基因的實時熒光定量PCR檢測結果與轉錄組測序結果相符,即轉錄組測序結果可靠。【結論】昆蟲激素生物合成通路相關差異表達基因調控與西方蜜蜂工蜂各蟲態(tài)JH滴度變化規(guī)律一致,氧化磷酸化信號通路則與各蟲態(tài)的營養(yǎng)攝入和活動行為相關,而胰島素分泌通路涉及各蟲態(tài)的營養(yǎng)調控、脂肪體合成及細胞凋亡??梢?,昆蟲激素生物合成、胰島素分泌和氧化磷酸化3種信號通路在西方蜜蜂工蜂幼蟲、蛹和成蟲的發(fā)育調控中發(fā)揮著重要作用。

    關鍵詞:西方蜜蜂;工蜂;生長發(fā)育;差異表達基因;信號通路;轉錄組測序

    中圖分類號:S891? ? ? ? ? ? ? ? ? ? ? ? ? 文獻標志碼: A 文章編號:2095-1191(2022)03-0748-11

    Transcriptome analysis of development of different stages in Apis mellifera worker bees

    SONG Wen-fei HU Zong-wen MIAO Chun-hui YU Yu-sheng YANG Shuang LI Ya-hui

    (1College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan? 650201, China;

    2Sericulture and Apiculture Research Institute, Yunnan Academy of Agricultural Sciences,

    Mengzi, Yunnan? 661101, China)

    Abstract:【Objective】To screen and functional annotation analysis of differentially expressed genes (DEGs) among different stages of Apis mellifera worker bees based on transcriptomics, reveal signaling pathways related to development of worker bees,so as to provide basic data for in-depth analysis of the molecular regulation mechanism of growth and deve-lopment of worker bees. 【Method】The 3-day-old larvae,1-day-old pupae and 1-day-old eclosion worker bees were takenas the research objects. Transcriptome sequencing was performed by Illumina NovaSeq 6000 platform,and screening of DEGs among different worker bees samples by DESeq2. GO functional annotation analysis and KEGG signaling pathway enrichment analysis were performed, and then real-time quantative PCR (qRT-PCR) verification was conducted. 【Result】After transcriptome sequencing, 4823 DEGs (51.86% up-regulated, 48.14% down-regulated) were screened between 3-day-old larvae and 1-day-old pupae of A. mellifera worker bees. 3295 DEGs were screened between 1-day-old pupae and 1-day-old eclosion worker bees (57.51% up-regulated, 42.49% down-regulated), 5267 DEGs (52.95% up-regulated, 47.05% down-regulated) were screened between 3-day-old larvae and 1-day-old eclosion worker bees. The annotated GO function entries in the GO database of the three instar differential genes were 43 (between 3-day-old larvae and 1-day-old pupae), 45 (between 1-day-old pupae and 1-day-old eclosion worker bees), and 44 (between 3-day-old larvae and 1-day-old eclosion worker bees) respectively, mainly involving cellular process, cell part, binding, etc. KEGG signaling pathway enrichment analysis results showed that 2905 DEGs were enriched in 332 KEGG signaling pathways between 3-day-old larvae and 1-day-old pupae, of which 17 KEGG signaling pathways were significantly enriched, involving ribosomes, oxidation phosphorylation and insect hormone biosynthesis.1644 DEGs were enriched in 331 KEGG signaling pathways between 1-day-old pupae and 1-day-old eclosion worker bees, of which 45 KEGG signaling pathways were significantly enriched, involving oxidative phosphorylation, thermogenesis and insulin secretion. 2958 DEGs were enriched in 337 KEGG signaling pathways between 3-day-old larvae and 1-day-old eclosion worker bees, of which 14 KEGG signaling pathways were significantly enriched, involving ribosomes, proteasomes and insulin secretion. The qRT-PCR results of 6 randomly selected DEGs were consistent with the transcriptome sequencing results, indicating that the transcriptome sequencing results were reliable. 【Conclusion】The regulation of DEGs related to insect hormone biosynthesis pathway is consistent with the change rule of juvenile hormone(JH) titer in different stages of A. mellifera worker bees. The oxidative phosphorylation signaling pathway is related to the nutrient intake and activity behavior of different stages, and the insulin secretion pathway involves in the regulation of nutritional regulation, fat body synthesis and apoptosis of diffe-rent stages. The results showsthat three signaling pathways of insect hormone biosynthesis, insulin secretion and oxidative phosphorylation play important roles in the developmental regulation of larvae, pupae and adult of A. mellifera worker bees.4293EE6F-6C74-4C82-858F-238197A4E9A1

    Key words:Apis mellifera;worker bees; growth and development; differentially expressed genes;signaling pathway; transcriptome sequencing

    Foundation items:National Modern Agriculture Industry Technology System(Honey Bee) Construction Project(CARS-44-SYZ16); Yunnan Province Science and Technology Plan Project (202105AF150052); Yunan Science and Technology Mission Funding Project (202204BI090013)

    0 引言

    【研究意義】西方蜜蜂(Apis mellifera L.)是一類以雌性為主的社會性昆蟲,受級型分化影響雌性單元分化為蜂王和工蜂,蜂王負責繁殖后代和維持秩序,而數(shù)量最多的工蜂承擔著覓食、哺育及筑巢等職能分工(Amdam and Seehuus,2006;Barchuk et al.,2007;宋文菲等,2021)。工蜂在生長發(fā)育過程中受到營養(yǎng)物質和內激素的共同影響(李成成等,2011;Wang et al.,2014),如缺少花粉會引起幼蟲和成年工蜂的發(fā)育受阻(Wang et al.,2014;Di Pasquale et al.,2016;Martin et al.,2021)。內激素主要包括保幼激素(Juvenile hormone,JH)和蛻皮激素(20-hydroxyecdysone,20E),會影響工蜂的變態(tài)發(fā)育和級型分化(李茫等,2019)。至今,針對西方蜜蜂(工蜂和蜂王)幼蟲階段差異表達基因(Differentially expressed genes,DEGs)和代謝通路的研究已有相關報道,證實工蜂和蜂王的幼蟲在不同發(fā)育階段的基因種類和表達水平存在明顯差異,蜂王在幼蟲早期具有獨特的基因表達譜,hexamerin 70b基因和雷帕霉素靶蛋白(TOR)信號通路與其級型分化密切相關(Chen et al.,2012;Cameron et al.,2013;He et al.,2017)。但關于西方蜜蜂工蜂胚后發(fā)育的分子調控機理尚不清楚,因此分析工蜂各蟲態(tài)的差異表達基因及其信號通路,可為深入探究工蜂生長發(fā)育的分子調控機理提供理論依據。【前人研究進展】隨著昆蟲基因組學及轉錄組學等分子生物信息學的快速發(fā)展,有關西方蜜蜂級型分化、行為分化和生長發(fā)育等方面的代謝通路調控機理研究已取得階段性進展(Patel et al.,2007;Wang et al.,2013;Harpur et al.,2014)。研究表明,JH是調控西方蜜蜂變態(tài)發(fā)育和級型分化的關鍵因子,其表達水平受表皮生長因子受體(EGFR)信號調控,以及胰島素受體底物(IRS)和TOR信號通路的影響(Patel et al.,2007;Kamakura,2011;Mutti et al.,2011);對蜜蜂幼蟲的IRS和TOR基因進行RNA干擾,可引起體內JH水平下降,進而誘導幼蟲發(fā)育成為工蜂(Patel et al.,2007;Muttiet al.,2011)。胰島素/胰島素樣生長因子信號(IIS)也是工蜂生長發(fā)育的調控因子,通過營養(yǎng)調控和行為分化等方式影響工蜂的發(fā)育。Ament等(2008)研究發(fā)現(xiàn),采集蜂在大腦和腹部的IIS基因表達水平高于哺育蜂,說明IIS可調控成年工蜂的行為分化。Wang等(2013)研究表明,IIS信號通路中的AmILP1和AmILP2基因在工蜂幼蟲發(fā)育過程中發(fā)揮著不同作用,AmILP1基因能顯著降低JH水平,AmILP2基因對脂肪體起調控作用,對幼蟲發(fā)育及其體重均有影響。AmILP-2基因是胰島素樣肽主要轉錄基因,在工蜂中的表達量明顯高于蜂王,說明組織特異性與IIS信號通路相對獨立(de Azevedo and Hartfelder,2008)。與蜂王相比,在工蜂幼蟲早期和中期發(fā)育中以氨基酸、肌肉發(fā)育和一般代謝相關基因的表達較高,在幼蟲中后期則是與細胞凋亡(組織蛋白酶)和自噬細胞死亡的相關基因表達較高(Cameron et al.,2013);不同年齡段工蜂的勞動分工也是通過JH信號通路、胰島素樣/TOR信號通路相互作用來調節(jié),其體內存在著較多的高表達新基因(Johnson and Tsutsui,2011;Harpur et al.,2014)。有關20E對工蜂生長發(fā)育的影響,Hartfelder和Engels(1998)研究發(fā)現(xiàn),20E在工蜂幼蟲階段的滴度水平較低,但在預蛹期和成蟲期分別出現(xiàn)一個峰值;祝智威等(2022)研究證實,3種微小RNA可通過調控20E基因及Hippo和FoxO信號通路的相關基因而影響工蜂蛹期的變態(tài)發(fā)育過程?!颈狙芯壳腥朦c】工蜂是西方蜜蜂蜂群中數(shù)量最多的類型,其生長發(fā)育對蜂群的發(fā)展至關重要。近年來,基于轉錄組學對西方蜜蜂工蜂哺育行為相關基因、工蜂中腸發(fā)育基因的研究表明,工蜂的哺育行為受信號轉導和能量代謝等途徑的調控(高艷等,2020),而TGF-β、Wnt及Hippo等信號通路影響工蜂中腸的生長發(fā)育和免疫能力(杜宇等,2020)。目前有關蜜蜂工蜂和蜂王級型分化差異表達基因及代謝通路的研究已有相關報道(Chen et al.,2012;Cameron et al.,2013;He et al.,2017),但針對工蜂不同蟲態(tài)間的信號通路及調控作用研究鮮見報道?!緮M解決的關鍵問題】通過對西方蜜蜂工蜂的3日齡幼蟲、1日齡蛹和1日齡羽化工蜂3個蟲態(tài)進行轉錄組測序,并對各蟲態(tài)間的差異表達基因進行篩選和功能注釋分析,揭示與工蜂生長發(fā)育相關的信號通路,為深入解析工蜂生長發(fā)育的分子調控機理提供基礎數(shù)據。4293EE6F-6C74-4C82-858F-238197A4E9A1

    1 材料與方法

    1. 1 試驗材料

    供試西方蜜蜂蜂群由云南省農業(yè)科學院蠶桑蜜蜂研究所國家現(xiàn)代農業(yè)產業(yè)技術體系(蜜蜂)紅河綜合試驗站西方蜜蜂試驗蜂場提供。2021年4—5月選擇3群群勢相當?shù)姆淙海咳悍?張空巢脾,待蜂王產卵后收集幼蟲、蛹和成蟲3個發(fā)育蟲態(tài)。為保證相鄰蟲態(tài)間發(fā)育時間相同,以相鄰蟲態(tài)間隔6~7 d取樣(Wang et al.,2015),分別以3日齡幼蟲、1日齡蛹和1日齡羽化工蜂代表幼蟲期、蛹期及成蟲期。3日齡幼蟲以6頭為1個樣本,1日齡蛹和1日齡羽化工蜂則以3頭為1個樣本,每個樣本設3個生物學重復。樣品采集后立即放入液氮中凍斃,-80 ℃保存?zhèn)溆?。TRIzol試劑(Invitrogen)、PrimeScriptTM RT reagent Kit with gDNA Eraser RT-qPCR反轉錄試劑盒及TB Green Premix Ex Taq II購自寶日醫(yī)生物技術(北京)有限公司,DEPC水購自北京索萊寶科技有限公司。主要儀器設備有NanoDrop 2000型分光光度計(Thermo Scientific)、StepOnePlusTM型qPCR儀(Applied Biosystems公司)、梯度PCR儀(Applied Biosystems公司)、低溫高速離心機(Sigma公司)及HWS智能型恒溫恒濕箱(寧波江南儀器廠)等。

    1. 2 cDNA文庫構建及轉錄組測序

    采集樣品在液氮中充分研磨后,根據TRIzol試劑操作說明提取總RNA,利用NanoDrop 2000進行RNA濃度和純度檢測,以瓊脂糖凝膠電泳檢測其完整性,采用Agilent 2100 Nano測定RIN值。質檢合格的RNA,根據TruseqTM RNA Sample Preparation Kit (Illumina)試劑盒說明構建cDNA文庫,然后利用llumina HiSeq Xten/NovaSeq 6000平臺進行高通量測序,獲得原始數(shù)據?;谖鞣矫鄯浠蚪M序列,利用HISAT2序列比對軟件與蜜蜂的基因組注釋信息進行比對(Kim et al.,2015),并將基因/轉錄本在Nr、Swiss-Prot、Pfam、EggNOG、GO和KEGG等數(shù)據庫中進行注釋,全面獲得基因/轉錄本的注釋信息。

    1. 3 轉錄組數(shù)據處理及注釋分析

    利用Cufflinks計算FPKM值,即每百萬個外顯子映射的片段數(shù),用以評估基因表達水平(Trapnell et al.,2010;張蕾等,2020)。采用DESeq2篩選不同蟲態(tài)樣品組間的表達差異基因,篩選參數(shù)設為P<0.01且|log2Fold Change|≥1,上調/下調差異倍數(shù)為2。

    1. 4 實時熒光定量PCR驗證

    從西方蜜蜂工蜂不同蟲態(tài)轉錄組數(shù)據中隨機挑選6個差異表達基因進行實時熒光定量PCR驗證,分別是腺苷酸環(huán)化酶 3基因(Ac3)、蛋白激酶C基因(Pkc)、細胞色素 P450 302a1基因(LOC727118)、胰島素樣肽2基因(ILP-2)、法尼酸甲酯環(huán)氧酶基因(LOC551179)和保幼激素酸O-甲基轉移酶基因(LOC724216)。采用Primer Premier 5.0設計6個差異表達基因的擴增引物,參照Zhang等(2020)的方法設計內參基因(GAPDH)擴增引物,所有引物(表1)均委托生工生物工程(上海)股份有限公司合成。采用反轉錄試劑盒將提取的RNA反轉錄合成cDNA,獲得的cDNA 置于-20 ℃冰箱保存?zhèn)溆?。實時熒光定量PCR反應體系20.0 μL:TB Green Premix Ex Taq II 10.0 μL,正、反向引物(10 μmol/L)各0.8 μL,ROX Reference Dye(50×)0.4 μL,cDNA模板2.0 μL,ddH2O 6.0 μL。擴增程序:95 ℃預變性10 min;95 ℃ 15 s,57 ℃ 1 min,進行40個循環(huán);添加熔解曲線。設3個水平重復孔,采用2-DDCt法換算目的基因相對表達量。

    2 結果與分析

    2. 1 轉錄組測序數(shù)據質控分析結果

    Illumina HiSeq 6000平臺高通量測序結果(表2)顯示,西方蜜蜂工蜂3日齡幼蟲、1日齡蛹和1日齡羽化工蜂的有效序列(Clean reads)分別為44384567、42199177和41901170條。各樣本的Q30均在93.00%以上,GC含量在35.66%~39.61%,表明轉錄組測序數(shù)據質量良好,可用于后續(xù)的研究分析。

    2. 2 西方蜜蜂工蜂不同蟲態(tài)間差異表達基因分析結果

    在西方蜜蜂工蜂3個蟲態(tài)中,3日齡幼蟲與1日齡蛹間存在4823個差異表達基因,表現(xiàn)為51.86%的差異表達基因上調、48.14%的差異表達基因下調(圖1-A);1日齡蛹與1日齡羽化工蜂間存在3295個差異表達基因,表現(xiàn)為57.51%的差異表達基因上調、42.49%的差異表達基因下調(圖1-B);3日齡幼蟲與1日齡羽化工蜂間存在5267個差異表達基因,表現(xiàn)為52.95%的差異表達基因上調、47.05%的差異表達基因下調(圖1-C)。

    2. 3 差異表達基因GO功能注釋分析結果

    3日齡幼蟲與1日齡蛹間的4823個差異表達基因共注釋到43個GO功能條目。其中,以注釋到生物學過程(Biological process)的功能條目最多,有16個(占37.21%),主要涉及細胞過程(Cellular process)(935個差異表達基因,占19.39%)、代謝過程(Metabolic process)(978個差異表達基因,占20.28%)、生物調節(jié)(Biological regulation)(333個差異表達基因,占6.90%)等;注釋到細胞組分(Cellular component)的功能條目有15個(占34.88%),主要涉及膜部分(Membrane part)(839個差異表達基因,占17.40%)、細胞部分(Cell part)(756個差異表達基因,占15.67%)、含蛋白質復合物(Protein-containing complex)(315個差異表達基因,占6.53%)等;注釋到分子功能(Molecular function)的功能條目有12個(占27.91%),主要涉及結合(Binding)(1032個差異表達基因,占21.40%)、催化活性(Catalytic activity)(948個差異表達基因s,占19.66%)、轉運蛋白活性(Transporter activity)(161個差異表達基因,占3.34%)等(圖2-A)。4293EE6F-6C74-4C82-858F-238197A4E9A1

    1日齡蛹與1日齡羽化工蜂間的3295個差異基因共注釋到45個GO功能條目,同樣以注釋到生物學過程的功能條目最多,有17個(占37.78%),主要涉及細胞過程(549個差異表達基因,占16.67%)、代謝過程(562個差異表達基因,占17.06%)、生物調節(jié)(264個差異表達基因,占8.01%)等;注釋到細胞組分的功能條目有15個(占33.33%),主要涉及膜部分(670個差異表達基因,占20.33%)、細胞部分(383個差異表達基因,占11.62%)、膜(Membrane)(199個差異表達基因,占6.04%)等;注釋到分子功能的功能條目有13個(占28.89%),主要涉及結合(624個差異表達基因,占18.94%)、催化活性(619個差異表達基因,占18.79%)、轉運蛋白活性(153個差異表達基因,占4.64%)等(圖2-B)。

    3日齡幼蟲與1日齡羽化工蜂間的5267個差異基因共注釋到44個GO功能條目,同樣以注釋到生物學過程的功能條目最多,占50.00%,主要涉及細胞過程(1020個差異表達基因,占19.37%)、代謝過程(1022個差異表達基因,占19.4%)、生物調節(jié)(430個差異表達基因,占8.16%)等;注釋到細胞組分的功能條目有15個(占34.09%),主要涉及膜部分(936個差異表達基因,占17.77%)、細胞部分(786個差異表達基因,占14.92%)、細胞器(Organelle)(313個差異表達基因,占5.94%)等;注釋到分子功能的功能條目有12個(占27.27%),主要涉及結合(1112個差異表達基因,占21.11%)、催化活性(1010個差異表達基因,占19.18%)、轉運蛋白活性(165個差異表達基因,占3.13%)等(圖2-C)。

    2. 4 差異表達基因KEGG信號通路富集分析結果

    在KEGG數(shù)據庫中比對獲得差異表達基因6351個,涉及有機體系統(tǒng)(Organismal systems)、細胞過程(Cellular process)、環(huán)境信息處理(Environmental information processing)、遺傳信息處理(Genetic information processing)和新陳代謝(Metabolism)五大類(圖3)。其中,有機體系統(tǒng)通路富集到的差異表達基因數(shù)最多(1736個),占可注釋基因數(shù)的27.33%,且以與內分泌系統(tǒng)相關的基因最多;新陳代謝通路富集到的差異表達基因次之(1521個),占23.95%,以與碳水化合物代謝相關的基因最多;遺傳信息處理通路富集到1095個差異表達基因,占17.24%,以與翻譯相關的基因最多;細胞過程通路富集到1076個差異表達基因,占16.94%,以與運輸和分解代謝相關的基因最多;環(huán)境信息處理通路富集到923個差異表達基因,占14.53%,以與信號轉導相關的基因最多。

    在西方蜜蜂工蜂3個蟲態(tài)中,3日齡幼蟲與1日齡蛹間有2905個差異表達基因富集到332條KEGG信號通路上,其中17條KEGG信號通路呈顯著富集(圖4-A),包括核糖體(Ribosome,102個)、氧化磷酸化(Oxidative phosphorylation,74個)和昆蟲激素生物合成(Insect hormone biosynthesis,19個)等。1日齡蛹與1日齡羽化工蜂間有1644個差異表達基因富集到331條KEGG信號通路上,其中45條KEGG信號通路呈顯著富集(圖4-B),包括氧化磷酸化(74個)、生熱作用(Thermogenesis,83個)和胰島素分泌(Insulin secretion,25個)等。3日齡幼蟲與1日齡羽化工蜂間有2958個差異表達基因富集到337條KEGG信號通路上,其中14條KEGG信號通路呈顯著富集(圖4-C),包括核糖體(104個)、蛋白酶體(Proteasome,32個)和胰島素分泌(28個)等。

    從昆蟲激素生物合成通路上挑選6個差異表達基因進行分析,結果(表3)顯示,這6個差異表達基因從3日齡幼蟲到1日齡蛹出現(xiàn)整體下調的表達趨勢,但從1日齡蛹到1日齡羽化工蜂呈整體上調的表達趨勢。同時從胰島素信號通路上挑選6個差異表達基因進行分析,結果(表4)發(fā)現(xiàn)從3日齡幼蟲到1日齡羽化工蜂,40S核糖體蛋白S6基因(LOC725647)持續(xù)下調;ILP-2基因、胰島素樣受體樣轉錄變體 X3基因(InR-2)和mTOR調節(jié)相關蛋白基因(LOC551668)呈先上調后下調的表達趨勢;己糖激酶1樣基因(LOC408818)和脂肪酸合酶基因(LOC412815)則呈先下調后上調的表達趨勢。

    2. 5 轉錄組數(shù)據實時熒光定量PCR驗證結果

    從西方蜜蜂工蜂不同蟲態(tài)的轉錄組數(shù)據中隨機挑選6個差異表達基因(Ac3、Pkc、ILP-2、LOC727118、LOC551179和LOC724216),采用實時熒光定量PCR進行驗證,結果(圖5)表明,在不同蟲態(tài)中6個差異表達基因的實時熒光定量PCR檢測結果與轉錄組測序結果相符,進一步證實了轉錄組數(shù)據結果的可靠性。

    3 討論

    氧化磷酸化是生物體分解過程中氧化步驟所釋放的能量,并驅動ATP的合成過程(Waites and? Garner,2011)。本研究對西方蜜蜂工蜂的3日齡幼蟲、1日齡蛹和1日齡羽化工蜂進行轉錄組測序分析,結果發(fā)現(xiàn):3日齡幼蟲與1日齡蛹間有102個差異表達基因顯著富集在核糖體通路上,包括RpL32、RpL41及Rps14等101個下調基因,僅有1個基因(LOC724629)上調;有74個差異表達基因顯著富集在氧化磷酸化通路上,包括Cox6c、Ndufs1和Ndufs5等72個下調基因,而LOC408734和LOC100578821基因上調。1日齡蛹與1日齡羽化工蜂間有74個差異表達基因顯著富集在氧化磷酸化通路上,包括Uqcr11、Cox6c和Ndufs5等72個上調基因,而LOC727212和LOC551917基因下調。與蛹和羽化工蜂相比,工蜂會在幼蟲期攝入更多食物,如蜂王漿、花粉及哺育蜂下顎腺分泌物混合物質,因而表現(xiàn)為幼蟲發(fā)育階段的氧化磷酸化增強(Cameron et al.,2013),與本研究中3日齡幼蟲與1日齡蛹間的氧化磷酸化通路差異表達基因下調的結果一致。氧化磷酸化通路差異表達基因在1日齡蛹與1日齡羽化工蜂間上調,故推測是羽化工蜂的行為活動引起氧化磷酸化增強所致。核糖體是由rRNA及核糖體蛋白組成的顆粒狀結構,其中核糖體蛋白主要參與蛋白質的合成、調控轉錄和細胞凋亡等生理過程(Warner and Mclntosh,2009)。Verras等(2004)在地中海實蠅(Ceratitis capitate)中也發(fā)現(xiàn),核糖體蛋白基因CcRpS21在胚胎和幼蟲的表達量高于蛹和成蟲,該結論在本研究中得到進一步驗證。此外,有研究發(fā)現(xiàn)核糖體蛋白對昆蟲卵的滯育有重要調控作用(李艷艷等,2021),因此相關核糖體蛋白基因的功能值得后續(xù)深入研究。4293EE6F-6C74-4C82-858F-238197A4E9A1

    昆蟲變態(tài)發(fā)育主要由JH和20E協(xié)同調控完成,其中,JH在調控西方蜜蜂工蜂生長和變態(tài)發(fā)育過程中發(fā)揮關鍵作用(洪芳等,2016;李茫等,2019;張慧等,2021)。本研究中,西方蜜蜂工蜂3日齡幼蟲與1日齡蛹間的昆蟲激素生物合成通路顯著富集,對昆蟲內分泌激素相關的6個差異表達基因進行分析,結果發(fā)現(xiàn)3日齡幼蟲與1日齡蛹間的6個差異表達基因整體下調,而1日齡蛹到1日齡羽化工蜂呈整體上調趨勢。在西方蜜蜂工蜂的生長發(fā)育過程中,JH滴度也表現(xiàn)出3日齡幼蟲高于蛹和羽化工蜂(Hartfelder and Engels,1998)。由于工蜂3日齡仍處于幼蟲早期,在完全變態(tài)昆蟲中其幼蟲期體內需保持一定的JH水平,以維持蟲體處于幼蟲蟲態(tài),而化蛹前的JH水平下降及蛻皮激素上升,幼蟲才能正?;迹═ruman and Riddiford,1999)。此外,3~5日齡幼蟲是西方蜜蜂幼蟲級型分化的關鍵期,此時幼蟲在攝入蜂王漿后可進一步提高JH滴度,且能通過蜂王漿和JH轉向蜂王發(fā)育,低齡幼蟲維持一定的JH水平以實現(xiàn)幼蟲的可塑性(Mutti et al.,2011)。故推測西方蜜蜂工蜂由于受到變態(tài)發(fā)育和級型分化的影響,導致從3日齡幼蟲到羽化工蜂其昆蟲激素生物合成相關差異表達基因的表達發(fā)生明顯變化。

    胰島素是一種蛋白質激素,通過IIS信號通路發(fā)揮作用,可調節(jié)生物細胞的生長、代謝及繁殖等(Oldham and Hafen,2003;Wullschleger et al.,2006;Corona et al.,2007)。本研究發(fā)現(xiàn)1日齡蛹與1日齡羽化工蜂、3日齡幼蟲與1日齡羽化工蜂的胰島素分泌信號通路顯著富集,通過對胰島素分泌及胰島素信號通路中的6個差異表達基因進行分析,結果表明,從3日齡幼蟲到1日齡成蟲間,ILP-2、InR-2和LOC551668基因呈現(xiàn)出先上調后下調的表達趨勢,且下調幅度較明顯;而LOC408818和LOC412815基因呈先下調后上調的表達趨勢,下調幅度較明顯;LOC725647基因的表達則持續(xù)下調。李兆英(2013)研究發(fā)現(xiàn),意大利蜜蜂工蜂在幼蟲期的脂肪體細胞數(shù)量增長較快,而在蛹早期出現(xiàn)脂肪體細胞凋亡,之后組建成蟲新的脂肪體,與本研究中的LOC412815基因調控結果基本一致。此外,mTOR調節(jié)相關蛋白和40S核糖體蛋白S6可調節(jié)細胞的生長、增殖和凋亡(Miron and Sonenberg,2001;Wolschin et al.,2011),故推測LOC725647和LOC551668基因可能參與工蜂胚后發(fā)育過程中脂肪體細胞的增殖和凋亡過程。de Azevedo和Hartfelder(2008)研究發(fā)現(xiàn),西方蜜蜂工蜂ILP2基因從3齡幼蟲到5齡呈上調表達趨勢,在5齡幼蟲攝食期間顯著上升,之后呈下調表達;InR-2基因從3齡幼蟲到5齡整體也呈上調趨勢,5齡幼蟲攝食期后開始下調。說明胰島素信號通路可能參與了工蜂幼蟲期的營養(yǎng)調控、脂肪體合成,以及蛹期的脂肪體凋亡過程。

    4 結論

    昆蟲激素生物合成通路相關差異表達基因調控與西方蜜蜂工蜂各蟲態(tài)JH滴度變化規(guī)律一致,氧化磷酸化信號通路則與各蟲態(tài)的營養(yǎng)攝入和活動行為相關,而胰島素分泌通路涉及各蟲態(tài)的JH水平、脂肪體合成及行為分化調控??梢?,昆蟲激素生物合成、胰島素分泌和氧化磷酸化3種信號通路在西方蜜蜂工蜂生長發(fā)育調控中發(fā)揮著重要作用。

    參考文獻:

    杜宇,周丁丁,萬潔琦,盧家軒,范小雪,范元嬋,陳恒,熊翠玲,鄭燕珍,付中民,徐國鈞,陳大福,郭睿. 2020. 意大利蜜蜂工蜂中腸發(fā)育過程中的差異基因表達譜及調控網絡[J]. 中國農業(yè)科學,53(1):201-212. [Du Y,Zhou D D,Wan J Q,Lu J X,F(xiàn)an X X,F(xiàn)an Y C,Chen H,Xiong C L,Zheng Y Z,F(xiàn)u Z M,Xu G J,Chen D F,Guo R. 2020. Profiling and regulation network of differentially expressed genes during the development process of Apis mellifera ligustica workers midgut[J]. Scientia Agricultura Sinica,53(1):201-212.] doi:10.3864/j.issn.0578-1752.2020.01.019.

    高艷,朱雅楠,李秋方,蘇松坤,聶紅毅. 2020. 轉錄組學分析意大利蜜蜂腦部哺育行為相關基因[J]. 中國農業(yè)科學,53(19):4092-4102. [Gao Y,Zhu Y N,Li Q F,Su S K,Nie H Y. 2020. Transcriptomic analysis of genes related to nursing behavior in the brains of Apis mellifera ligustica[J]. Scientia Agricultura Sinica,53(19):4092-4102.] doi:10.3864/j.issn.0578-1752.2020.19.021.

    洪芳,宋赫,安春菊. 2016. 昆蟲變態(tài)發(fā)育類型與調控機制[J]. 應用昆蟲學報,53(1):1-8. [Hong F,Song H,An C J. 2016. Introduction to insect metamorphosis[J]. Chinese Journal of Applied Entomology,53(1):1-8.] doi:10. 7679/j.issn.2095-1353.2016.001.

    李成成,楊維仁,胥保華,馮倩倩. 2011. 意大利蜜蜂生長發(fā)育適宜蛋白供給水平及其對幼蟲抗氧化活性的影響[J]. 中國農業(yè)科學,44(22):4714-4720. [Li C C,Yang W R,Xu B H,F(xiàn)eng Q Q. 2011. Optimal protein levels required and their effects on larval antioxidation of Apis mellifera ligustica Spinola[J]. Scientia Agricultura Sinica,44(22):4714-4720.] doi:10.3864/j.issn.0578-1752. 2011.22.020.4293EE6F-6C74-4C82-858F-238197A4E9A1

    李茫,趙方媛,曾志將,王子龍. 2019. 蜜蜂級型分化機理[J]. 環(huán)境昆蟲學報,41(1):83-89. [Li M,Zhao F Y,Zeng Z J,Wang Z L. 2019. Mechanisms of caste differentiation in honeybees[J]. Journal of Environmental Entomology,41(1):83-89.] doi:10.3969/j.issn.1674-0858.2019.01.11.

    李艷艷,馬紅悅,李玲,譚瑤,龐保平,張恒. 2021. 沙蔥螢葉甲卵滯育的轉錄組學分析[J]. 昆蟲學報,64(10):1136-1144. [Li Y Y,Ma H Y,Li L,Tan Y,Pang B P,Zhang H. 2021. Transcriptomics analysis of egg diapause of Galeruca daurica (Coleoptera:Chrysomelidae)[J]. Acta Entomologica Sinica,64(10):1136-1144.] doi:10.16380/j.kcxb.2021.10.002.

    李兆英. 2013. 意大利蜜蜂工蜂脂肪體胚后發(fā)育過程中細胞的增殖和凋亡[J]. 昆蟲學報,56(11):1252-1257. [Li Z Y. 2013. Proliferation and programmed cell death in the fat body in workers of the Italian honeybee(Apis mellifera ligustica) during postembryonic development[J]. Acta Entomologica Sinica,56(11):1252-1257.] doi:10.16380/j.kcxb.2013.11.003.

    宋文菲,盧煥仙,黃新球,荀利杰,余玉生,李亞輝,王艷輝. 2021. 蕎麥蜜提取液對西方蜜蜂存活及Vg和Sir2基因表達量的影響[J]. 河南農業(yè)大學學報,55(4):715-720. [Song W F,Lu H X,Huang X Q,Xun L J,Yu Y S,Li Y H,Wang Y H. 2021. Effects of buckwheat honey extracts on survival and Vg and Sir2 gene expression of Apis mellifera[J]. Journal of Henan Agricultural University,55(4):715-720.] doi:10.16445/j.cnki.1000-2340.20210414.001.

    張蕾,任嵩,楊嫻婧,孫杰,廖和榮. 2020. 基于RNA-Seq 挖掘玫瑰冠雞與科寶雞胚胎期胸肌組織差異表達基因[J]. 江蘇農業(yè)學報,36(5):1237-1246. [Zhang L,Ren S,Yang X J,Sun J,Liao H R. 2020. Identification of diffe-rentially expressed genes in embryonic breast muscle tissue of Rose-crowned chicken and Cobb broilers based on RNA-Seq[J]. Jiangsu Journal of Agricultural Sciences,36(5):1237-1246.] doi:10.3969/j.issn.1000-4440.2020. 05.022.

    張慧,劉倩,黃曉磊. 2021. 社會性昆蟲級型和行為分化機制研究進展[J]. 生物多樣性,29(4):507-516. [Zhang H,Liu Q,Huang X L. 2021. Mechanisms regulating caste and behavior differentiation in social insects[J]. Biodiversity Science,29(4):507-516.] doi:10.17520/biods. 2020224.

    祝智威,付中民,隆琦,杜宇,張文德,胡穎,趙蕭,史小玉,徐細建,陳大福,郭睿. 2022. 三種微小RNA在意大利蜜蜂工蜂蛹期發(fā)育過程中的表達譜及潛在功能[J]. 昆蟲學報,65(1):53-62. [Zhu Z W,F(xiàn)u Z M,Long Q,Du Y,Zhang W D,Hu Y,Zhao X,Shi X Y,Xu X J,Chen D F,Guo R. 2022. Expression profiles and potential function of three miRNAs during the pupal development process of Apis mellifera ligustica worker[J]. Acta Entomologica Sinica,65(1):53-62.] doi:10.16380/j.kcxb.2022.01.006.

    Amdam G V,Seehuus S C. 2006. Order,disorder,death:Lessons from a superorganism[J]. Advances in Cancer Research,95:31-60. doi:10.1016/S0065-230X(06)95002-7.

    Ament S A,Corona M,Pollock H S,Robinson G E. 2008. Insulin signaling is involved in the regulation of worker division of labor in honey bee colonies[J]. Proceedings of the National Academy of Sciences of the United States of America,105(11):4226-4231. doi:10.1073/pnas.080063 0105.4293EE6F-6C74-4C82-858F-238197A4E9A1

    Barchuk A R,Cristino A S,Kucharski R,Costa L F,Sim?es Z L,Maleszka R. 2007. Molecular determinants of caste differentiation in the highly eusocial honeybee Apis mellifera[J]. BMC Developmental Biology,7(1):70. doi:10.1186/1471-213X-7-70.

    Cameron R C,Duncan E J,Dearden P K. 2013. Biased gene expression in early honeybee larval development[J]. BMC Genomics,14(1):903. doi:10.1186/1471-2164-14-903.

    Chen X,Hu Y,Zheng H Q,Cao L F,Niu D F,Yu D L,Sun Y Q,Hu S H,Hu F L. 2012. Transcriptome comparison between honey bee queen- and worker-destined larvae[J]. Insect Biochemistry and Molecular Biology,42(9):665-673. doi:10.1016/j.ibmb.2012.05.004.

    Corona M,Velarde R A,Remolina S,Moran-Lauter A,Wang Y,Hughes K A,Robinson G E. 2007. Vitellogenin,juvenile hormone, insulin signaling,and queen honey bee longevity[J]. Proceedings of the National Academy of Sciences of the United States of America,104(17):7128-7133. doi:10.1073/pnas.0701909104.

    de Azevedo S V,Hartfelder K. 2008. The insulin signaling pathway in honey bee(Apis mellifera) caste development—Differential expression of insulin-like peptides and insulin receptors in queen and worker larvae[J]. Journal of Insect Physiology,54(6):1064-1071. doi:10.1016/j.jinsphys.2008.04.009.

    Di Pasquale G,Alaux C,Le Conte Y,Odoux J F,Pioz M,Vaissière B E,Belzunces L P,Decourtye A. 2016. Variations in the availability of pollen resources affect honey bee health[J]. PLoS One,11(9):e0162818. doi:10.1371/journal.pone.0162818.

    Harpur B A,Kent C F,Molodtsova D,Lebon J M D,Alqarni A S,Owayss A A,Zayed A. 2014. Population genomics of the honey bee reveals strong signatures of positive selection on worker traits[J]. Proceedings of the National Academy of Sciences of the United States of America,111(7):2614-2619. doi:10.1073/pnas.1315506111.

    Hartfelder K,Engels W. 1998. Social insect polymorphism: hormonal regulation of plasticity in development and reproduction in the honeybee[J]. Current Topics in Deve-lopmental Biology,40:45-77. doi:10.1016/s0070-2153(08)60364-6.

    He X J,Jiang W J,Zhou M,Barron A B,Zeng Z J. 2017. A comparison of honeybee(Apis mellifera) queen,worker and drone larvae by RNA-Seq[J]. Insect Science,26(3):499-509. doi:10.1111/1744-7917.12557.

    Johnson B R,Tsutsui N D. 2011. Taxonomically restricted genes are associated with the evolution of sociality in the honey bee[J]. BMC Genomics,12:164. doi:10.1186/1471-2164-12-164.

    Kamakura M. 2011. Royalactin induces queen differentiation in honeybees[J]. Nature,473(7348):478-483. doi:10.1038/ nature10093.4293EE6F-6C74-4C82-858F-238197A4E9A1

    Kim D,Langmead B,Salzberg S L. 2015. HISAT:A fast spliced aligner with low memory requirements[J]. Nature Methods,12(4):357-360. doi:10.1038/nmeth.3317.

    Martin N,Hulbert A J,Bicudo J E P W,Mitchell T W,Else P L. 2021. The adult lifespan of the female honey bee (Apis mellifera):Metabolic rate,AGE pigment and the effect of dietary fatty acids[J]. Mechanisms of Ageing and Development,199:111562. doi:10.1016/j.mad.2021. 111562.

    Miron M,Sonenberg N. 2001. Regulation of translation via TOR signaling:Insights from Drosophila melanogaster[J]. The Journal of Nutrition,131(11):2988S-2993S. doi:10.1093/jn/131.11.2988S.

    Mutti N S,Dolezal A G,Wolschin F,Mutti J S,Gill K S,Amdam G V. 2011. IRS and TOR nutrient-signaling pathways act via juvenile hormone to influence honey bee caste fate[J]. The Journal of Experimental Biology,214(23):3977-3984. doi:10.1242/jeb.061499.

    Oldham S,Hafen E. 2003. Insulin/IGF and target of rapamycin signaling:A TOR de force in growth control[J]. Trends in Cell Biology,13(2):79-85. doi:10.1016/S0962-8924(02)00042-9.

    Patel A,F(xiàn)ondrk M K,Kaftanoglu O,Emore C,Hunt G,F(xiàn)rederick K,Amdam G V. 2007. The making of a queen:TOR pathway is a key player in diphenic caste development[J]. PLoS One,2(6):e509. doi:10.1371/journal.pone.0000 509.

    Trapnell C,Williams B A,Pertea G,Mortazavi A,Kwan G,van Baren M J,Salzberg S L,Wold B J,Pachter L. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching du-ring cell differentiation[J]. Nature Biotechnology,28:511-515. doi:10.1038/nbt.1621.

    Truman J W,Riddiford L M. 1999. The origins of insect metamorphosis[J]. Nature,401(6752):447-452. doi:10. 1038/46737.

    Verras M,Theodoraki M A,Mintzas A C. 2004. Cloning,cha-racterization,and developmental expression of the ribosomal protein S21 gene of the mediterranean fruit fly Ceratitis capitate[J]. Archives of Insect Biochemistry and Physiology,56(3):133-142. doi:10.1002/arch.20004.

    Waites C L,Garner C C. 2011. Presynaptic function in health and disease[J]. Trends in Neurosciences,34(6):326-337. doi:10.1016/j.tins.2011.03.004.

    Wang H,Zhang S W,Zeng Z J,Yan W Y. 2014. Nutrition affects longevity and gene expression in honey bee (Apis mellifera) workers[J]. Apidologie,45(5):618-625. doi:10.1007/s13592-014-0276-3.

    Wang Y,Azevedo S V,Hartfelder K,Amdam G V. 2013. Insulin-like peptides (AmILP1 and AmILP2) differentially affect female caste development in the honey bee (Apis mellifera L.)[J]. The Journal of Experimental Biology,216(23):4347-4357. doi:10.1242/jeb.085779.

    Wang Y,Ma L T,Xu B H. 2015. Diversity in life history of queen and worker honey bees,Apis mellifera L.[J]. Journal of Asia-Pacific Entomology,18(2):145-149. doi:10.1016/j.aspen.2014.11.005.

    Warner J R,Mclntosh K B. 2009. How common are extraribosomal functions of ribosomal proteins?[J]. Molecular Cell,34(1):3-11. doi:10.1016/j.molcel.2009.03.006.

    Wolschin F,Mutti N S,Amdam G V. 2011. Insulin receptor substrate influences female caste development in honeybees[J]. Biology Letters,7(1):112-115. doi:10.1098/rsbl.2010.0463.

    Wullschleger S,Loewith R,Hall M N. 2006. TOR signaling in growth and metabolism[J]. Cell,124(3):471-484. doi:10.1016/j.cell.2006.01.016.

    Zhang Z Y,Li Z,Huang Q,Yan W Y,Zhang L Z,Zeng Z J. 2020. Honeybees (Apis mellifera) modulate dance communication in response to pollution by imidacloprid[J]. Journal of Asia-Pacific Entomology,23(2):477-482. doi:10.1016/j.aspen.2020.03.011.

    (責任編輯 蘭宗寶)4293EE6F-6C74-4C82-858F-238197A4E9A1

    猜你喜歡
    差異表達基因信號通路生長發(fā)育
    生物信息學分析患有乳腺癌的乳腺球樣本中與自我更新相關的關鍵基因
    下丘腦室旁核在自主神經功能障礙調節(jié)中的靶點作用
    心肌缺血再灌注損傷的發(fā)生機制及其防治策略
    冬油菜栽培技術探析
    果樹生長發(fā)育的外界環(huán)境條件探討
    果利大植物營養(yǎng)液對花生災后復壯生長發(fā)育的影響
    環(huán)境監(jiān)測用青鳉魚的人工繁殖研究
    價值工程(2016年31期)2016-12-03 23:54:47
    從信號通路角度分析中藥治療兒童白血病的研究進展
    條斑紫菜優(yōu)良品系的基因芯片表達譜分析
    高溫脅迫下草坪草高羊茅差異表達基因的分子研究
    av在线播放精品| 亚洲精品456在线播放app| 考比视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| av片东京热男人的天堂| 美女福利国产在线| 亚洲av在线观看美女高潮| 18+在线观看网站| 纵有疾风起免费观看全集完整版| 国产成人91sexporn| 日日摸夜夜添夜夜爱| 秋霞在线观看毛片| 亚洲国产精品999| 男女啪啪激烈高潮av片| 制服人妻中文乱码| 狂野欧美激情性bbbbbb| 精品国产一区二区三区四区第35| 你懂的网址亚洲精品在线观看| 久久这里只有精品19| 最近中文字幕高清免费大全6| 青春草国产在线视频| 亚洲人成网站在线观看播放| 1024视频免费在线观看| 一级毛片电影观看| 久久精品久久久久久久性| 男女边摸边吃奶| 午夜日本视频在线| 久久综合国产亚洲精品| 蜜桃国产av成人99| 免费看光身美女| 欧美日韩成人在线一区二区| 欧美精品av麻豆av| 久久久精品区二区三区| 亚洲精品美女久久av网站| 街头女战士在线观看网站| av一本久久久久| 日韩 亚洲 欧美在线| 精品视频人人做人人爽| 亚洲精品乱码久久久久久按摩| 色哟哟·www| 精品一区二区三区视频在线| 免费看不卡的av| 亚洲激情五月婷婷啪啪| 9色porny在线观看| 婷婷成人精品国产| 亚洲精品美女久久av网站| 男人操女人黄网站| 日本爱情动作片www.在线观看| 激情视频va一区二区三区| 日韩在线高清观看一区二区三区| 制服诱惑二区| 日韩成人av中文字幕在线观看| 在线观看www视频免费| 国产成人午夜福利电影在线观看| 国产一区二区三区av在线| 久久综合国产亚洲精品| 久久久久久人妻| 精品酒店卫生间| 99香蕉大伊视频| av国产精品久久久久影院| 久久精品久久久久久久性| 伦精品一区二区三区| 在线观看免费日韩欧美大片| 一区二区三区四区激情视频| 男人舔女人的私密视频| 肉色欧美久久久久久久蜜桃| 久久久久视频综合| 一二三四在线观看免费中文在 | 一级毛片黄色毛片免费观看视频| 自拍欧美九色日韩亚洲蝌蚪91| 高清欧美精品videossex| 91成人精品电影| 亚洲欧美精品自产自拍| 一边亲一边摸免费视频| 国产精品国产三级国产专区5o| 人妻一区二区av| 日本av免费视频播放| 综合色丁香网| 久久久久久久大尺度免费视频| 亚洲精品美女久久久久99蜜臀 | 涩涩av久久男人的天堂| 天天躁夜夜躁狠狠久久av| 日本猛色少妇xxxxx猛交久久| 9热在线视频观看99| 久热这里只有精品99| 亚洲激情五月婷婷啪啪| 久久久久人妻精品一区果冻| 亚洲精品国产av蜜桃| 在线天堂中文资源库| 又大又黄又爽视频免费| 热99国产精品久久久久久7| 国产免费又黄又爽又色| 一区二区三区精品91| 亚洲国产精品一区三区| 国产爽快片一区二区三区| 波野结衣二区三区在线| 最近最新中文字幕免费大全7| 99久久精品国产国产毛片| 亚洲欧美色中文字幕在线| 国产成人精品无人区| 日韩av免费高清视频| 日韩 亚洲 欧美在线| 宅男免费午夜| av福利片在线| 99久国产av精品国产电影| h视频一区二区三区| 日韩人妻精品一区2区三区| 男女边吃奶边做爰视频| 女人被躁到高潮嗷嗷叫费观| 欧美日韩一区二区视频在线观看视频在线| 国产黄频视频在线观看| 国产av国产精品国产| 亚洲欧美一区二区三区国产| 国产日韩欧美在线精品| 一区二区三区精品91| 一区二区三区四区激情视频| 亚洲第一av免费看| 日本av免费视频播放| 91精品国产国语对白视频| 日韩制服丝袜自拍偷拍| 边亲边吃奶的免费视频| 黄色怎么调成土黄色| 内地一区二区视频在线| 永久免费av网站大全| 黑人猛操日本美女一级片| 亚洲精品第二区| 午夜福利,免费看| av福利片在线| 日韩免费高清中文字幕av| 国产色婷婷99| 亚洲精品乱码久久久久久按摩| 人人妻人人添人人爽欧美一区卜| 久久精品国产a三级三级三级| 免费观看在线日韩| 男女国产视频网站| 亚洲图色成人| 精品福利永久在线观看| 卡戴珊不雅视频在线播放| av黄色大香蕉| 亚洲av欧美aⅴ国产| 9色porny在线观看| 国产精品久久久av美女十八| 1024视频免费在线观看| 9191精品国产免费久久| 欧美激情 高清一区二区三区| 99热国产这里只有精品6| 国语对白做爰xxxⅹ性视频网站| 免费人成在线观看视频色| freevideosex欧美| 美国免费a级毛片| 久热这里只有精品99| 国产 一区精品| 国产精品久久久久久av不卡| 日韩电影二区| 免费播放大片免费观看视频在线观看| 久久久久精品性色| 久久久久精品人妻al黑| 一边亲一边摸免费视频| 久久精品国产亚洲av天美| 制服丝袜香蕉在线| 亚洲色图综合在线观看| 国产日韩欧美亚洲二区| 久久久久久久国产电影| 日本-黄色视频高清免费观看| 男女国产视频网站| 国产69精品久久久久777片| 久久精品人人爽人人爽视色| 男女国产视频网站| 成年av动漫网址| 国产免费福利视频在线观看| 久久精品久久精品一区二区三区| 精品视频人人做人人爽| 26uuu在线亚洲综合色| 国产亚洲精品久久久com| av视频免费观看在线观看| 波多野结衣一区麻豆| 最后的刺客免费高清国语| 日韩欧美一区视频在线观看| 亚洲美女视频黄频| 一级黄片播放器| 大香蕉久久网| 亚洲精品国产色婷婷电影| 久久久久久久大尺度免费视频| 永久网站在线| 亚洲 欧美一区二区三区| av在线老鸭窝| 国产一区二区在线观看日韩| 国产精品久久久久成人av| 午夜免费男女啪啪视频观看| 久久久久视频综合| 欧美3d第一页| 久久免费观看电影| 免费观看无遮挡的男女| 热99久久久久精品小说推荐| 一本—道久久a久久精品蜜桃钙片| 少妇熟女欧美另类| 免费女性裸体啪啪无遮挡网站| 国产高清国产精品国产三级| av线在线观看网站| 欧美日韩成人在线一区二区| 国产片特级美女逼逼视频| 在线精品无人区一区二区三| 亚洲内射少妇av| 女的被弄到高潮叫床怎么办| 一级片免费观看大全| 国产av国产精品国产| 男女无遮挡免费网站观看| 欧美人与性动交α欧美精品济南到 | 免费高清在线观看视频在线观看| 亚洲精品国产av成人精品| kizo精华| 七月丁香在线播放| 女人被躁到高潮嗷嗷叫费观| 国产极品天堂在线| 亚洲精品国产av成人精品| 久久av网站| 色吧在线观看| 热re99久久精品国产66热6| 精品国产露脸久久av麻豆| 成人漫画全彩无遮挡| 91成人精品电影| 亚洲美女黄色视频免费看| 春色校园在线视频观看| 久久久久国产网址| 成人18禁高潮啪啪吃奶动态图| 久久精品国产a三级三级三级| 最新的欧美精品一区二区| 99九九在线精品视频| 国产成人午夜福利电影在线观看| 各种免费的搞黄视频| 亚洲精品中文字幕在线视频| 亚洲激情五月婷婷啪啪| 亚洲精品日本国产第一区| 看免费成人av毛片| 亚洲情色 制服丝袜| 丝袜喷水一区| 日本wwww免费看| 亚洲精华国产精华液的使用体验| 成人黄色视频免费在线看| 夜夜骑夜夜射夜夜干| 亚洲性久久影院| 777米奇影视久久| 精品99又大又爽又粗少妇毛片| a级毛片在线看网站| 王馨瑶露胸无遮挡在线观看| 免费大片黄手机在线观看| 又粗又硬又长又爽又黄的视频| 三上悠亚av全集在线观看| 亚洲av欧美aⅴ国产| 好男人视频免费观看在线| 18禁国产床啪视频网站| 午夜久久久在线观看| 久久久久久久大尺度免费视频| 国产永久视频网站| 亚洲国产最新在线播放| 国产探花极品一区二区| 久久久精品94久久精品| 成人综合一区亚洲| 最近最新中文字幕免费大全7| 国产成人欧美| 免费高清在线观看视频在线观看| 99久国产av精品国产电影| 国产精品.久久久| 中文字幕最新亚洲高清| 午夜福利视频在线观看免费| 国产精品秋霞免费鲁丝片| 久久人人爽人人片av| 免费观看在线日韩| 精品久久久精品久久久| 国产精品一区二区在线观看99| av天堂久久9| 天天影视国产精品| 99久久中文字幕三级久久日本| 欧美成人精品欧美一级黄| 母亲3免费完整高清在线观看 | 亚洲国产色片| 国产免费福利视频在线观看| 国产免费一区二区三区四区乱码| 一级毛片黄色毛片免费观看视频| 久久青草综合色| 久久精品熟女亚洲av麻豆精品| 日韩制服骚丝袜av| 欧美 日韩 精品 国产| 午夜日本视频在线| 欧美xxxx性猛交bbbb| 插逼视频在线观看| 亚洲高清免费不卡视频| 伦理电影大哥的女人| 9色porny在线观看| 赤兔流量卡办理| 日韩三级伦理在线观看| 欧美成人午夜免费资源| 成人国产麻豆网| 亚洲av综合色区一区| av网站免费在线观看视频| 一区二区三区乱码不卡18| 少妇高潮的动态图| 久久97久久精品| 宅男免费午夜| 在线观看国产h片| 国产成人精品一,二区| 搡女人真爽免费视频火全软件| 国产亚洲一区二区精品| 久久99精品国语久久久| av女优亚洲男人天堂| 美女脱内裤让男人舔精品视频| 啦啦啦中文免费视频观看日本| 日韩在线高清观看一区二区三区| 狂野欧美激情性xxxx在线观看| 午夜影院在线不卡| 爱豆传媒免费全集在线观看| 少妇精品久久久久久久| 99久久中文字幕三级久久日本| 成年av动漫网址| 成人黄色视频免费在线看| 一边摸一边做爽爽视频免费| 天天躁夜夜躁狠狠久久av| 在现免费观看毛片| 亚洲欧美一区二区三区黑人 | 国产日韩欧美亚洲二区| 国产成人免费观看mmmm| 十八禁高潮呻吟视频| 天天躁夜夜躁狠狠久久av| 日本欧美国产在线视频| 欧美日韩一区二区视频在线观看视频在线| av电影中文网址| 色94色欧美一区二区| 免费观看性生交大片5| 精品国产一区二区三区四区第35| 大片电影免费在线观看免费| 国产又爽黄色视频| 亚洲av福利一区| 少妇精品久久久久久久| 大码成人一级视频| 日本欧美视频一区| 九色成人免费人妻av| 国产免费又黄又爽又色| 久久久国产一区二区| 国产精品麻豆人妻色哟哟久久| 亚洲国产av影院在线观看| 女的被弄到高潮叫床怎么办| 国产一区二区在线观看日韩| 熟妇人妻不卡中文字幕| 亚洲美女视频黄频| 久久精品国产鲁丝片午夜精品| 26uuu在线亚洲综合色| 欧美成人精品欧美一级黄| 国产精品一国产av| 久久久久久人人人人人| 日韩中字成人| 内地一区二区视频在线| 国产成人91sexporn| 九九爱精品视频在线观看| 26uuu在线亚洲综合色| 18禁动态无遮挡网站| 国产熟女午夜一区二区三区| 18禁观看日本| 国产精品秋霞免费鲁丝片| 久久久久久人妻| 免费播放大片免费观看视频在线观看| 熟妇人妻不卡中文字幕| 国产成人91sexporn| 亚洲精品一区蜜桃| 桃花免费在线播放| 久久久久久久亚洲中文字幕| 午夜激情久久久久久久| 一区二区日韩欧美中文字幕 | 亚洲精品国产av蜜桃| 中文字幕人妻熟女乱码| 老熟女久久久| 99久久中文字幕三级久久日本| 国产日韩欧美亚洲二区| 黑人高潮一二区| 在线观看一区二区三区激情| 自拍欧美九色日韩亚洲蝌蚪91| 天天影视国产精品| 啦啦啦在线观看免费高清www| 欧美97在线视频| 一边亲一边摸免费视频| 亚洲人成网站在线观看播放| 亚洲情色 制服丝袜| 高清视频免费观看一区二区| xxxhd国产人妻xxx| 性高湖久久久久久久久免费观看| 嫩草影院入口| 成年美女黄网站色视频大全免费| 国产 精品1| av网站免费在线观看视频| 九色亚洲精品在线播放| 欧美日韩成人在线一区二区| 欧美 日韩 精品 国产| 中文字幕人妻熟女乱码| 韩国精品一区二区三区 | 国产精品久久久av美女十八| 一级片'在线观看视频| 少妇精品久久久久久久| 日本猛色少妇xxxxx猛交久久| 一区二区日韩欧美中文字幕 | 日本欧美视频一区| 国产激情久久老熟女| 秋霞伦理黄片| 亚洲精品国产色婷婷电影| 中国美白少妇内射xxxbb| 免费大片18禁| videosex国产| 高清欧美精品videossex| 满18在线观看网站| 韩国av在线不卡| 只有这里有精品99| 如何舔出高潮| 精品一区二区三区四区五区乱码 | 99香蕉大伊视频| 免费黄网站久久成人精品| 国产成人91sexporn| 少妇精品久久久久久久| 欧美少妇被猛烈插入视频| 亚洲精华国产精华液的使用体验| 看免费av毛片| 夫妻性生交免费视频一级片| 一区二区三区乱码不卡18| 男女免费视频国产| 一二三四在线观看免费中文在 | a 毛片基地| 丝袜人妻中文字幕| 中文字幕亚洲精品专区| 亚洲av.av天堂| 国产日韩欧美在线精品| 国产亚洲最大av| 高清视频免费观看一区二区| 丝袜美足系列| 男女免费视频国产| 麻豆精品久久久久久蜜桃| 亚洲熟女精品中文字幕| 亚洲少妇的诱惑av| 一级a做视频免费观看| a级片在线免费高清观看视频| 综合色丁香网| 欧美日韩综合久久久久久| 欧美人与性动交α欧美软件 | 国产高清三级在线| 国产男女内射视频| 高清视频免费观看一区二区| 好男人视频免费观看在线| 成年美女黄网站色视频大全免费| 少妇 在线观看| 国产 一区精品| av线在线观看网站| 国产男女内射视频| 免费在线观看完整版高清| 久久97久久精品| 久久国产精品大桥未久av| 老司机亚洲免费影院| freevideosex欧美| 久久久久久人妻| 免费不卡的大黄色大毛片视频在线观看| 男女无遮挡免费网站观看| 欧美精品高潮呻吟av久久| 日韩三级伦理在线观看| 宅男免费午夜| 亚洲成人手机| 国产福利在线免费观看视频| 99热全是精品| 国产极品粉嫩免费观看在线| 在线观看一区二区三区激情| 在线观看国产h片| 少妇高潮的动态图| 五月天丁香电影| 久久99精品国语久久久| 国产在线一区二区三区精| 午夜激情久久久久久久| 欧美人与善性xxx| 亚洲婷婷狠狠爱综合网| 美女大奶头黄色视频| 国产69精品久久久久777片| 日韩不卡一区二区三区视频在线| 国产xxxxx性猛交| 国产精品一区二区在线不卡| 大香蕉久久网| 成年人午夜在线观看视频| 欧美亚洲 丝袜 人妻 在线| 熟妇人妻不卡中文字幕| 一边亲一边摸免费视频| 日本黄色日本黄色录像| 亚洲四区av| 2022亚洲国产成人精品| 乱人伦中国视频| 免费久久久久久久精品成人欧美视频 | 男女边摸边吃奶| 如何舔出高潮| 精品午夜福利在线看| 18+在线观看网站| 91精品国产国语对白视频| 亚洲av日韩在线播放| 久久精品久久久久久久性| www.色视频.com| 免费人成在线观看视频色| 黄色怎么调成土黄色| 国产av码专区亚洲av| 亚洲五月色婷婷综合| av福利片在线| 日韩电影二区| 国产av国产精品国产| 永久网站在线| 成人二区视频| 国产欧美另类精品又又久久亚洲欧美| 国产伦理片在线播放av一区| 丰满少妇做爰视频| 国产黄色免费在线视频| 久久精品国产a三级三级三级| 精品久久国产蜜桃| 国产在线免费精品| 欧美日韩av久久| 制服诱惑二区| av在线老鸭窝| 欧美日韩视频高清一区二区三区二| 最近中文字幕2019免费版| 久久久久国产精品人妻一区二区| 26uuu在线亚洲综合色| 成人综合一区亚洲| 久久久久人妻精品一区果冻| 大陆偷拍与自拍| 99热6这里只有精品| 精品一区二区三区四区五区乱码 | 亚洲av福利一区| 91精品三级在线观看| 欧美人与性动交α欧美软件 | av在线app专区| 欧美少妇被猛烈插入视频| 国产白丝娇喘喷水9色精品| 久久久久精品性色| 视频区图区小说| av黄色大香蕉| 两个人看的免费小视频| 精品国产露脸久久av麻豆| a级毛色黄片| 国产成人免费观看mmmm| 久久av网站| 我要看黄色一级片免费的| 只有这里有精品99| 少妇精品久久久久久久| 校园人妻丝袜中文字幕| 成人毛片60女人毛片免费| 美女视频免费永久观看网站| 黑人高潮一二区| 国产探花极品一区二区| 亚洲国产色片| 日韩不卡一区二区三区视频在线| 另类亚洲欧美激情| 午夜老司机福利剧场| 在线观看免费日韩欧美大片| 久久久久久久亚洲中文字幕| xxxhd国产人妻xxx| 成人毛片a级毛片在线播放| 在线亚洲精品国产二区图片欧美| 一级a做视频免费观看| 看十八女毛片水多多多| 久久久久国产精品人妻一区二区| 日本vs欧美在线观看视频| 免费看不卡的av| 国产在视频线精品| 制服诱惑二区| 免费人成在线观看视频色| 美女福利国产在线| 汤姆久久久久久久影院中文字幕| 久久精品国产亚洲av天美| 国产精品一区二区在线不卡| 中文字幕另类日韩欧美亚洲嫩草| 美女视频免费永久观看网站| 有码 亚洲区| 波野结衣二区三区在线| 黄网站色视频无遮挡免费观看| 最近最新中文字幕免费大全7| 在线精品无人区一区二区三| 国产老妇伦熟女老妇高清| 日韩精品有码人妻一区| 国产av一区二区精品久久| 丰满少妇做爰视频| 男人操女人黄网站| 日韩一区二区视频免费看| 热re99久久国产66热| 超色免费av| 国产色婷婷99| 丝袜美足系列| 街头女战士在线观看网站| 成人综合一区亚洲| 亚洲成人手机| 成人手机av| 国产免费又黄又爽又色| 男男h啪啪无遮挡| 这个男人来自地球电影免费观看 | 内地一区二区视频在线| 国产精品一区二区在线不卡| 欧美xxⅹ黑人| 欧美成人午夜免费资源| 久久热在线av| 国产成人精品无人区| 国产深夜福利视频在线观看| 亚洲情色 制服丝袜| 永久免费av网站大全| 久久精品国产鲁丝片午夜精品| 天堂8中文在线网| 欧美精品一区二区大全| av黄色大香蕉| 91在线精品国自产拍蜜月| 午夜日本视频在线| 天天影视国产精品| 亚洲成人手机| 国产精品一国产av| 80岁老熟妇乱子伦牲交| 午夜福利影视在线免费观看| av福利片在线| 宅男免费午夜| 亚洲国产精品成人久久小说| 精品一区二区免费观看| 免费看不卡的av|