李蔚 何蘋萍 韋嬪媛 朱鵬 蔣偉明 胡珅華 韋友傳 韋明利 彭金霞
摘要:【目的】鑒定篩選出與卵形鯧鲹卵巢發(fā)育相關的候選基因及信號通路,為揭示其卵巢性成熟過程的分子機制打下基礎。【方法】挑選卵巢發(fā)育處于?期和Ш期的雌性卵形鯧鲹,分別構建卵形鯧鲹卵巢?期和Ш期的cDNA文庫,采用Illumina HiSeqTM 2500進行轉錄組測序,經過濾、質量控制及拼接組裝后獲得的Unigenes在七大數據庫(Nr、Nt、Pfam、KOG/COG、Swiss-Prot、KEGG和GO)中進行比對;通過FPKM及DEGseq篩選出差異表達基因,以GOseq和KOBAS對差異表達基因分別進行功能注釋及信號通路富集分析,并采用MISA和GATK3進行SSR鑒定及SNP分析?!窘Y果】卵形鯧鲹卵巢組織轉錄組測序獲得的325156432條Raw reads,經過濾篩選得到317206752條Clean reads,拼接組裝后得到59554條Unigenes;69.65%的Unigenes在Nr、Nt、Pfam、KOG/COG、Swiss-Prot、KEGG和GO等七大數據庫中注釋成功,其中有24599條Unigenes被注釋到GO數據庫,15997條Unigenes被注釋到KEGG數據庫。在卵形鯧鲹卵巢組織的2個發(fā)育時期共鑒定獲得56115個基因,經差異表達分析后獲得17737個差異基因,其中8169個基因在卵巢Ш期上調表達、9568個基因在卵巢Ш期下調表達。GO功能注釋分析發(fā)現,卵形鯧鲹卵巢差異表達基因主要注釋在細胞過程、氮化合物代謝過程、初級代謝過程、核、核部分、離子結合及水解酶活性等條目上;而KEGG信號通路富集分析結果顯示,17737個差異表達基因顯著富集在318條代謝途徑上,其中前20條KEGG信號通路包括2-氧代羧酸代謝、PI3K-Akt信號通路、甲狀腺激素信號通路、磷脂酶D信號通路、Fc εRI信號通路和細胞周期等。卵形鯧鲹卵巢轉錄組(59554條Unigenes)中共存在30133個SSRs和82490個SNPs?!窘Y論】GnRHR、FSHR、FSHβ、CYP11A、SIRT3和PEG3等差異表達基因及PI3K-Akt信號通路和VEGF信號通路等與卵形鯧鲹卵巢的發(fā)育密切相關,共同調節(jié)卵巢的發(fā)育與成熟,在卵巢性成熟過程中發(fā)揮重要作用。
關鍵詞: 卵形鯧鲹;卵巢;發(fā)育;差異表達基因;信號通路;轉錄組測序
中圖分類號: S917;S965.331? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻標志碼: A 文章編號:2095-1191(2022)03-0714-11
Transcriptome analysis of ovaries at the different developmental stages of Trachinotus ovatus
LI Wei HE Ping-ping WEI Pin-yuan ZHU Peng JIANG Wei-ming
HU Shen-hua WEI You-chuan WEI Ming-li PENG Jin-xia
(1Guangxi Academy of Fisheries Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, Guangxi? 530021, China; 2College of Oceanography, Beibu Gulf University,
Qinzhou, Guangxi? 535011, China; 3College of Animal Science and Technology of Guangxi University,
Nanning, Guangxi? 530004, China)
Abstract:【Objective】The candidate genes and pathways related to the ovarian development of Trachinotus ovatus were identified, so as to lay the foundation of revealing the molecular mechanism on ovarian sexual maturation. 【Method】The stage ? and stage Ш ovarian tissue of T. ovatus were selected to construct the cDNA library for stage ? and stage Ш, respectively. Transcriptome sequencing was performed by Illumina HiSeqTM2005. After filtering, quality control, and assembly, the unigenes obtained were mapped to the seven databases (Nr, Nt, Pfam, KOG/COG, Swiss-Prot, KEGG and GO). The differentially expressed genes (DEGs) were identified by FPKM and DEGseq. The GOseq and KOBAS were used for functional annotation and signal pathway enrichment analysis of DEGs, respectively. And the simple sequence repeat (SSR) identification and single nucleotide polymorphisms (SNP) analysis were performed by MISA and gatk3. 【Result】The results showed that a total of 325156432 raw reads were generated from ovarian tissues. After filte-ring, 317206752 clean reads were selected, and then were assembled into 59554 unigenes, 69.65% of which were successfully annotated in Nr, Nt, Pfam, KOG/COG, Swiss-Prot, KEGG and GO databases. 24599 and 15997 unigenes were annotated to the GO database and KEGG database, respectively. The analysis showed that a total of 17737 DEGs were found in the ovaries of T. ovatus, among which 8169 DEGs were up-regulated at stage Ш ovary, and 9568 DEGs were down-regulated in stage Ш ovary. The GO functional annotation analysis demonstrated that, cellular process, nitrogen compound metabolic process, primary metabolic process, nucleus, nuclear part, ion binding and hydrolase activity. The results of KEGG signaling pathway enrichment analysis showed that 17737 DEGs were significantly enriched on 318 metabolic pathways. The top 20 KEGG signaling pathway including 2-Oxocarboxylic acid metabolism, PI3K-Akt signa-ling pathway, thyroid hormone signaling pathway, phospholipase D signaling pathway, Fc epsilon RI signaling pathway and cell cycle. Finally, a total of 30133 SSRs and 82490 SNPs were obtained from the 59554 unigenes of ovarian transcriptome of T. ovatus. 【Conclusion】Six DEGs, including GnRHR, FSHR, FSHβ, CYP11A, SIRT3 and PEG3,as well as two KEGG pathways such as PI3K-Akt signaling pathway and VEGF signaling pathway are closely involved in the ovarian development of T. ovatus, which co-regulates ovarian development and maturation.7961F3CB-8156-4CEE-B097-F27409C0EE5D
Key words:Trachinotus ovatus;ovaries;development;differentially expressed genes;signal pathway;transcriptome sequencing
Foundation items: Natural Science Foundation of China (31660740, 31860736); Guangxi Science and Technology Major Project (Guike AA17204094-4); Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture Opening Fund (GXKEYLA2019-03)
0 引言
【研究意義】卵形鯧鲹(Trachinotus ovatus)俗名金鯧魚,屬于廣鹽暖水性魚類,在我國南海、東海和黃海均有分布(陳偉洲等,2007;張永德等,2020),尤其在廣西、廣東和海南等地分布較廣泛。卵形鯧鲹因具有無肌間刺、肉質細嫩、味道鮮美、抗逆性強、營養(yǎng)價值高等特點,而深受消費者青睞,是我國重要的海水養(yǎng)殖經濟魚類(郭萌萌等,2018)。至今,有關卵形鯧鲹的人工養(yǎng)殖和育苗技術已有較多報道(陳偉洲等,2007;林川等,2017;彭俊耀等,2017),對其胚胎發(fā)育和性腺發(fā)育也有相關研究(區(qū)又君和李加兒,2005;Xie et al.,2014;蔣小珍等,2015)。大多數硬骨魚類以卵生方式進行繁殖,而卵巢是卵子形成和雌性激素分泌的重要場所。因此,研究卵形鯧鲹卵巢發(fā)育過程的分子機制,對發(fā)展新的繁殖相關技術對具有重要意義?!厩叭搜芯窟M展】近年來,轉錄組測序技術得到快速發(fā)展,已廣泛應用于魚類的相關研究領域,包括病毒致病機理、免疫應答、生殖發(fā)育及遺傳育種等方面(Bar et al.,2016;Zhang et al.,2017;Wang et al.,2019),或將轉錄組測序技術作為研究魚類性腺發(fā)育的重要手段,旨在篩選出相關的候選基因和信號通路。Socorro等(2007)對歐洲鱸魚(Dicentrachus labrax)的精巢組織進行轉錄組測序分析,結果發(fā)現CYP11B和CYP19A基因在精巢中高度表達,編碼調控雄激素的分泌,且對精子的發(fā)生和成熟起重要作用。Tao等(2013)通過轉錄組測序研究尼羅羅非魚(Oreochromis niloticus)不同發(fā)育階段性腺的特異性,發(fā)現cyp19a1a和cyp19a1b基因在卵巢早期發(fā)育過程中發(fā)揮著重要作用。Fan等(2014)基于轉錄組測序探討牙鲆(Paralichthys olivaceus)性別決定和性腺發(fā)育的分子機制,證實卵巢類固醇生成和雌激素信號通路在牙鲆的性腺發(fā)育過程中發(fā)揮重要調控作用。Du等(2017)通過轉錄組測序技術研究斑石鯛(Oplegnathus punctatus)性腺發(fā)育和配子產生的分子機理,結果發(fā)現foxl2、bmp15、nanos3、sox9、amh等基因在斑石鯛性腺發(fā)育及生殖細胞的產生和維持方面起重要調控作用。Yue等(2017)基于轉錄組測序技術研究中華鱘(Acipenser sinensis)早期配子發(fā)生機制,結果發(fā)現sox、載脂蛋白和細胞周期蛋白等3個基因家族參與其生殖調控。姚汶勵等(2019)基于高通量轉錄組測序分析草魚(Ctenopharyngodon idella)雌雄性腺差異表達基因,結果發(fā)現cyp19a1a和foxl2基因在其卵巢中顯著高表達。He等(2019)基于轉錄組測序挖掘調控金錢魚(Scatophagus argus)生殖發(fā)育的候選基因,結果發(fā)現foxl2、zar1及figla等6個基因與卵巢發(fā)育和卵子產生相關。李營等(2020)通過轉錄組測序分析,證實Dmrt1、Sox9、Bmp15和Gdf9等基因及卵母細胞成熟、卵母細胞減數分裂和卵巢類固醇合成等通路參與調控施氏鱘(Acipenser schrenckii Brandt)的性腺發(fā)育及性別分化過程。此外,已有研究通過轉錄組測序證實amh、foxl2及foxl3等基因在硬骨魚類的性腺發(fā)育過程中發(fā)揮著重要作用(Crespo et al.,2013;張升利等,2014;Pfennig et al.,2015)?!颈狙芯壳腥朦c】卵形鯧鲹生長速度快,魚苗投放1年以內即可達商品魚規(guī)格,但其性腺在自然條件和人工養(yǎng)殖下分別需要8年和3~5年才能發(fā)育成熟,性成熟周期較長(蔣小珍等,2015)。因此,了解卵巢發(fā)育的分子機制,探尋提升卵形鯧鲹繁殖性能的新途徑,有利于促進其產業(yè)的可持續(xù)發(fā)展。【擬解決的關鍵問題】通過對卵形鯧鲹不同發(fā)育時期的卵巢組織進行轉錄組測序,鑒定篩選出與卵巢發(fā)育相關的候選基因及信號通路,為揭示其卵巢性成熟過程的分子機制打下基礎。
1 材料與方法
1. 1 試驗材料
供試卵形鯧鲹來源于中國—東盟海洋水產種業(yè)研發(fā)基地(北海竹林),以1齡魚及3齡魚為研究對象。1齡魚的平均體重360.00±20.00 g,平均體長21.67±0.82 cm;3齡魚的平均體重1990.00±2100.00 g,平均體長35.40±16.53 cm。將卵形鯧鲹的部分性腺組織保存于4%多聚甲醛中,用于組織切片制作及觀察分析,以確定性腺發(fā)育階段。另外,取部分性腺組織保存于RNAlater中,用于性腺轉錄組測序分析。根據組織切片顯微觀察結果,挑選卵巢發(fā)育處于?期和Ш期的雌性卵形鯧鲹各3尾。卵巢以卵原細胞為主鑒定為Ⅰ期;同時包含卵原細胞、初級卵母細胞和次級卵母細胞,但以次級卵母細胞為主則鑒定為Ш期。
1. 2 cDNA文庫構建及RNA-Seq測序
利用TRIzol試劑(美國Invitrogen公司)提取6尾卵形鯧鲹卵巢組織中的總RNA,cDNA文庫構建和RNA-Seq測序均委托廣西普斐信息科技有限公司完成。RNA質量檢測合格后,用帶有Oligo(dT)的磁珠與mRNA的poly(A)尾端特異性結合,進一步對mRNA進行富集。隨后加入破碎緩沖液將mRNA打斷成短片段,以其為模板合成雙鏈cDNA,采用AMPure XP磁珠進行純化;純化的cDNA經末端修復、加3'端poly(A)尾及連接接頭后,以AMPure XP磁珠對DNA片段進行選擇;最后進行PCR擴增,并以AMPure XP磁珠純化產物,得到最終的cDNA文庫。cDNA文庫質量檢測合格后,上機進行Illumina HiSeqTM 2500測序。7961F3CB-8156-4CEE-B097-F27409C0EE5D
1. 3 測序數據組裝及基因功能注釋
為保證RNA測序分析的準確性,對原始序列(Raw read)進行過濾,去除帶接頭、N(無法確定堿基信息)比例高于10%、低質量序列(有50%以上堿基的質量值sQ≤5),有效序列獲得(Clean reads)。使用Trinity對Clean reads進行拼接組裝,即獲得轉錄本(Grabherr et al.,2011),取同1個Cluster中最長的轉錄本作為Unigenes,并將其進行七大數據庫(Nr、Nt、Pfam、KOG/COG、Swiss-Prot、KEGG和GO)的功能注釋。
1. 4 差異表達基因篩選
以獲得的轉錄組數據作為參考序列,采用RSEM將每個樣本的Clean reads與其進行比對分析(Li and Dewey,2011)。根據比對結果將獲得的Read count數目進行FPKM轉換(Trapnell et al.,2010),標準化處理后,再利用DEGseq進行差異表達分析(Wang et al.,2010);同時以GOseq和KOBAS對差異表達基因分別進行功能注釋及信號通路富集分析(Mao et al.,2005;Young et al.,2010)。
1. 5 SSR和SNP檢測
采用MISA對卵形鯧鲹卵巢轉錄組數據拼接所得的Unigenes進行SSR檢測,單核苷酸、二核苷酸、三核苷酸、四核苷酸、五核苷酸、六核苷酸重復所對應的最少重復次數分別為10、6、5、5、5或5,詳見http://pgrc.ipk-gatersleben.de/misa/misa.html。通過SAMtools和Picard-Tools等進行分類及去除重復的Reads,再利用變異檢測GATK3鑒定出轉錄組數據中SNP位置和突變類型(van der Auwera et al.,2013)。
2 結果與分析
2. 1 卵形鯧鲹卵巢組織切片觀察結果
通過對卵形鯧鲹的卵巢組織切片進行觀察,挑選性腺發(fā)育處于?期和Ш期的雌性卵形鯧鲹各3尾。性腺發(fā)育?期,卵形鯧鲹卵巢中的生殖細胞以卵原細胞為主,其體積較小,呈圓形,細胞核較大,細胞質很少(圖1-A)。性腺發(fā)育Ш期,卵形鯧鲹卵巢中的生殖細胞以次級卵母細胞為主,細胞呈圓形,排列松散,細胞體積相應增大,大部分核仁沿核膜內緣分布,核外周胞質中油滴增多,細胞質中有細小的卵黃核(圖1-B)。
2. 2 卵形鯧鲹卵巢轉錄組數據統(tǒng)計結果
卵形鯧鲹卵巢轉錄組測序獲得的325156432條Raw reads經過濾篩選得到317206752條Clean reads(表1),各樣品篩選獲得的有效堿基(Clean bases)均在3.00 Gb以上,Q20堿基占比在90.00%以上,Q30堿基占比在82.50%以上,GC含量平均為50.47%,數據質量較高,可用于后續(xù)研究。
2. 3 卵形鯧鲹卵巢轉錄組序列注釋結果
將拼接得到的59554條Unigenes在七大數據庫(Nr、Nt、Pfam、KOG/COG、Swiss-Prot、KEGG和GO)中進行比對,結果發(fā)現有41482條Unigenes至少在1個數據庫中被注釋。在Nr、Nt、KEGG、Swiss-Prot、 Pfam、GO及KOG等數據庫注釋成功的Unigenes分別有29607、37366、15997、24768、24255、24599和11949條(表2),說明注釋到七大數據庫的基因較多,有利于后續(xù)研究。共有24599條Unigenes在GO功能注釋中被分成三大類[分子功能(Molecular function)、細胞組分(Cellular component)及生物學過程(Biological process)],共涉及54個功能組(圖2)。其中,752條Unigenes參與發(fā)育過程(Developmental process),408條Unigenes參與生殖過程(Reproductive process),389條Unigenes參與生殖(Reproduction)。同時有15997條Unigenes被注釋到KEGG數據庫,共涉及五大分支32種代謝途徑(圖3),主要參與信號轉導(Signal transduction)、細胞免疫(Cellular immunity)、信號分子與相互作用(Signaling molecules and interaction)等代謝通路。
2. 4 卵形鯧鲹卵巢差異基因表達分析結果
在卵形鯧鲹卵巢組織的2個發(fā)育時期共鑒定獲得56115個基因,經差異表達分析后獲得17737個差異基因(圖4),其中,8169個基因在卵巢Ш期上調表達,9568個基因在卵巢Ш期下調表達,包括GnRHR (Gonadotropin-releasing hormone receptor)、FSHβ (Follicle stimulating hormone beta subunit)、FSHR (Follicle stimulating hormone receptor)、CYP11A (Cholesterol side-chain cleavage enzyme,mitochondrial)、SIRT3(NAD-dependent protein deacetylase sirtuin-3,mitochondrial)和PEG(Paternally-expressed gene 3 protein-like)等基因(表3)。
2. 5 卵形鯧鲹卵巢差異表達基因GO功能注釋分析結果
為進一步挖掘與卵形鯧鲹卵巢發(fā)育相關的基因,對卵巢?期和卵巢Ш期的差異表達基因進行GO功能注釋分析。由圖5可知,卵形鯧鲹卵巢差異表達基因主要注釋在細胞過程(Cellular process)、氮化合物代謝過程(Nitrogen compound metabolic process)、初級代謝過程(Primary metabolic process)、核(Nucleus)、核部分(Nuclear part)、離子結合(Ion binding)及水解酶活性(Hydrolase activity)等條目上。7961F3CB-8156-4CEE-B097-F27409C0EE5D
2. 6 卵形鯧鲹卵巢差異表達基因KEGG信號通路富集分析結果
在生物體內,不同基因調控不同的生物學功能,且這些基因相互協(xié)調以維系生命活動能正常進行。KEGG信號通路富集分析結果顯示,17737個差異表達基因顯著富集在318條代謝途徑上,其中前20條KEGG信號通路(表4)包括2-氧代羧酸代謝(2-Oxocarboxylic acid metabolism)、PI3K-Akt信號通路(PI3K-Akt signaling pathway)、甲狀腺激素信號通路(Thyroid hormone signaling pathway)、磷脂酶D信號通路(Phospholipase D signaling pathway)、Fc εRI信號通路(Fc epsilon RI signaling pathway)和細胞周期(Cell cycle)等。
2. 7 卵形鯧鲹卵巢轉錄組序列SSR鑒定和SNP分析結果
對卵形鯧鲹卵巢轉錄組序列進行SSR鑒定,結果表明59554條Unigenes中共存在30133個SSRs,其中6569條Unigenes包含1個以上SSR的序列數。6種核苷酸重復類型的SSR出現頻率各不相同,以單核苷酸重復SSR的出現頻率最高,其次是二核苷酸重復SSR(圖6)。其中,A/T在單核苷酸重復SSR中最常見,AC/GT在二核苷酸重復SSR中最常見,AGG/CCT在三核苷酸重復SSR中最常見,AAAT/ATTT在四核苷酸重復SSR中最常見。SNP分析結果(表5)表明,卵形鯧鲹卵巢轉錄組中共有82490個SNPs,其中C/T、A/G分別有25706和25956個,A/T、A/C、T/G和C/G分別有9032、7820、7627和6349個。
3 討論
轉錄組測序技術對于鑒定篩選不同生物、不同發(fā)育時期或不同組織間的差異表達基因至關重要(吳小梅等,2017;夏曉培,2017;張濤等,2018;肖韻錚等,2020)。卵形鯧鲹是一種重要的海水養(yǎng)殖魚類,但其卵巢發(fā)育的分子機理尚未明確,因此亟待挖掘相關的候選基因和信號通路。本研究利用Illumina HiSeq測序技術對卵形鯧鲹?期和Ш期卵巢組織進行轉錄組測序,共得到59554條Unigenes,注釋成功率為69.65%;尚有30.35%的Unigenes未得到功能注釋,可能是由于數據庫現有的魚類基因信息不夠豐富,或是包含特有且未被發(fā)現的新基因(Li et al.,2016),具體原因有待進一步探究。其中,有24599條Unigenes在GO數據庫中被注釋,主要涉及發(fā)育過程、生殖過程和生殖等GO功能條目,表明這些基因在卵形鯧鲹卵巢生殖細胞的發(fā)育過程中至關重要。
本研究篩選出多個與卵形鯧鲹卵巢發(fā)育相關的差異表達基因,共同調節(jié)卵巢的發(fā)育與成熟。其中,GnRHR、FSHR、FSHβ、CYP11A和SIRT3等5個差異表達基因在?期卵巢中高豐度表達,表明這5個基因參與調控卵形鯧鲹卵巢的早期發(fā)育;PEG3基因在Ш期卵巢中高表達,則可能參與調控卵巢的后期發(fā)育過程。已有研究表明,下丘腦—垂體—性腺軸(HPG)不僅與哺乳動物卵泡和卵母細胞的發(fā)育過程相關,還與魚類的生殖發(fā)育有關(Daftary and Gore,2005;Ji et al.,2013;Liu et al.,2016)。促性腺激素釋放激素受體(GnRHR)是垂體分泌的G-蛋白偶聯受體,與下丘腦分泌的促性腺激素釋放激素(GnRH)結合后通過刺激一系列的激素級聯反應,而促進促性腺激素釋放,使得性腺發(fā)育成熟,達到調控性腺發(fā)育的目的。Madigou等(2000)研究發(fā)現,GnRHR基因在虹鱒(Oncorhynchus mykiss)卵巢中有較高的表達水平,即在卵巢發(fā)育過程中起關鍵作用。卵泡刺激素(FSH)是垂體分泌的糖蛋白激素,其β亞基(FSHβ)具有特異性表達調控的作用,從而促使FSH在性腺發(fā)育的過程中發(fā)揮生物功能。卵泡刺激素受體(FSHR)是性腺上的促性腺激素受體,也屬于G-蛋白偶聯受體。FSH與FSHR結合能促進卵泡的生長與成熟,有效刺激濾泡細胞合成類固醇激素,對哺乳動物和魚類的性腺生殖發(fā)育活動均具有重要作用(Santos et al.,2001;何小龍,2010)。FSHβ基因可促進新澳鰻鱺(A. australis schmidti)卵巢的早期發(fā)育(Setiawan et al.,2012);而FSHR基因在斑馬魚(Danio rerio)及庸鰈(Hippoglossus hippoglossus)的卵母細胞生長及卵黃生成的中前期高表達(So et al.,2005;Kobayashi et al.,2008)。
性類固醇激素由膽固醇轉化而成,在性腺中合成分泌,主要包括雌激素、孕激素和睪酮類,對魚類的性腺發(fā)育分化起重要作用(Tokarz et al.,2015;Toit et al.,2017)。膽固醇側鏈裂解酶基因(CYP11A)參與類固醇激素的合成,類固醇激素合成急性調節(jié)蛋白(StAR)攜帶膽固醇進入細胞后,通過CYP11A轉換成孕酮,再經過一系列的芳香化反應,最終合成雄激素和雌激素。CYP11A基因在斑馬魚卵巢成熟前期高表達(陳孝紅等,2015)。SIRT3基因通過阻止活性氧(ROS)的激活,而在雌性牦牛繁殖發(fā)育過程中發(fā)揮調控作用,促進卵丘細胞的增殖凋亡、氧化應激及孕酮分泌(王斌,2020);SIRT3基因在山羊卵巢中高表達,具有基因型多態(tài)性,其表達水平與山羊的產羔量緊密相關,可能是山羊遺傳改良的潛在候選基因(Silpa et al.,2020)。基因印跡是指不遵從孟德爾定律,某些基因的單等位基因表達取決于其親本來源的現象(Song et al.,2009)。PEG3基因作為哺乳動物的印跡基因,在其繁殖活動中發(fā)揮重要作用。宋振華等(2010)研究發(fā)現,PEG3基因是雌性小鼠生殖細胞的印跡基因,其甲基化印跡發(fā)生在次級卵母細胞發(fā)育階段;Jiang等(2011)研究表明,PEG3基因是豬的印跡基因,在卵巢中表達雙等位基因。7961F3CB-8156-4CEE-B097-F27409C0EE5D
卵巢的發(fā)育涉及多個生物學途徑。本研究的KEGG信號通路富集分析結果顯示,卵形鯧鲹卵巢差異表達基因顯著富集到PI3K-Akt信號通路、甲狀腺激素信號通路和VEGF信號通路等。其中,PI3K-Akt信號通路主要是由磷脂酰肌醇3-激酶(PI3K)、中間效應因子及蛋白激酶B(Akt)所構成。PI3K-Akt信號通路對卵巢卵泡的發(fā)育和卵母細胞的成熟起重要作用(Wen et al.,2018)。在卵泡的發(fā)育過程中,卵原細胞進行減數分裂,而PI3K-Akt信號通路在卵母細胞減數分裂過程中發(fā)揮關鍵調控作用,從而影響卵母細胞的成熟分化程度(Song et al.,2018)。PI3K-Akt信號通路除了在哺乳動物,如豬、牛及小鼠的卵泡發(fā)育過程中起重要調控作用(Tomek and Smiljakovic,2005;Liu et al.,2018)外,在小菜蛾等昆蟲的卵巢發(fā)育和卵子發(fā)生方面也發(fā)揮著潛在作用(Peng et al.,2017)。此外,VEGF信號通路與卵巢發(fā)育密切相關(Qiu and Liu,2009)。Jung等(2016)研究表明,VEGF信號通路在羅氏沼蝦(Macrobrachium rosenbergii)的卵子發(fā)生和卵巢發(fā)育成熟過程中扮演重要角色。可見,PI3K-Akt信號通路和VEGF信號通路在卵形鯧鲹的卵巢性成熟過程中發(fā)揮重要作用。
4 結論
GnRHR、FSHR、FSHβ、CYP11A、SIRT3和PEG3等差異表達基因及PI3K-Akt信號通路和VEGF信號通路等與卵形鯧鲹卵巢的發(fā)育密切相關,共同調節(jié)卵巢的發(fā)育與成熟,在卵巢性成熟過程中發(fā)揮重要作用。
參考文獻:
陳偉洲,許鼎盛,王德強,鄧用謀,佘忠明,丘廣艷,李遠友. 2007. 卵形鯧鲹人工繁殖及育苗技術研究[J]. 臺灣海峽,26(3):435-442. [Chen W Z,Xu D S,Wang D Q,Deng Y M,She Z M,Qiu G Y,Li Y Y. 2007. Study on the spawning and hatching technique for Trachinotus ovatus[J]. Journal of Oceanography in Taiwan Strait,26(3):435-442.] doi:10.3969/j.issn.1000-8160.2007.03.019.
陳孝紅,仇雪梅,郝薇薇,王秀利. 2015. 斑馬魚CYP11a1基因在不同性腺發(fā)育時期的表達[J]. 大連海洋大學學報,30(1):13-17. [Chen X H,Qiu X M,Hao W W,Wang X L. 2015. Expression of CYP11a1 in different developmental phases of gonad in zebrafish Danio rerio[J]. Journal of Dalian Ocean University,30(1):13-17.] doi:10.3969/J.ISSN.2095-1388.2015.01.003.
郭萌萌,何晨,張詩苑,吳繼香,林格兒,李川,曹君. 2018. 金鯧魚不同組織脂肪酸組成比較[J]. 食品工業(yè)科技,39(9):45-50. [Guo M M,He C,Zhang S Y,Wu J X,Lin G E,Li C,Cao J. 2018. Fatty acids composition in diffe-rent tissues of Trachinotus ovatus[J]. Science and Technology of Food Industry,39(9):45-50.] doi:10.13386/j.issn1002-0306.2018.09.009.
何小龍. 2010. 蒙古羊BMPR-IB、FSHβ基因克隆與表達及卵巢組織差異表達基因研究[D]. 呼和浩特:內蒙古農業(yè)大學. [He X L. 2010. Study on cloning and expression of BMPR-IB,FSHβ gene and differentially expressed genes of ovary in Mongolian sheep[D]. Hohhot:Inner Mongolia Agricultural University.] doi:10.7666/d.d197931.
蔣小珍,韋嬪媛,陳曉漢,彭敏,蔣偉明,李詠梅,彭金霞. 2015. 卵形鯧鲹性腺組織學觀察及簡易性別判定方法建立[J]. 西南農業(yè)學報,28(1):428-432. [Jiang X Z,Wei P Y,Chen X H,Peng M,Jiang W M,Li Y M,Peng J X. 2015. Histological observation of Trachinotus ovatus and methodical construction of simple method of early sex identification[J]. Southwest China Journal of Agricultural Sciences,28(1):428-432.] doi:10.16213/j.cnki.scjas.2015. 01.080.
李營,阮瑞,艾成,岳華梅,葉歡,杜浩,李創(chuàng)舉. 2020. 養(yǎng)殖施氏鱘的性腺轉錄組特征分析[J]. 水生生物學報,44(2):310-318. [Li Y,Ruan R,Ai C,Yue H M,Ye H,Du H,Li C J. 2020. Characteristics of the gonadal transcriptome of Amur sturgeon (Acipenser schrenckii) under artificial culture[J]. Acta Hydrobiologuca Sinica,44(2):310-318.] doi:10.7541/2020.038.7961F3CB-8156-4CEE-B097-F27409C0EE5D
林川,王小兵,黃海. 2017. 卵形鯧鲹魚種大型網箱階梯式中間培育技術[J]. 熱帶生物學報,8(4):383-389. [Lin C,Wang X B,Huang H. 2017. The stepwise intermediate culture of Trachinotus ovatus fingerlings in large cage[J]. Journal of Tropical Biology,8(4):383-389.] doi:10.15886/j.cnki.rdswxb.2017.04.002.
區(qū)又君,李加兒. 2005. 卵形鯧鲹的早期胚胎發(fā)育[J]. 中國水產科學,12(6):786-789. [Ou Y Q,Li J E. 2005. Early embryonic development in Trachinotus ovatus[J]. Journal of Fishery Sciences of China,12(6):786-789.] doi:10. 3321/j.issn:1005-8737.2005.06.019.
彭俊耀,梁怡姬,歐小華. 2017. 卵形鯧鲹人工繁殖及育苗技術[J]. 海洋與漁業(yè),(4):54-55. [Peng J Y,Liang Y J,Ou X H. 2017. Study on the spawning and hatching technique of Trachinotus ovatus[J]. Ocean and Fisheries,(4):54-55.] doi:10.3969/j.issn.1672-4046.2017.04.020.
宋振華,閔令江,榮美潔,潘慶杰,沈偉. 2010. 小鼠卵泡顆粒細胞分化不影響卵母細胞印跡基因DNA甲基化進程[J]. 青島農業(yè)大學學報(自然科學版),27(1):6-10. [Song Z H,Min L J,Rong M J,Pan Q J,Shen W. 2010. DNA methylation of imprint genes in the oocytes was not affec-ted by the differentiation of granulose cells[J]. Journal of Qingdao Agricultural University(Natural Science),27(1):6-10.] doi:10.3969/J.ISSN.1674-148X.2010.01.002.
王斌. 2020. 牦牛SIRT3基因的特征分析以及對卵丘細胞的影響[D]. 成都:西南民族大學. [Wang B. 2020. Characteristic analysis of yak SIRT3 gene and its effect on cumulus cells[D]. Chengdu:Southwest Minzu University.] doi:10.27417/d.cnki.gxnmc.2020.000239.
吳小梅,張昕,李南羿. 2017. 雙孢蘑菇子實體不同發(fā)育時期的轉錄組分析[J]. 菌物學報,36(2):193-203. [Wu X M,Zhang X,Li N Y. 2017. Transcriptome analysis of Agaricus bisporus fruiting at different stages[J]. Mycosystema,36(2):193-203.] doi:10.13346/j.mycosystema.150275.
夏曉培. 2017. 泥鰍發(fā)育不同時期性腺轉錄組學研究及Wnt4基因的生物信息學分析[D]. 新鄉(xiāng):河南師范大學. [Xia X P. 2017. Transcriptome study of gonads in different stages of loach development and bioinformatics analysis of Wnt4 gene[D]. Xinxiang:Henan Normal University.]
肖韻錚,韓世明,秦昭,李春奇. 2020. 滇黃精轉錄組測序及類黃酮合成相關基因的分析[J]. 河南農業(yè)大學學報,54(6):931-940. [Xiao Y Z,Han S M,Qin Z,Li C Q. 2020. Analysis of transcriptome sequencing and related genes of flavonoids biosynthesis from Polygonatum kingianum[J]. Journal of Henan Agricultural University,54(6):931-940.] doi:10.16445/j.cnki.1000-2340.2020.06.004.
姚汶勵,姜鵬,白俊杰,馬冬梅. 2019. 基于高通量轉錄組測序的草魚雌雄性腺差異表達基因分析[J]. 基因組學與應用生物學,38(9):3901-3911. [Yao W L,Jiang P,Bai J J,Ma D M. 2019. Analysis of differential expressed genes between male and female gonads of grass carp (Ctenopharyngodon idellus) based on high throughput transcriptome group sequencing[J]. Genomics and Applied Bio-logy,38(9):3901-3911.] doi:10.13417/j.gab.038.003901.7961F3CB-8156-4CEE-B097-F27409C0EE5D
張升利,付成東,梁擁軍,李文通,孫硯勝,史東杰,張欣. 2014. 長尾草金魚成熟期雌雄性腺RNA-Seq轉錄組分析[J]. 水產科學,33(12):750-756. [Zhang S L,Fu C D,Liang Y J,Li W T,Sun Y S,Shi D J,Zhang X. 2014. The RNA-Seq transcriptome analysia in mature gonads of long-tailed goldfish Carassius auratus[J]. Fisheries Science,33(12):750-756.] doi:10.16378/j.cnki.1003-1111.2014.12.006.
張濤,楊理凱,路宏朝,王令,劉歡,左甜甜. 2018. 小鼠中年期和老年期睪丸組織轉錄組分析[J]. 西北農業(yè)學報,27(8):1088-1096. [Zhang T,Yang L K,Lu H C,Wang L,Liu H,Zuo T T. 2018. Transcriptome analysia of mouse testis tissue in middle age and old age[J]. Acta Agriculture Boreali-occidentalis Sinica,27(8):1088-1096.] doi:10.7606/j.issn.1004-1389.2018.08.002.
張永德,文露婷,羅洪林,林勇,杜雪松,余艷玲,韋孜娜,黃姻. 2020. 卵形鯧鲹基因組調研及其SSR分子標記的開發(fā)應用[J]. 南方農業(yè)學報,51(5):983-994. [Zhang Y D,Wen L T,Luo H L,Lin Y,Du X S,Yu Y L,Wei Z N,Huang Y. 2020. Genome survey and development of SSR molecular markers for Trachinotus ovatus[J]. Journal of Southern Agriculture,51(5):983-994.] doi:10.3969/j.issn.2095-1191.2020.05.001.
Bar I,Cummins S,Elizur A. 2016. Transcriptome analysis reveals differentially expressed genes associated with germ cell and gonad development in the southern bluefin tuna (Thunnus maccoyii)[J]. BMC Genomics,17(1):217. doi:10.1186/s12864-016-2397-8.
Crespo B,Lan-Chow-Wing O,Rocha A,Zanuy S,Gómez A. 2013. foxl2 and foxl3 are two ancient paralogs that remain fully functional in teleosts[J]. General and Compa-rative Endocrinology,194:81-93. doi:10.1016/j.ygcen. 2013.08.016.
Daftary S S,Gore A C. 2005. IGF-1 in the brain as a regulator of reproductive neuroendocrine function[J]. Experimental Biology and Medicine,230(5):292-306. doi:10. 1177/153537020523000503.
Du X X,Wang B,Liu X M,Liu X B,He Y,Zhang Q Q,Wang X B. 2017. Comparative transcriptome analysis of ovary and testis reveals potential sex-related genes and pathways in spotted knifejaw Oplegnathus punctatus[J]. Gene,637:203-210. doi:10.1016/j.gene.2017.09.055.
Fan Z F,You F,Wang L J,Weng S D,Wu Z H,Hu J W,Zou Y X,Tan X G,Zhang P J. 2014. Gonadal transcriptome analysis of male and female olive flounder (Paralichthys olivaceus)[J]. BioMed Research International,2014:291067. doi:10.1155/2014/291067.
Grabherr M G,Haas B J,Yassour M,Levin J Z,Thompson D A,Amit I,Adiconis X,Fan L,Raychowdhury R,Zeng Q D,Chen Z H,Mauceli E,Hacohen N,Gnirke A,Rhind N,di Palma F,Birren B W,Nusbaum C,Lindblad-Toh K,Friedman N,Regev A. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nature Biotechnology,29(7):644-652. doi:10.1038/nbt.1883.7961F3CB-8156-4CEE-B097-F27409C0EE5D
He F X,Jiang D N,Huang Y Q,Mustapha U F,Yang W,Cui X F,Tian C X,Chen H P,Shi H J,Deng S P,Li G L,Zhu C H. 2019. Comparative transcriptome analysis of male and female gonads reveals sex-biased genes in spotted scat(Scatophagus argus)[J]. Fish Physiology and Biochemistry,45(6):1963-1980. doi:10.1007/s10695-019- 00693-8.
Ji K,Liu X S,Lee S,Kang S,Kho Y,Giesy J P,Choi K. 2013. Effects of non-steroidal anti-inflammatory drugs on hormones and genes of the hypothalamic-pituitary-gonad axis,and reproduction of zebrafish[J]. Journal of Hazar-dous Materials,254-255:242-251. doi:10.1016/j.jhazmat. 2013.03.036.
Jiang C D,Li S,Deng C Y. 2011. Assessment of genomic imprinting of PPP1R9A,NAP1L5 and PEG3 in pigs[J]. Genetika,47(4):537-542. doi:10.1134/S1022795411040053.
Jung H,Yoon B H,Kim W J,Kim D W,Hurwood D A,Lyons R E,Salin K R,,Kim H S,Baek I,Chand V,Mather P B. 2016. Optimizing hybrid de Novo transcriptome assembly and extending genomic resources for giant freshwater prawns(Macrobrachium rosenbergii):The identification of genes and markers associated with reproduction[J]. International Journal of Molecular Sciences,17(5):690. doi:10.3390/ijms17050690.
Kobayashi T,Pakarinen P,Torgersen J,Huhtaniemi I,Ander-sen ?. 2008. The gonadotropin receptors FSH-R and LH-R of atlantic halibut (Hippoglossus hippoglossus)-2. Differential follicle expression and asynchronous oogenesis[J]. General and Comparative Endocrinology,156(3):595-602. doi:10.1016/j.ygcen.2008.02.010.
Li B,Dewey C N. 2011. RSEM:Accurate transcript quantification from RNA-Seq data with or without a reference genome[J]. BMC Bioinformatics,12(1):323. doi:10. 1186/1471-2105-12-323.
Li Y P,Zhang L L,Sun Y,Ma X L,Wang J,Li R J,Zhang M W,Wang S,Hu X L,Bao Z M. 2016. Transcriptome sequencing and comparative analysis of ovary and testis identifies potential key sex-related genes and pathways in scallop Patinopecten yessoensis[J]. Marine Biotechno-logy,18(4):453-465. doi:10.1007/s10126-016-9706-8.
Liu W J,Chen C Y,Chen L,Wang L,Li J,Chen Y Y,Jin J N,Kawan A,Zhang X Z. 2016. Sex-dependent effects of microcystin-LR on hypothalamic-pituitary-gonad axis and gametogenesis of adult zebrafish[J]. Scientific Reports,6:22819. doi:10.1038/srep22819.
Liu Y,Li M X,Bo X W,Li T,Ma L P,Zhai T J,Huang T. 2018. Systematic analysis of long non-coding RNAs and mRNAs in the ovaries of duroc pigs during different follicular stages using RNA sequencing[J]. International Journal of Molecular Sciences,19(6):1722. doi:10.3390/ijms19061722.7961F3CB-8156-4CEE-B097-F27409C0EE5D
Madigou T,Ma?anos-Sanchez E,Hulshof S,Anglade I,Zanuy S,Kah O. 2000. Cloning,tissue distribution,and central expression of the gonadotropin-releasing hormone receptor in the rainbow trout(Oncorhynchus mykiss)[J]. Bio-logy of Reproduction,63(6):1857-1866. doi:10.1095/biolreprod63.6.1857.
Mao X Z,Cai T,Olyarchuk J G,Wei L P. 2005. Automated genome annotation and pathway identification using the KEGG Orthology(KO) as a controlled vocabulary[J]. Bioinformatics,21(19):3787-3793. doi:10.1093/bioinformatics/bti430.
Peng L,Wang L,Yang Y F,Zou M M,He W Y,Wang Y,Wang Q,Vasseur L,You M S. 2017. Transcriptome profiling of the Plutella xylostella (Lepidoptera:Plutellidae) ovary reveals genes involved in oogenesis[J]. Gene,637:90-99. doi:10.1016/j.gene.2017.09.020.
Pfennig F,Standke A,Gutzeit H O. 2015. The role of Amh signaling in teleost fish—Multiple functions not restricted to the gonads[J]. General and Comparative Endocrinology,223:87-107. doi:10.1016/j.ygcen.2015.09.025.
Qiu G F,Liu P. 2009. On the role of Cdc2 kinase during meio-tic maturation of oocyte in the Chinese mitten crab,Eriocheir sinensis[J]. Comparative Biochemistry and Phy-siology. Part B:Biochemistry & Molecular Biology,152(3):243-248. doi:10.1016/j.cbpb.2008.12.004.
Santos E M,Mariann R W,Tyler C R. 2001. Follicle-stimula-ting hormone and its α and β subunits in rainbow trout (Oncorhynchus mykiss):Purification,characterization,development of specific radioimmunoassays,and their seasonal plasma and pituitary concentrations in females[J]. Biology of Reproduction,65(1):288-294. doi:10.1095/biolreprod65.1.288.
Setiawan A N,Ozaki Y,Shoae A,Kazeto Y,Lokman P M. 2012. Androgen-specific regulation of FSH signalling in the previtellogenic ovary and pituitary of the New Zealand shortfinned eel,Anguilla australis[J]. General and Comparative Endocrinology,176(2):132-143. doi:10.1016/ j.ygcen.2011.12.041.
Silpa M V,Naicy T,Aravindakshan T V,Radhika G,Joan J,Jinty S. 2020. Ovarian expression,polymorphism identification and association of SIRT3 gene with reproduction traits in goats[J]. Animal Biotechnology,32(5):544-549. doi:10.1080/10495398.2020.1726363.
So K W,Kwok H F,Ge W. 2005. Zebrafish gonadotropins and their receptors:Ⅱ. Cloning and characterization of zebrafish follicle-stimulating hormone and luteinizing hormone subunits—Their spatial-temporal expression patterns and receptor specificity[J]. Biology of Reproduction,72(6):1382-1396. doi:10.1095/biolreprod.104.038 216.7961F3CB-8156-4CEE-B097-F27409C0EE5D
Socorro S,Martins R S,Deloffre L,Mylonas C C,Canario A V M. 2007. A cDNA for European sea bass (Dicentrachus labrax) 11beta-hydroxylase:Gene expression during the thermosensitive period and gonadogenesis[J]. General and Comparative Endocrinology,150(1):164-173. doi:10.1016/ j.ygcen.2006.07.018.
Song B S,Jeong P S,Lee J H,Lee M H,Yang H J,Choi S A,Lee H Y,Yoon S B,Park Y H,Jeong K J,Kim Y H,Jin Y B,Kim J S,Sim B W,Huh J W,Lee S R,Koo D B,Chang K T,Kim S U. 2018. The effects of kinase modulation on in vitro maturation according to different cumulus-oocyte complex morphologies[J]. PLoS One,13(10):e0205495. doi:10.1371/journal.pone.0205495.
Song Z H,Min L J,Pan Q J,Shi Q H,Shen W. 2009. Maternal imprinting during mouse oocyte growth in vivo and in vitro[J]. Biochemcal and Biophysical Research Communications,387(4):800-805. doi:10.1016/j.bbrc.2009. 07.131.
Tao W J,Yuan J,Zhou L Y,Sun L N,Sun Y L,Yang S J,Li M H,Zeng S,Huang B F,Wang D S. 2013. Characterization of gonadal transcriptomes from Nile tilapia(Oreochromis niloticus) reveals differentially expressed genes[J]. PLoS One,8(5):e63604. doi:10.1371/journal.pone. 0063604.
Toit R L D,Storbeck K H,Cartwright M,Cabral A,Africander D. 2017. Progestins used in endocrine therapy and the implications for the biosynthesis and metabolism of endogenous steroid hormones[J]. Molecular and Cellular Endocrinology,441:31-45. doi:10.1016/j.mce.2016.09. 004.
Tokarz J,M?ller G,de Angelis M H,Adamski J. 2015. Steroids in teleost fishes:A functional point of view[J]. Steroids,103:123-144. doi:10.1016/j.steroids.2015.06.011.
Tomek W,Smiljakovic T. 2005. Activation of Akt (protein kinase B) stimulates metaphase I to metaphase II transition in bovine oocytes[J]. Reproduction,130(4):423-430. doi:10.1530/rep.1.00754.
Trapnell C,Williams B A,Pertea G,Mortazavi A,Kwan G,van Baren M J,Salzberg S L,Wold B J,Pachter L. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching du-ring cell differentiation[J]. Nature Biotechnology,28(5):511-515. doi:10.1038/nbt.1621.
van der Auwera G A,Carneiro M O,Hartl C,Poplin R,del Angel G,Levy-Moonshine A,Jordan T,Shakir K,Roazen D,Thibault J,Banks E,Garimella K V,Altshuler D,Gabriel S,DePristo M A. 2013. From FastQ data to high confidence variant calls:The Genome Analysis Toolkit best practices pipeline[J]. Current Protocols in Bioinformatics,43:11.10.1-11.10.33. doi:10.1002/0471250953.bi1110s43.7961F3CB-8156-4CEE-B097-F27409C0EE5D
Wang L K,Feng Z X,Wang X,Wang X W,Zhang X G. 2010. DEGseq:An R package for identifying differentially expressed genes from RNA-seq data[J]. Bioinformatics,26(1):136-138. doi:10.1093/bioinformatics/btp612.
Wang W W,Tan S X,Luo J,Shi H T,Zhou T,Yang Y J,Jin Y L,Wang X Z,Niu D H,Yuan Z H,Gao D Y,Dunham R,Liu Z J. 2019. GWAS analysis indicated importance of NF-κB signaling pathway in host resistance against motile aeromonas septicemia disease in catfish[J]. Marine Biotechnology,21(3):335-347. doi:10.1007/s10126-019-09883-0.
Wen X W,Xie J,Zhou L X,Fan Y,Yu B F,Chen Q J,Fu Y L,Yan Z,Guo H Y,Lü Q F,Kuang Y P,Chai W R. 2018. The role of combining medroxyprogesterone 17-acetate with human menopausal gonadotropin in mouse ovarian follicular development[J]. Scientific Reports,8(1):4439. doi:10.1038/s41598-018-22797-6.
Xie Z Z,Xiao L,Wang D D,Fang C,Liu Q Y,Li Z H,Liu X C,Zhang Y,Li S S,Lin H R. 2014. Transcriptome analysis of the Trachinotus ovatus:Identification of reproduction,growth and immune-related genes and microsatellite markers[J]. PLoS One,9(10):e109419. doi:10.1371/journal.pone.0109419.
Young M D,Wakefield M J,Smyth G K,Oshlack A. 2010. Gene ontology analysis for RNA-seq:Accounting for selection bias[J]. Genome Biology,11(2):1-12. doi:10. 1186/gb-2010-11-2-r14.
Yue H M,Li C J,Du H,Zhang S H,Wei Q W. 2017. Sequencing and de novo assembly of the gonadal transcriptome of the endangered Chinese sturgeon (Acipenser sinensis)[J]. PLoS One,10(6):e0127332. doi:10.1371/journal.pone.0127332.
Zhang X,Mu Y N,Mu P F,Ao J Q,Chen X H. 2017. Transcriptome analysis reveals comprehensive insights into the early immune response of large yellow croaker (Larimichthys crocea) induced by trivalent bacterial vaccine[J]. PLoS One,12(1):e0170958. doi:10.1371/journal.pone.0170958.
(責任編輯 蘭宗寶)7961F3CB-8156-4CEE-B097-F27409C0EE5D