• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Metal Sulfide Ag2S: Fabrication via Zone Melting Method and Its Thermoelectric Property

    2022-04-12 10:48:14JINMinBAIXudongZHANGRulinZHOULinaLIRongbin
    關(guān)鍵詞:電性能旭東硫化物

    JIN Min, BAI Xudong, ZHANG Rulin, ZHOU Lina, LI Rongbin

    Metal Sulfide Ag2S: FabricationZone Melting Method and Its Thermoelectric Property

    JIN Min1, BAI Xudong2, ZHANG Rulin1, ZHOU Lina1, LI Rongbin1

    (1. School of Materials Science, Shanghai Dianji University, Shanghai 201306, China; 2. School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)

    Metal sulfide Ag2S is an attractive semiconductor due to its excellent physical and chemical property that enable it with wide applications in fields of catalysis, sensing, optoelectronics in past years. In present work,18 mm× 50 mmAg2S ingot was successfully prepared using zone melting method and its thermoelectric (TE) behavior was investigated. Ag2S has standard monoclinic P21/c space group (-Ag2S phase) below 450 K and transfer to cubic structure (-Ag2S phase) over this temperature. Ag2S is a-type semiconductor as the Seebeck coefficientis always negative due to the Ag interstitial ions in the material that can provide additional electrons.is about -1200 μV·K–1near room temperature, declines to -680 μV·K–1at 440 K and finally decreases to ~-100 μV·K–1at-Ag2S state. The electrical conductivity () of-Ag2S is almost zero. However, the value sharply jumps to ~40000.5 S·m–1as the material just changes to-Ag2S at 450 K and then gradually deceases to 33256.2 S·m–1at 650 K. Hall measurement demonstrates that carrier concentrationHof Ag2S is suddenly increased from the level of ~1017cm–3to ~1018cm–3during phase transition. Total thermal conductivityof-Ag2S is ~0.20 W·m–1·K–1but is ~0.45 W·m–1·K–1of-Ag2S. Ultimately, a maximum=0.57 is achieved around 580 K that means Ag2S might be a promising middle-temperature TE material.

    Ag2S; zone melting; thermoelectric material; phase transition

    During the past years, metal sulfide Ag2S has attracted much attention due to its excellent physical and chemical properties that enable it with various applica-tions in fields of catalysis, sensing, optoelectronics and so on[1–6]. For example, Dong,[7]reports Ag2S-nanowire is an ideal candidate for making nano tem-perature and photoelectric sensors as its photocondu-ctivity is always positive under 532 or 1064 nm laser radiation. Du,[8]declares Ag2S Quantum Dots may act as nontoxic carrier for potentialbioimaging. Zhang,[9]confirms that the Ag2S Quantum Dots indeed open up the possibility ofanatomical imaging and early stage tumor diagnosis owing to their high emission efficiency in NIR-II imaging window. Besides, Ag2S is also found suitable for solar cell and infrared sensitivity device fabrication attribute to its semiconductor chara-cter which has a ~1.0 eV band gap[10]. Recently, it is announced that Ag2S exhibits a fantastic room-temperature ductile behavior. Its compression deformation can reach 50%, the bending variable surpassing 20%, and the stretching variable up to 4.2%. These shape variables are far more than known ceramic and semiconductor mate-rials, and are equivalent to the mechanical properties of some metals. Consequently, Ag2S provides a possi-bility is quest of producible inorganic semiconductors/ceramics for flexible electronic devices[11].

    In order to develop more interesting functions of Ag2S, the authors focus on its potential thermoelectric (TE) behavior according to the concept of Seebeck-Peltier effect[12]. The TE device can supply green and reliable energy by direct conversion of heat into electricity. Thus, it is expected to have wide applications in power generation. The efficiency of a thermoelectric material is usually evaluated by the dimensionless figure of merit,=(2)/. Whereis Seebeck coefficient,is absolute temperature,is electrical conductivity andis thermal conductivity[13]. From the view of this formula, it is obvious that the TE material with ultra-low thermal condu-ctivity is one of a significant factor for high. Based on this recognition, the TE behavior of Ag2S is worthy of study as it has very small thermal conductivity. Wang,[14]have fabricated Ag2S cera-mic using a solution method and the thermal trans-port analysis indicates that its total thermal conductivity is 0.4– 0.6 W·m–1·K–1in range of 300–600 K, which is lower than most solid TE materials. Ultimately, a maxi-mum=0.55 (580 K) is obtained which implies that Ag2S is a promising middle-temperature TE material. In pre-sent work, a zone melting method which has the advan-tage of purifying materials is introduced for Ag2S com-pound fabrication. Its electrical/thermal transport prope-rties are systematically investigated and the final figure of meritis demonstrated.

    1 Experimental

    1.1 Ag2S preparation

    99.999% high purity Ag and S elements were used as start materials for Ag2S synthesis, they were weighed in accordance with the standard stoichiometric ratio and the total weight was about 60.5 g. The start materials were loaded into a18 mm quartz ampoule and then sealed with a vacuum less than 10–2Pa, after that, the quartz ampoule was placed into a 1000 ℃rocking furnace. After Ag and S totally melted, the rocking system worked at a rate of 20 r/min for 30 min to enhance Ag2S synthesis homogeneity. Ultimately, Ag2S compound was obtained as the furnace was cooled to room tem-perature naturally. Subsequently, the synthesized Ag2S raw material with the same ampoule was put into a home-made zone melting furnace. The ampoule was supported by a Al2O3pedestal and a pair of thermal-couples was installed near the bottom for temperature indication. Fig. 1(a) shows the schematic diagram of the zone melting furnace which was heated by a couple of Si-Mo heaters to form a narrow high temperature zone. Fig. 1(b) is the temperature profile along vertical direction, the temperature gradient for Ag2S solidification was about 30–35 ℃/cm. The furnace temperature was controlled at 920 ℃. After Ag2S raw material was melted, the quartz ampoule was lowered down at the speed of 3.0 mm/h until all solution was exhausted. The parameters for Ag2S solidification are summarized in Table 1.

    Table 1 Parameters for Ag2S fabrication

    Fig. 1 Schematic diagram of the zone melting furnace (a) and temperature profile along vertical direction (b)

    1.2 Characterization

    The densitywas measured by Archimedes principle. Phase structure of the material was analyzed by X-ray diffraction (XRD, Bruker D8, Germany) using Cu Kα radiation (=0.15406 nm) at room temperature. The morpholo-gical and chemical composition were investigated using Scanning Electron Microscope (SEM, JSM-6610, JEOL Ltd.) and Energy Dispersive Spectro-scopy (EDS, JED-2300T) equip-ment. The Seebeck coe-fficient and electrical conductivity were measured simul-taneously (ULVAC-RIKO ZEM-3) from 300 to 650 K. The thermal diffusivitywas tested by laser flash method (Netzsch, LFA-457, Ger-many). The total thermal conductivitywas obtained using=··p,wherepis specific heat capacity.

    2 Results and discussion

    The as-grown Ag2S ingot (18 mm× 50 mm) is easily separated from quartz ampoule and displays bright meta-llic luster, as Fig. 2 shows. Such phenomenon indi-cates that Ag2S has none reaction with quartz ampoule during the whole process. Its density is measured to be 7.20 g/cm3that is nearly 100% close to the theoretical value 7.23 g/cm3. Fig. 3(a) is the XRD pattern of Ag2S powder, it is observed that all diffraction peaks are matched well to those of standard-Ag2S monoclinic P21/c space group (PDF#14-0072) at room temperature. The lattice para-meters,andare calculateda general structure analysis system, and the values are 0.4251, 0.6962 and 0.7873 nm, respectively. EDS mea-sure-ment implies the atom percent of Ag is 67.2% and S is 32.8% in matrix that agrees well with the standard stoichiometric comp-osition of Ag2S, as Fig. 3(b) shows.

    Fig. 2 Ag2S ingot prepared by zone melting method

    Fig. 3 XRD pattern (a) and EDS map (b) of Ag2S

    During SEM testing, it is interesting that some micro size particles oozed from the material. Fig. 4(a) shows the original Ag2S surface under 25 kV voltage. However, in a very short time, numerous white particles came up and then gradually grew up for about 30 s, as Fig. 4(b,c) demonstrating. Thereafter, the particle sizes are kept stable. EDS analysis reveals the particle compo-sition is 100% Ag. This result is mainly attributed to the special liquid-like character of Ag2S. As previous literature[15]reported, Ag ions are weakly bonded to the neighbour atoms in silver chalcogenides Ag2M (M=S, Se, Te) semiconductors, and apt to migrate from one site to another if there is sufficient energy force on them. For example, the external heat or voltage are both able to drive Ag ions movement. Therefore, it is easy to understand the high energy electron beam in SEM system plays a significant role causing the deposition of Ag. In fact, similar metal element deposition is also noticed in other type of liquid-like materials, such as Cu2Se, Cu2S, Ag8SnSe6and so on[16–18].

    As for thermoelectric property evaluation, sample 1# for electrical transport measurement is cut parallel to Ag2S solidification direction, and sample 2# for thermal transport testing is processed along perpendicular orien-tation, as the insert in Fig. 5(a) shows. Here, we should note that such sample processing modes are widely adopted in other zone melting thermoelectric materials, such as Bi2Te3, SnSe,[19-20]. In Fig. 5(a), the relationship of temperature with Seebeck coefficientis displayed. It is found that negativethat means Ag2S is a-type semiconductor. This conductive behavior might be due to the Ag interstitial ions in crystal structure that act as donor impurities providing additional electrons[14]. Near room temperature,is about –1200 μV·K–1. As the temperature increased to 440 K,linearly deceased to –680 μV·K–1. However, when temperature conti-nu-ously increased to 450 K,undergoes a sharp decline and the value is around –100 μV·K–1. This dramatic change is mainly attributed to the phase transition of Ag2S. Below 450 K, the material has an-Ag2S mono-clinic structure. Nevertheless, it would transfer to-Ag2S body centered cubic structure as temperature surpasses 450 K. After that,maintains a relative stable state regardless the increasing of temperature to 650 K. Fig. 5(b) shows the dependence of conductivityon temperature. It is amazing that theof-Ag2S is almost zero before 450 K. However, thevalue sharply jumps to ~40000.5 S·m–1as the material just finishes phase tran-sition. Then,gradually deceases to 33256.2 S·m–1near 650 K. Fig. 5(c) exhibits power factortem-perature that calculated from=2. It is observed that theof-Ag2S is much poor because of its weak conductive property. As for-Ag2S,is practically a constant ~6 μW·cm–1·K–2in temperature range of 450–650 K.

    Fig. 4 SEM images of original Ag2S surface (a), Ag particles on Ag2S matrix (b) and enlarged morphology of the surface (c)

    Fig. 5 Relationship of Seebeck (a), electrical conductivity σ (b) and power factor PF (c) with temperature

    In order to better understand the electrical transport behavior of Ag2S, the Hall properties are also characte-rized. Fig. 6(a) shows the temperature dependence of carrier concentrationH. Near room temperature, theHvalue is on level of ~1017cm–3. Then, as temperature is increased to the threshold of phase transition,His climbed to ~1018cm–3. This phenomenon is mainly due to the increase of carrier concentration from valence band to conduction band when temperature is added. As expected, when Ag2S is transformed from monoclinic to body centered cubic structure,His increased suddenly to ~1019cm–3near 450 K. Later, a growing number of carriers are generated in-Ag2S, andHrises to a highest ~1020cm–3level at 650 K. Fig. 6(b) is the carrier mobilityHdiagram varied with temperature. Similar to carrier concentration,Hhas a dramatic jump during phase transition. Besides, it is noticedHis alwaysdeclined when it is in-Ag2S and-Ag2S states, respectively. The maximumH= 161.6 cm2·V–1·s–1hap-pens at the moment as Ag2S finishes phase transition.

    Fig. 6 Carrier concentration nH (a) and mobility μH (b) vs temperature

    As for thermal transport property, the relationship of total thermal conductivitywith temperature is given in Fig. 7. When Ag2S is in monoclinic structure,is 0.20 W·m–1·K–1at room temperature and is 0.21 W·m–1·K–1near 400 K. Here it is necessary to mention that the thermal conductivity is deduced from the measured thermal diffusion coefficient and then approximately calculated through Dulong-Petit law. Thus, there may be certain errors to the accurateof the material. However, the result indicates that the thermal conductivity of-Ag2S is indeed ultralow and very stable. In-Ag2S, 2 S atoms and 6 Ag atoms form weak chemical bonds along (100) plane. Thus,-Ag2S would show low phonon vibration frequency because of the weak binding force of S to Ag[11]. As a result, the low-frequency optical branch dominated by Ag atoms can strongly scatter lattice phonons which have similar frequency. This is the key reason why-Ag2S has ultra-low thermal conductivity. When-Ag2S turns to-Ag2S,is quickly increased and keeps steady between 450–600 K and the value is ~0.45 W·m–1·K–1. It should be noted that the sulfur element might have slight volatilization during experi-ment. However, the effect of possible sulfur loss on thermoelectric properties is negligible, as the Ag2S hardly allows stoichiometric deviation of 2∶1 according to the Ag-S phase diagram. Even though any sulfur loss takes place, the excessive Ag would precipitate on the sample surface to maintain Ag2S composition stability.

    Fig. 7 Relationship between κ and temperature

    Fig. 8 Dependence of ZT with temperature

    Ultimately, the temperature dependence ofis displayed in Fig. 8. Due to the extremely weak electrical transport property,-Ag2S has very smallalthough its thermal transport is quite low. Nevertheless, theof-Ag2S is about 0.35 at 450 K and reaches 0.57 near 600 K. The presentmaximumis comparable to that of Ag2S fabricated by melting method (=0.55, 580 K)[14], and is on the same level compared with other Ag-based materials, such as Ag2Se, Ag2Te, CuAgSe and so on[21-23]. This result verifies that such metal sulfide Ag2S is a potential low-temperature thermoeletric material. In the future, Ag2S with element doping is suggested to do help for thermoelectric property improvement.

    3 Conclusions

    A18 mm×50 mmAg2S ingot was fabricated using zone melting method. It undergoes a phase transition from-Ag2S monoclinic P21/c space group to-Ag2S body centered cubic structure near 450 K, which has remark influence on its electrical and thermal properties. Ag2S is a-type semiconductor as the Seebeck constantis always negative. Theof-Ag2S is much poor because of the weak conductive behavior, but the value would suddenly jump to ~6 μW·cm–1·K–2when phase transition happens. Theof-Ag2S and-Ag2S are ~0.20 W·m–1·K–1and ~0.45 W·m–1·K–1, respectively. Finally, Ag2S displays a largest= 0.57 near 580 K that means it might be a potential middle-temperature TE material.

    [1] AlZAHRANI A A, ZAINAL Z, TALIB Z A,. Study the effect of the heat treatment on the photoelectrochemical performance of binary heterostructured photoanode Ag2S/ZnO nanorod arrays in photoelectrochemical cells., 2020, 1002: 187–199.

    [2] ALHARTHI S S, ALZAHRANI A, RAZVI M A N,. Spectroscopic and electrical properties of Ag2S/PVA nanoco-mposite films for visible-light optoelectronic devices., 2020, 30: 3878–3885.

    [3] XIE Y, YOO S H, CHEN C,. Ag2S quantum dots-sensitized TiO2nanotube array photoelectrodes., 2012, 177(1): 106–111.

    [4] KONDRATENKO T S, SMIRNOV M S, OVCHINNIKOV O V,. Nonlinear optical properties of hybrid associates of Ag2S quantum dots with erythrosine molecules., 2020, 200: 163391.

    [5] YOU J C, ZHAN S B, WEN J,. Construction of hetero-junction of Ag2S modified yttrium manganate visible photocatalyst and study on photocatalytic mechanism., 2020, 217: 164900.

    [6] VOGEL R, HOYER P, WELLER H. Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3particles as sensitizers for various nano-porous wide-bandgap semiconductors., 1994, 98(12): 3183–3188.

    [7] DONG Z M, SUN H S, XU J,. Preparation of macroscopical long Ag2S nanowire clusters characteristics., 2011, 60(7): 676–680.

    [8] DU Y P, XU B, FU T,. Near-infrared photoluminescent Ag2S quantum dots from a single source precursor., 2010, 132(5): 1470–1471.

    [9] ZHANG Y, HONG G S, ZHANG Y J,. Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window., 2012, 6(5): 3695–3702.

    [10] HWANG I, SEOL M, Kim H,. Improvement of photocurrent generation of Ag2S sensitized solar cell through co-sensitization with CdS., 2013, 103(2): 023902–1–4.

    [11] SHI X, CHEN H Y, HAO F,. Room-temperature ductile inorganic semiconductor., 2018, 17(5): 421–426.

    [12] CHEN Z W, ZHANG X Y, LIN S Q,. Rationalizing phonon dispersion for lattice thermal conductivity of solids., 2018, 5(6): 888–894.

    [13] JEFFREY S G, AGNE M T, RAMYA G. Thermal conductivity of complex materials., 2019, 6(3): 380–381.

    [14] WANG T, CHEN H Y, QIU P F,. Thermoelectric properties of Ag2S superionic conductor with intrinsically low lattice thermal conductivity., 2019, 68(9): 18–26.

    [15] CHEN H Y, YUE Z M, REN D D,. Thermal conductivity during phase transitions., 2019, 31(6): 1806518.

    [16] LU P, LIU H L, YUAN X,. Multiformity and fluctuation of Cu ordering in Cu2Se thermoelectric materials., 2015, 3(13): 6901–6908.

    [17] ZHANG Y B, WANG Y W, XI L L,. Electronic structure of antifluorite Cu2X (X=S, Se, Te) within the modified Becke- Johnson potential plus an on-site Coulomb U., 2014, 140(7): 074702.

    [18] JIN M, LIN S Q, LI W,. Fabrication and thermoelectric properties of single-crystal argyrodite Ag8SnSe6., 2019, 31: 2603–2610.

    [19] JIANG J, CHEN L D, BAI S Q,. Thermoelectric properties of p-type (Bi2Te3)(Sb2Te3)1–xcrystals preparedzone melting., 2005, 277(1–4): 258–263.

    [20] WANG X, XU J T, LIU G Q,. Texturing degree boosts thermoelectric performance of silver-doped polycrystalline SnSe., 2017, 9(8): 426.

    [21] WANG X B, QIU P F, ZHANG T S,. Compound defects and thermoelectric properties in ternary CuAgSe-based materials., 2015, 3(26): 13662–13670.

    [22] DAY T, DRYMIOTIS F, ZHANG T S,. Evaluating the potential for high thermoelectric efficiency of silver selenide., 2013, 1(45): 7568–7573.

    [23] PEI Y Z, HEINZ N A, SNYDER G J. Alloying to increase the band gap for improving thermoelectric properties of Ag2Te., 2011, 21(45): 18256–18260.

    區(qū)熔法制備金屬硫化物Ag2S及其熱電性能研究

    金敏1, 白旭東2, 張如林1, 周麗娜1, 李榮斌1

    (1. 上海電機(jī)學(xué)院 材料學(xué)院, 上海 201306; 2. 上海理工大學(xué) 材料科學(xué)與工程學(xué)院, 上海 200093)

    金屬硫化物Ag2S具有優(yōu)異的物理化學(xué)性能, 在催化、傳感及光電子等領(lǐng)域具有廣闊的應(yīng)用空間。本工作利用一種區(qū)熔技術(shù)制備了尺寸為18 mm×50 mm的Ag2S并對(duì)其潛在熱電性能進(jìn)行了研究。Ag2S在450 K以下具有標(biāo)準(zhǔn)的-Ag2S單斜P21/c結(jié)構(gòu), 450 K以上發(fā)生相變成為立方-Ag2S相。Ag2S在300~650 K范圍始終具有負(fù)的Seebeck系數(shù)而呈現(xiàn)型半導(dǎo)體特征, 這主要是因?yàn)椴牧现写嬖贏g間隙離子而提供了多余電子。Ag2S的Seebeck系數(shù)在室溫下約為-1200 μV·K–1, 440 K時(shí)降為-680 μV·K–1, 當(dāng)轉(zhuǎn)變?yōu)?Ag2S后則大幅降至~-100 μV·K–1。-Ag2S的電導(dǎo)率幾乎為零, 然而在剛發(fā)生-Ag2S相變(450 K)時(shí), 電導(dǎo)率突然增加至~40000.5 S·m–1, 而后隨著溫度持續(xù)升高, 其值在650 K降低為33256.2 S·m–1?;魻枩y(cè)試表明Ag2S的載流子濃度H在相變時(shí)可從~1017cm–3迅速增加到~1018cm–3量級(jí)。-Ag2S和-Ag2S的總熱導(dǎo)率幾乎是常數(shù), 分別為~0.20和~0.45 W·m–1·K–1。最終Ag2S在580 K獲得最大值0.57, 說(shuō)明它是一種很有發(fā)展?jié)摿Φ闹袦責(zé)犭姴牧稀?/p>

    Ag2S; 區(qū)熔; 熱電材料; 相轉(zhuǎn)變

    TQ174

    A

    2020-11-16;

    2020-12-03;

    2021-03-01

    Shanghai Natural Science Foundation (19ZR1419900)

    JIN Min (1982–), male, professor. E-mail: jmaish@aliyun.com

    金敏(1982–), 男, 教授. E-mail: jmaish@aliyun.com

    1000-324X(2022)01-0101-06

    10.15541/jim20200653

    猜你喜歡
    電性能旭東硫化物
    開學(xué)第一天
    給春天開門
    CoO/rGO復(fù)合催化劑的合成、表征和電性能研究
    胡旭東
    心聲歌刊(2019年1期)2019-05-09 03:21:36
    蠟筆畫
    大洋多金屬硫化物自然氧化行為研究
    Zr摻雜對(duì)CaCu3Ti4O12陶瓷介電性能的影響
    連續(xù)流動(dòng)法測(cè)定沉積物中的酸揮發(fā)性硫化物
    Li2S-P2S5及Li2S-SiS2基硫化物固體電解質(zhì)研究進(jìn)展
    鎢酸錳催化氧化脫除模擬油硫化物
    白带黄色成豆腐渣| 亚洲人成伊人成综合网2020| 狂野欧美白嫩少妇大欣赏| 国产精品永久免费网站| 国产精品国产高清国产av| 国产精品久久久久久亚洲av鲁大| 91久久精品国产一区二区三区| 国内毛片毛片毛片毛片毛片| 中文字幕精品亚洲无线码一区| 日韩欧美国产在线观看| 亚洲经典国产精华液单| 18禁黄网站禁片免费观看直播| 噜噜噜噜噜久久久久久91| 给我免费播放毛片高清在线观看| 黄色欧美视频在线观看| 麻豆成人av在线观看| 少妇丰满av| 少妇裸体淫交视频免费看高清| 亚洲人与动物交配视频| 真人做人爱边吃奶动态| 99国产极品粉嫩在线观看| 少妇的逼好多水| 99久久精品国产国产毛片| 国产精品永久免费网站| 国产午夜福利久久久久久| 久久中文看片网| 欧美成人a在线观看| 91麻豆av在线| 国产乱人伦免费视频| 成人三级黄色视频| 91在线精品国自产拍蜜月| 夜夜夜夜夜久久久久| 赤兔流量卡办理| 两个人的视频大全免费| 色综合站精品国产| 桃色一区二区三区在线观看| 日本熟妇午夜| 日韩精品有码人妻一区| 啪啪无遮挡十八禁网站| 级片在线观看| 亚洲一区二区三区色噜噜| 国产精品免费一区二区三区在线| 99精品久久久久人妻精品| 欧美一级a爱片免费观看看| 九九在线视频观看精品| 亚洲国产欧洲综合997久久,| 18禁黄网站禁片午夜丰满| 欧美最黄视频在线播放免费| 午夜福利在线观看免费完整高清在 | 禁无遮挡网站| 精品国内亚洲2022精品成人| 国产女主播在线喷水免费视频网站 | 亚洲内射少妇av| 成年人黄色毛片网站| 久久国产精品人妻蜜桃| 欧美日韩综合久久久久久 | 欧美丝袜亚洲另类 | 日日干狠狠操夜夜爽| 国产视频内射| 免费看光身美女| 夜夜夜夜夜久久久久| 国产亚洲精品综合一区在线观看| 精品人妻视频免费看| av在线天堂中文字幕| 一进一出抽搐动态| 国产在线男女| 日韩欧美精品v在线| 中文字幕熟女人妻在线| 亚洲精品456在线播放app | 国模一区二区三区四区视频| 99久久成人亚洲精品观看| 白带黄色成豆腐渣| 九九久久精品国产亚洲av麻豆| 少妇猛男粗大的猛烈进出视频 | 欧美xxxx性猛交bbbb| 日日夜夜操网爽| 日韩欧美 国产精品| 国产国拍精品亚洲av在线观看| 精品欧美国产一区二区三| 成人美女网站在线观看视频| 亚洲真实伦在线观看| 淫秽高清视频在线观看| 国产高清有码在线观看视频| 18禁在线播放成人免费| 亚洲熟妇中文字幕五十中出| 亚洲自偷自拍三级| 黄色视频,在线免费观看| videossex国产| 欧美色视频一区免费| 亚洲一区高清亚洲精品| 国产高清三级在线| 欧美高清成人免费视频www| 一个人看的www免费观看视频| 日本-黄色视频高清免费观看| 2021天堂中文幕一二区在线观| 国产精品免费一区二区三区在线| 观看美女的网站| 真人一进一出gif抽搐免费| 校园春色视频在线观看| 精品国内亚洲2022精品成人| 国产精品1区2区在线观看.| 国产一级毛片七仙女欲春2| 日本成人三级电影网站| 神马国产精品三级电影在线观看| 亚洲熟妇中文字幕五十中出| aaaaa片日本免费| 在线播放无遮挡| 亚洲自拍偷在线| av视频在线观看入口| 国产精品久久电影中文字幕| 九九在线视频观看精品| 露出奶头的视频| 最新在线观看一区二区三区| 小说图片视频综合网站| 久久久久久久午夜电影| 女的被弄到高潮叫床怎么办 | 亚洲精华国产精华精| 亚洲av成人精品一区久久| 日韩欧美 国产精品| 舔av片在线| 美女高潮的动态| 久久久久久久久久成人| 国内揄拍国产精品人妻在线| 日本一二三区视频观看| 精品国内亚洲2022精品成人| 国产不卡一卡二| 国模一区二区三区四区视频| 赤兔流量卡办理| 国产一区二区三区av在线 | 国产精品女同一区二区软件 | 香蕉av资源在线| 给我免费播放毛片高清在线观看| 国产精品亚洲美女久久久| 亚洲精品成人久久久久久| 国模一区二区三区四区视频| 免费人成在线观看视频色| av中文乱码字幕在线| 欧美日韩乱码在线| 九色国产91popny在线| 悠悠久久av| 最近视频中文字幕2019在线8| 啦啦啦啦在线视频资源| 亚洲人成网站在线播放欧美日韩| 舔av片在线| 亚洲男人的天堂狠狠| 日韩中文字幕欧美一区二区| 国产精品爽爽va在线观看网站| 啦啦啦啦在线视频资源| 身体一侧抽搐| 校园人妻丝袜中文字幕| 国产精品一区二区免费欧美| 搡老岳熟女国产| 久久天躁狠狠躁夜夜2o2o| 国产成人a区在线观看| 成人国产一区最新在线观看| 色精品久久人妻99蜜桃| 国产精品电影一区二区三区| 国产午夜精品久久久久久一区二区三区 | 69人妻影院| 黄色丝袜av网址大全| 三级国产精品欧美在线观看| 国产精品日韩av在线免费观看| 夜夜夜夜夜久久久久| 一个人看的www免费观看视频| 国产精品一区二区三区四区久久| 欧美极品一区二区三区四区| 一进一出抽搐gif免费好疼| 我要看日韩黄色一级片| 国产大屁股一区二区在线视频| 成人毛片a级毛片在线播放| 午夜亚洲福利在线播放| 成人一区二区视频在线观看| 男女下面进入的视频免费午夜| 欧美成人a在线观看| 欧美潮喷喷水| 他把我摸到了高潮在线观看| 国产麻豆成人av免费视频| 欧美激情国产日韩精品一区| 亚洲国产欧洲综合997久久,| 亚洲人成网站在线播| 国产午夜福利久久久久久| 我要看日韩黄色一级片| 精品久久久久久久久久免费视频| 国产不卡一卡二| 麻豆国产av国片精品| 久久久久免费精品人妻一区二区| 免费不卡的大黄色大毛片视频在线观看 | 午夜激情福利司机影院| 亚洲av二区三区四区| 免费高清视频大片| 99热这里只有精品一区| 日韩欧美国产一区二区入口| 高清毛片免费观看视频网站| a级一级毛片免费在线观看| 美女大奶头视频| 成年人黄色毛片网站| 伦精品一区二区三区| 99热网站在线观看| 免费看日本二区| 全区人妻精品视频| 噜噜噜噜噜久久久久久91| 亚洲第一电影网av| 亚洲自拍偷在线| 久久国内精品自在自线图片| 久久精品国产亚洲av涩爱 | 久久精品国产自在天天线| 免费观看的影片在线观看| 亚洲午夜理论影院| 亚洲精品色激情综合| 国产视频内射| 91久久精品电影网| 少妇猛男粗大的猛烈进出视频 | 亚洲国产精品久久男人天堂| 国产在线男女| 欧美激情久久久久久爽电影| 精品一区二区三区视频在线观看免费| 亚洲美女黄片视频| 国产精品三级大全| 久久久国产成人免费| 亚洲欧美日韩高清在线视频| h日本视频在线播放| 亚洲欧美日韩无卡精品| 露出奶头的视频| 国产成人av教育| 尤物成人国产欧美一区二区三区| av在线亚洲专区| 三级国产精品欧美在线观看| 精品午夜福利在线看| 99精品久久久久人妻精品| 老熟妇乱子伦视频在线观看| 欧美日韩乱码在线| 午夜日韩欧美国产| 国产av不卡久久| 欧洲精品卡2卡3卡4卡5卡区| 午夜福利18| 最近在线观看免费完整版| 免费看光身美女| 国产黄a三级三级三级人| 99热这里只有精品一区| 国产午夜精品久久久久久一区二区三区 | 麻豆国产97在线/欧美| 91麻豆av在线| 欧美日本亚洲视频在线播放| 真人一进一出gif抽搐免费| 亚洲最大成人中文| 国产一区二区亚洲精品在线观看| 久久久久久久亚洲中文字幕| 午夜a级毛片| 日本撒尿小便嘘嘘汇集6| av.在线天堂| 制服丝袜大香蕉在线| 成人美女网站在线观看视频| 他把我摸到了高潮在线观看| 精品久久久久久成人av| 日本色播在线视频| 狂野欧美白嫩少妇大欣赏| 国产亚洲精品久久久久久毛片| 九九热线精品视视频播放| 久久久久精品国产欧美久久久| 亚洲成人精品中文字幕电影| 三级毛片av免费| 日本成人三级电影网站| 欧美成人性av电影在线观看| 啦啦啦观看免费观看视频高清| 少妇被粗大猛烈的视频| 成年免费大片在线观看| 国产女主播在线喷水免费视频网站 | 久9热在线精品视频| 国产精品国产高清国产av| 淫秽高清视频在线观看| 亚洲av成人精品一区久久| 男人舔女人下体高潮全视频| 国产v大片淫在线免费观看| 22中文网久久字幕| 国产精品嫩草影院av在线观看 | 亚洲av一区综合| 国产色婷婷99| 久久精品国产亚洲av香蕉五月| 啦啦啦啦在线视频资源| 国产乱人视频| 人妻少妇偷人精品九色| 亚洲中文字幕一区二区三区有码在线看| 91在线精品国自产拍蜜月| 免费av观看视频| 免费不卡的大黄色大毛片视频在线观看 | 国产在线精品亚洲第一网站| 久久久成人免费电影| 最新在线观看一区二区三区| 亚洲精品一区av在线观看| 在现免费观看毛片| 中文亚洲av片在线观看爽| 欧美在线一区亚洲| 国产免费男女视频| 亚洲av一区综合| 成人精品一区二区免费| 亚洲精品色激情综合| 亚洲精品乱码久久久v下载方式| av中文乱码字幕在线| 国产真实乱freesex| 精品不卡国产一区二区三区| 久久亚洲真实| 网址你懂的国产日韩在线| 99九九线精品视频在线观看视频| 免费在线观看日本一区| 深夜精品福利| 九色国产91popny在线| 国产精品av视频在线免费观看| 日本黄色片子视频| 又粗又爽又猛毛片免费看| 真人一进一出gif抽搐免费| 国产精品亚洲一级av第二区| 中亚洲国语对白在线视频| 国产午夜精品论理片| 有码 亚洲区| 最近最新中文字幕大全电影3| 国产高清激情床上av| 欧美3d第一页| 国产三级在线视频| 18禁黄网站禁片午夜丰满| 色哟哟哟哟哟哟| 美女cb高潮喷水在线观看| 一级黄色大片毛片| 性色avwww在线观看| 又黄又爽又免费观看的视频| 久久久久久久精品吃奶| 国产免费男女视频| 亚洲av第一区精品v没综合| 免费av观看视频| 久久久久久国产a免费观看| 国产在线精品亚洲第一网站| 亚洲国产欧洲综合997久久,| 中文字幕久久专区| 亚洲熟妇中文字幕五十中出| 亚洲三级黄色毛片| 免费高清视频大片| 日韩一区二区视频免费看| 97超视频在线观看视频| 99久久成人亚洲精品观看| 日本 av在线| 国产精品久久久久久久久免| 美女大奶头视频| 欧美丝袜亚洲另类 | 22中文网久久字幕| 一进一出抽搐动态| 亚洲 国产 在线| 国产精品美女特级片免费视频播放器| 一区二区三区高清视频在线| 99久久精品国产国产毛片| 熟女电影av网| 一本一本综合久久| 国产精品综合久久久久久久免费| 嫩草影院入口| 99视频精品全部免费 在线| 少妇猛男粗大的猛烈进出视频 | 欧美激情国产日韩精品一区| 亚洲av第一区精品v没综合| 亚洲,欧美,日韩| 女生性感内裤真人,穿戴方法视频| 日韩大尺度精品在线看网址| 国产精品三级大全| 午夜日韩欧美国产| 一级毛片久久久久久久久女| 欧美激情国产日韩精品一区| 女人十人毛片免费观看3o分钟| 欧美激情国产日韩精品一区| 岛国在线免费视频观看| 亚洲经典国产精华液单| 性色avwww在线观看| 日本成人三级电影网站| 国产亚洲av嫩草精品影院| 国产视频一区二区在线看| 在线观看午夜福利视频| av天堂中文字幕网| 性色avwww在线观看| 国产熟女欧美一区二区| 淫秽高清视频在线观看| 桃色一区二区三区在线观看| 国产乱人伦免费视频| 久久中文看片网| 制服丝袜大香蕉在线| 最新中文字幕久久久久| 69av精品久久久久久| 久久久久久久久久久丰满 | 一进一出抽搐gif免费好疼| 欧美性猛交╳xxx乱大交人| 蜜桃久久精品国产亚洲av| 22中文网久久字幕| 最近视频中文字幕2019在线8| 亚洲第一电影网av| av天堂在线播放| 国产成人影院久久av| 成人一区二区视频在线观看| 亚洲精品日韩av片在线观看| 国模一区二区三区四区视频| 国产伦在线观看视频一区| 哪里可以看免费的av片| 无人区码免费观看不卡| 国产爱豆传媒在线观看| 香蕉av资源在线| 一a级毛片在线观看| 国产精品国产高清国产av| 久久久久久久久久成人| 精品人妻视频免费看| 熟女人妻精品中文字幕| 国产精品一区二区三区四区免费观看 | 亚洲avbb在线观看| 亚洲中文字幕一区二区三区有码在线看| 99在线人妻在线中文字幕| 久久久国产成人精品二区| 成年女人看的毛片在线观看| 我要搜黄色片| 日韩一区二区视频免费看| 久久久久久久久大av| 国产精品一区www在线观看 | 欧美xxxx黑人xx丫x性爽| 欧美日本视频| 国产精品人妻久久久影院| 午夜福利成人在线免费观看| 国产乱人视频| 国产精华一区二区三区| 人妻制服诱惑在线中文字幕| 国产一区二区在线av高清观看| 亚洲精品乱码久久久v下载方式| 国产男靠女视频免费网站| 久久九九热精品免费| 看免费成人av毛片| 国产精品女同一区二区软件 | 久久中文看片网| 舔av片在线| 国产色爽女视频免费观看| 国产国拍精品亚洲av在线观看| 人人妻人人看人人澡| 少妇裸体淫交视频免费看高清| 伦理电影大哥的女人| 久久午夜福利片| 成人特级黄色片久久久久久久| 哪里可以看免费的av片| 国产一区二区在线观看日韩| 99精品久久久久人妻精品| 精品不卡国产一区二区三区| 欧美成人性av电影在线观看| 小蜜桃在线观看免费完整版高清| 色综合亚洲欧美另类图片| 欧美丝袜亚洲另类 | 狂野欧美激情性xxxx在线观看| 久久久久久久久久久丰满 | 成人特级av手机在线观看| 亚洲在线自拍视频| 日韩欧美一区二区三区在线观看| 韩国av在线不卡| av在线蜜桃| 丝袜美腿在线中文| 国产探花在线观看一区二区| 久久久成人免费电影| 欧美高清性xxxxhd video| 精品乱码久久久久久99久播| 日日夜夜操网爽| 偷拍熟女少妇极品色| 精品福利观看| 成年人黄色毛片网站| 亚洲av中文av极速乱 | 免费电影在线观看免费观看| 国产探花在线观看一区二区| 少妇裸体淫交视频免费看高清| 国产黄片美女视频| 在线免费十八禁| 日韩一本色道免费dvd| 99热6这里只有精品| 亚洲精品成人久久久久久| 中文字幕人妻熟人妻熟丝袜美| 床上黄色一级片| 国产精品99久久久久久久久| 中亚洲国语对白在线视频| 1000部很黄的大片| 成人二区视频| 国产精品,欧美在线| a级一级毛片免费在线观看| 校园人妻丝袜中文字幕| 夜夜看夜夜爽夜夜摸| 高清毛片免费观看视频网站| 国产精品久久久久久亚洲av鲁大| 亚洲久久久久久中文字幕| 五月玫瑰六月丁香| 在线观看舔阴道视频| 女人十人毛片免费观看3o分钟| 久久精品91蜜桃| 久久精品国产亚洲网站| 99久久精品热视频| 国产在线男女| 夜夜爽天天搞| 99久久久亚洲精品蜜臀av| 美女高潮的动态| 色综合亚洲欧美另类图片| 国产成人a区在线观看| 色综合站精品国产| 成年版毛片免费区| 午夜爱爱视频在线播放| 少妇被粗大猛烈的视频| 成人综合一区亚洲| 亚洲av一区综合| 国产亚洲精品久久久久久毛片| 热99re8久久精品国产| 五月伊人婷婷丁香| 男女那种视频在线观看| 国产精品女同一区二区软件 | 美女 人体艺术 gogo| 久久精品久久久久久噜噜老黄 | 亚洲七黄色美女视频| 动漫黄色视频在线观看| 亚洲成a人片在线一区二区| 日韩欧美一区二区三区在线观看| 赤兔流量卡办理| 少妇猛男粗大的猛烈进出视频 | 日本黄色视频三级网站网址| 一进一出抽搐动态| 波多野结衣高清无吗| 午夜激情欧美在线| 亚洲av中文av极速乱 | av在线观看视频网站免费| 欧美3d第一页| 婷婷色综合大香蕉| 婷婷丁香在线五月| 午夜福利欧美成人| 99热6这里只有精品| 尤物成人国产欧美一区二区三区| av国产免费在线观看| 免费看av在线观看网站| 自拍偷自拍亚洲精品老妇| 99热这里只有是精品在线观看| 国产精品福利在线免费观看| 午夜激情福利司机影院| 男女啪啪激烈高潮av片| 久久久色成人| 国产精品一区二区性色av| 午夜精品在线福利| 精品一区二区三区人妻视频| 性色avwww在线观看| 久久精品91蜜桃| a在线观看视频网站| 在线观看舔阴道视频| 女生性感内裤真人,穿戴方法视频| 日韩一区二区视频免费看| 国产精品98久久久久久宅男小说| 亚洲国产欧美人成| 日韩欧美在线乱码| 乱人视频在线观看| 欧美一级a爱片免费观看看| 人妻制服诱惑在线中文字幕| 日本爱情动作片www.在线观看 | 联通29元200g的流量卡| 97超视频在线观看视频| 天堂网av新在线| 亚洲av成人av| 国产成人a区在线观看| 国产成年人精品一区二区| 九色国产91popny在线| 国产私拍福利视频在线观看| 国产又黄又爽又无遮挡在线| 免费不卡的大黄色大毛片视频在线观看 | 亚洲av美国av| 亚洲人成网站高清观看| 亚洲av成人av| 波多野结衣巨乳人妻| 国产精品女同一区二区软件 | 免费人成视频x8x8入口观看| 女同久久另类99精品国产91| 日本欧美国产在线视频| 精品人妻偷拍中文字幕| xxxwww97欧美| 一a级毛片在线观看| 国产在线男女| 高清毛片免费观看视频网站| 成人三级黄色视频| 国产av麻豆久久久久久久| 亚洲五月天丁香| 欧美又色又爽又黄视频| 乱码一卡2卡4卡精品| 日本免费a在线| 一区二区三区高清视频在线| 久久精品国产鲁丝片午夜精品 | 变态另类成人亚洲欧美熟女| 国产亚洲欧美98| 免费高清视频大片| 亚洲av二区三区四区| 97超级碰碰碰精品色视频在线观看| 亚州av有码| 亚洲va日本ⅴa欧美va伊人久久| 能在线免费观看的黄片| 久久久久久伊人网av| 内射极品少妇av片p| 麻豆国产av国片精品| 亚洲美女视频黄频| 免费av观看视频| 亚洲最大成人手机在线| 国内揄拍国产精品人妻在线| 欧美日本视频| 麻豆国产av国片精品| 九九久久精品国产亚洲av麻豆| 色5月婷婷丁香| 久久久国产成人免费| 久久久成人免费电影| 国产免费男女视频| 国产美女午夜福利| 在线免费观看的www视频| 天天一区二区日本电影三级| 51国产日韩欧美| 亚洲av美国av| 国产白丝娇喘喷水9色精品| 中文字幕精品亚洲无线码一区| 88av欧美| 国语自产精品视频在线第100页| 两人在一起打扑克的视频| 九色成人免费人妻av| 久久香蕉精品热| 中文字幕免费在线视频6|