• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer

    2022-03-12 07:49:44QiaopengCui崔翹鵬LiangZhao趙亮XuewenSun孫學(xué)文QiannanYao姚倩楠ShengHuang黃勝LeiZhu朱磊YulongZhao趙宇龍JianSong宋健andYinghuaiQiang強(qiáng)穎懷
    Chinese Physics B 2022年3期
    關(guān)鍵詞:趙亮學(xué)文

    Qiaopeng Cui(崔翹鵬) Liang Zhao(趙亮) Xuewen Sun(孫學(xué)文) Qiannan Yao(姚倩楠)Sheng Huang(黃勝) Lei Zhu(朱磊) Yulong Zhao(趙宇龍)Jian Song(宋健) and Yinghuai Qiang(強(qiáng)穎懷)

    1The Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipments,School of Materials Science and Physics,China University of Mining and Technology,Xuzhou 221116,China

    2Advanced Analysis&Computation Center,China University of Mining and Technology,Xuzhou 221116,China

    Keywords: perovskite solar cells,nickel oxide,Sr doping,bilayer hole transport layer

    1. Introduction

    Solar cells have attracted a great deal of attention,and the most glamorous star is organic-inorganic hybrid perovskite solar cells (PSCs) now. In recent years, researchers have concentrated on PSCs because of their rapid growth in power conversion efficiency (PCE).[1-5]So far, the PCE of PSCs has reached 25.2%,[6]their performance has almost caught up with currently commercialized silicon solar cells. Hybrid perovskite materials have many advantages, such as adjustable band gap, high absorption coefficient, long carrier life, and high carrier mobility.[7-10]Therefore, PSCs have potential to become the flagship of commercial solar power generation after silicon solar cells.[11]However,interface energy loss of different functional layers and alignment mismatch of energy levels still hinder performance enhancement of PSCs. Many scientists have made efforts in this regard.[12]Chenet al.reached a PCE of 19.35% by employing a NiOxhole transport layer(HTL) with Cs.[13]Chenet al.suppressed the interfacial recombination by facile alkali chloride interface modification of the NiOxHTL and obtained a device with PCE of 21%.[14]Zhuet al.used a larger alkylammonium interface layer to reduce the energy loss between the transport layer and the perovskite, and successfully achieved a inverted PSCs efficiency record of 22.3%.[15]Therefore, improving layer-to-layer interface is essential to promote the charge transfer process and to reduce carrier recombination so as to further improve the PCE.[16]

    HTLs are designed to block electrons,enhance hole transport and prevent quenching caused by direct contact between the perovskite layer and conductive substrate in inverted PSCs.There are many HTLs based on polymers or small molecules,such as Spiro-OMeTAD, PEDOT:PSS, PTAA, and P3HT.[17]However, due to the natural instability of organic materials and relatively low work function, researchers are also actively studying inorganic hole transport materials. Inorganic p-type semiconductor materials, such as NiO, CuI, CuSCN,and graphene oxide are also taken as HTLs in inverted planar PSCs.[18-21]Among them, NiOxhas suitable work function,natural stability,and great energy level matching,which is widely used in the devices.[22,23]

    However,NiO has a low intrinsic conductivity,which will cause holes to accumulate at the NiOx/perovskite interface and to reduce hole extraction ability,so as to reduce the open circuit voltage (Voc) and efficiency of devices.[24]Researchers are actively looking for strategies to improve the optical and electrical properties of NiOxthin film. Doping can effectively improve conductivity of NiOxfilms and adjust energy band position to well match with the energy levels. Dopants,such as Sr,Cu,Li,and Co[20,25-27]have been used to enhance charge transfer performance in NiOxHTLs. However, doping not only greatly increases concentration of free carriers,but also brings lattice distortion and introduces new impurity levels, which will enlarge the possibility of carrier recombination. Therefore, doping is not always conducive to hole extraction at the interface of NiOxand perovskite. Film surface modification[28-31]or various advanced film deposition methods[32-36]can be used to relieve charge recombination at charge transfer layer(CTL)/perovskite interface.

    Our group previously proposed an ingenious strategy both to enhance the hole transport ability and to suppress charge recombination at CTL/perovsktie interfaces with a pp+homojunction based on Cu doped NiOxand Li doped NiOx.[37,38]We found that other element doping such as Sr can also significantly increase the carrier concentration of NiOxfilms. In this work, we further construct a NiOx/Sr:NiOxbilayer HTL to study its influence on interface carrier transport. We prepared an inverted planar PSC with a structure of FTO/Sr:NiOx/NiOx/perovskite/PCBM/BCP/Ag,showing an enhanced hole extraction ability and energy level matching because of the NiOx/Sr:NiOxbilayer HTL. In this device,Sr-doped NiOxthin film has no direct contact with the perovskite layer. As a result, we obtain an improved PCE of 18.44% and a fill factor of 0.80 based on the bialyer HTL,which is much higher than that using Sr:NiOx(16.89%) or NiOx(15.69%).

    2. Experiment

    2.1. Preparation of the HTL

    FTO glass(Nippon Sheet Glass)was first cut into a size of 19 mm×19 mm. The glasses was put in a glass washing rack,and washed by deionized water with dishwashing detergent,deionized water,ethanol,isopropanol,and ethanol in sequence,under ultrasonic for half an hour.Next,a precursor solution of nickel oxide was prepared,0.727 g Ni(NO3)2·6H2O was dissolved in 5 mL of ethylene glycol solution, and then 0.15 g ethylenediamine was added. For Sr doped NiOx, additional 0.04233 g Sr(NO3)2(Sr/Ni ratio in the precursor solution is 8%) was added. In order to eliminate the influence of film thickness, we used the same two-step spin coating method to prepare HTLs with three structures,including NiOx,Sr:NiOx,and NiOx/Sr:NiOx. The first layer was deposited by spin-coating under 5000 rpm for 30 s,after heating at 120°C for 10 min,the second layer was deposited by the same procedure. Finally,the film was annealed at 400°C for 1 h.

    2.2. Fabrication of solar cell

    A ternary cation mixed perovskite film using MA(methylammonium ion, CH3NH+3), FA (formamidine ion, HN=CHNH+3) and Cs was prepared as the active layer. We took 0.0224 g MABr, 0.1719 g FAI, 0.5071 g PbI2, and 0.0734 g PbBr2and dissolved them in a mixed solvent (1 mL) with a volume ratio of DMSO and DMF of 1:4. After two hours of thorough mixing, 84 μL of CsI (1.5 mol/L, DMSO as solvent) was added. The final formula ratio of perovskite is Cs0.1(MA0.12FA0.88)0.9Pb(I0.95Br0.05)3.Then 60 μL of filtered perovskite precursor solution was dropped on the prepared HTL film, spinning at 1000 rpm for 10 s, and then sped to 4000 rpm. After 8 s, 200 μL of ethyl acetate was quickly dropped. The obtained perovskite film was then heated at 70°C for 3 min, and 100°C for 10 min. Next, 45 μL of PCBM(25 mg/mL,chlorobenzene as solvent)was spin-coated at 3000 rmp for 30 s to prepare the electron transport layer.Subsequently,45 μL of BCP(0.5 mg/mL,ethanol as solvent)was deposited on PCBM at 3000 rpm for 30 s. Finally,a vacuum thermal evaporation method was used to deposit 50 nm silver to form metal electrode.

    2.3. Characterization

    We used x-ray diffraction (XRD, D8 Advance, Bruker),energy-dispersive x-ray spectroscopy (EDS, XFlash QUAD SVE6, Burker), x-ray photoelectron spectra (XPS, ESCALAB250Xi,Thermo Fisher),field emission scanning electron microscope (FESEM, SU8220, Hitachi) to observe the crystal structure, element composition and distribution, film morphology of NiOx-based HTLs and perovskite films. UVvisible (UV-Vis spectrophotometer, Cary 300, Varian) was used to test optical property of HTLs. The Hall effect measurement (ezHEMS, NanoMagnetics) was used to demonstrate the carrier properties of HTL. For the Fermi level and valence-band edge of NiOxand Sr:NiOxfilms, we used an ultraviolet photoelectron spectroscope (UPS, Thermo Fisher)with a monochromatic He light source (21.21 eV) to calculate them. Steady state photoluminescence spectra (PL,FS5, Edinburgh) and transient time-resolved photoluminescence (TRPL, FLS980, Edinburgh) were recorded by spectrofluorometer. Electrochemical workstation (Keithley 2420 Source Meter) was selected to measure the photocurrentvoltage (J-V) curves of inverted planar PSCs under solar illumination (100 mW·cm-2, Oriel Sol 3 A, Newport) with 10 mV voltage steps and dwell time of 50 ms. The PSCs were tested with an active area of 0.05 cm2. The light intensity was calibrated by a standard Si-cell (Oriel Instrument).HTL conductivity was evaluated byI-Vcurves of NiOxfilms directly vaporized by silver at the same electrochemical workstation. The darkI-Vcurves (SCLC) were noted from 0 V to 3 V with 10 mV steps and dwell time of 10 ms (Keithley 2420 Source Meter). We used a power source(Newport 300W Xenon lamp,66902)with a monochromator(Newport Cornerstone 260) and a power meter (Newport 2936-C) to measure incident photon to current conversion efficiency(IPCE).Electrochemical impedance spectroscopy(EIS,CHI660E,CH Instruments)was recorded under dark condition at a bias voltage of 0.6 V from 100 kHz to 1 Hz with amplitude of 5 mV and quiet time of 2 s.

    3. Results and discussion

    As shown in Fig. S1, the XRD results of NiOxfilms with or without Sr doping indicate that doping process does not change crystal phase of NiOx, nor does it produce other Sr-containing compounds. We find that Sr are evenly distributed in the NiOxfilm, as shown in Fig. 1(a). Additionally, Sr-doping does not evidently change the morphology of NiOx-based films (Fig. 1(b) and Fig. S2), they all present a dense morphology with some nanoparticles aggregation on the surface, which is beneficial for deposition of the perovksite layer. The similar morphology of NiOxsubstrates lead to indistinguishable phase structure difference of the deposited perovksite films (Fig. S1b). The cross-sectional SEM image in Fig.1(b)clearly shows all the functional layers of the devices.XPS test was used to prove the valence state of Ni and the doping state of Sr. In XPS survey of Sr:NiOx, we can find a characteristic peak of Sr (Fig. S3), which proves the successful incorporation of Sr in the NiOxfilm. In addition to the characteristic peaks of Sr,Ni,O,the width scans spectrum also show characteristic peaks of Na and Si,due to the special composition of FTO glass. As shown in Figs. 1(c) and 1(d),two different oxidation states of Ni2+and Ni3+can be well represented by the Gaussian function fitting the spectrum of Ni 2p 3/2. The main peak at 852.89 eV and the shoulder peak at 854.7 eV correspond to Ni2+and Ni3+, respectively.[39,40]The ratio of simulated peak area of Ni3+to Ni2+is 1.21,which is significantly higher than that of pure NiOxfilm (1.01), the higher ratio of Ni3+to Ni2+indicates a larger hole concentration in the film.[41]This result is further demonstrated by the Hall-effect measurement,as shown in Table S1,both NiOxand Sr:NiOxfilms have p-type property, and the doped film has a much higher charge mobility and carrier density.[42]TheI-Vcurves of different HTLs also manifest the advantages of doping process in the improvement of film electroconductivity(Fig.S4).[43]

    Fig. 1. (a) EDS-mapping spectrum of O, Ni, Sr in Sr:NiOx film. (b) SEM images of NiOx, Sr:NiOx and NiOx/Sr:NiOx films, and SEM cross-section image of the device. XPS spectrum of Ni in(c)NiOx and(d)Sr:NiOx films.

    Energy level alignment of NiOx,Sr:NiOx,and perovskite film (PVSK) is important for the analysis of carrier transport from the perovskite active layer to the HTL, so we first used the UV-vis absorption spectra and the UPS(Figs.S5 and S6)to measure the energy level structure of all the functional layers.Through UV-vis measurement, we found that the absorbance of Sr:NiOxand pure NiOxHTL are similar (Fig. S5a), and the calculated band gaps(Eg)are also very close to each other(Fig. S5b). This means that Sr doping does not change light absorbance of the NiOxHTL.Figure S6 shows cut-off energy and valence band edge in NiOx,Sr:NiOxand perovskite thinfilm by UPS measurements,we can further calculate the Fermi level and valence band maximum(VBM)of semiconductors.The work function is the difference between the Fermi level and the vacuum level, so the work function is defined asφ=21.21-Ecutoff.[44]According to the formula,φof NiOxis 5.15 eV,φof Sr:NiOxis 5.21 eV,andφof PVSK is 5.12 eV.The valence band edge is the difference between the Fermi level and the VBM value,so the VBM values of NiOx,Sr:NiOxand perovskite film are-6.00 eV,-6.02 eV, and-6.36 eV,respectively. The energy level structure of hole transport layers and perovskite calculated from the relevant test results is shown in Fig. 2(a). The results indicate that the Fermi energy level decreases with Sr doping. This is consistent with the semiconductor doping law and previously report.[20]We also notice that the Fermi energy level of NiOxis 0.06 eV higher than Sr:NiOx,after contacting of these two films,band bending at the interface will happen and the bending direction is shown in Fig. 2(b), which is helpful for transportation of holes. Moreover, based on the same band bending rules, the photogenerated holes in the perovskite films could also be effectively extracted by the NiOxfilm. Compared to the single layer HTL, the NiOx/Sr:NiOxbilayer HTL could produce an additional driving force for hole transport, which may accelerate carrier transport and inhibit interface recombination at HTL/PVSK.

    Fig. 2. Energy level structure of HTLs and perovskite film (a) before and (b) after contacting, and the transport of photogenerated holes in different films.

    TheJ-Vcurves of PSCs based on different HTLs are presented in Fig. 3, and the corresponding photovoltaic parameters are listed in Table 1. The device using the NiOx/Sr:NiOxbilayer HTL shows the best performance, exhibiting a PCE of 18.44%, aVocof 1.01 V, a short circuit current density(Jsc)of 22.81 mA·cm-2, and a fill factor(FF)of 0.80. Compared to the devices employing single layer HTLs,the device based on the bilayer HTL has evident advantages in all photovoltaic parameters. The result demonstrates that the bilayer HTL could realize our expectations that proper design of energy level alignment in HTL is useful to improve charge transfer and to decrease carrier recombination. Under the driving force of electric field generated in the bilayer HTL, the hole transport efficiency could be greatly improved. Additionally,we find that the device based on the single-layer Sr-doped NiOxHTL could enhance the performance compared to the one using the NiOxHTL, especially on the parameters ofJscand FF because of the better conductivity of the doped film.However, itsVocdoes not increase obviously, which should be ascribed to some additional defects in the Sr:NiOxfilm introduced by the doping process, these defects would play as carrier recombination sites at HTL/perovskite interface. In regard to the NiOx/Sr:NiOxbilayer HTL, the doped film does not directly contact with the perovskite layer,so no additional defects are introduced to the interface. In Fig. 3(a), all the three devices have negligible hysteresis, presenting the advantage of inverted PSCs. The IPCE and integratedJscare shown in Fig. 3(b), the integratedJscdata are close to the values shown in theJ-Vcurves. Figures 3(c) and S7 show the statistic results of PCE,Jsc,Voc, and FF,respectively. We find that the bilayer HTL presents apparent advantage in PCE,Jsc, and FF with higher average values and narrow distribution, compared to the other two HTLs. Figure 3(d) shows the great working stability of the best performance PSC using NiOx/Sr:NiOxHTL without encapsulation,the PCE maintains 89% after 192 h. The effect of Sr concentration in the NiOx/Sr:NiOxbilayer HTL has been investigated,as shown in Fig. S8 and Table S2. The ratio for Sr/Ni is closely related to device performance. As the Sr/Ni increases from 0 to 8%,photovoltaic performance enhances apparently because of the improved electrical property of the Sr:NiOxfilm. However,as the ratio of Sr/Ni reaches 10%,the device performance decreases slightly,which may be induced by the lattice disorder as the over-doping process.

    Table 1. Photovoltaic parameters of the champion inverted planar PSCs based on different HTLs.

    Fig.3. (a)The J-V curves of champion PSCs based on different HTLs under reverse and forward scans. (b)IPCE spectrum and integrated Jsc.(c)Statistic results of PCE of the devices based on varied HTLs. (d)Normalized PCE as a function of time(hour)for best performance PSC using the NiOx/Sr:NiOx HTL without encapsulation.

    In order to understand carrier dynamics at interfaces,the film was tested by steady-state photoluminescence (PL). We prepared the samples with the structure of FTO/HTL/PVSK,using the same preparation method as the solar cells. We find that the emission peak of the Sr:NiOx-based film has an overall decrease compared to the emission peak of NiOxbased one, as shown in Fig. 3(a). This decrease may be induced by the better carrier extraction of Sr:NiOxfrom the perovskite film as its enhanced conductivity,but it could also originate from the increased non-radiative carrier recombination as the introduction of additional defects in the Sr:NiOxfilm.However, the emission peak decrease of the NiOx/Sr:NiOxbased film should be induced by the enhanced charge transport and inhibits carrier recombination at the HTL/perovskite interface,because it is NiOxbut not Sr:NiOxthat directly contacts with the perovskite film.[45]Time-resolved photoluminescence spectroscopy (TRPL) is further used to study the charge carrier transport, the curves in Fig. 4(b) can be fitted with the equation

    whereτ1andτ2are the life parameters of fast decay and slow decay, respectively. The fast decay process should be attributed to charge transfer at HTL/perovskite interface, and the slow decay should be ascribed to bimolecular radiative recombination.[46]We summarized the life parameters of the devices based on varied HTLs in Table 2. For comparison ofτ1,we know that the value of NiOx/Sr:NiOx-based film is the shortest. A shortτ1value represents effective hole extraction at the HTL/PVSK layer.[47]In addition,the values ofτ2are all above 400 ns,indicating the low level of defects in perovskite films and a slow carrier radiative recombination velocity.

    Table 2. Parameters of the TRPL lifetime from fitting curves of themeasurements.

    In order to determine the effect of Sr doping on the density of defect states in NiOxfilms, a dark current-voltage(IV) test was performed using the space charge limited current(SCLC)model,as shown in Fig.4(c). We can see that the first half of the linear relationship is in the ohmic region. When the applied voltage exceeds a certain value, the current increases rapidly. The value of the inflection point is named as the trap filled limit voltage (VTFL).[48]Obviously,VTFLof the NiOx/Sr:NiOxfilm is 0.735 V, which is lower than those of both NiOxand Sr:NiOx, indicating a lower density of defect states. The lowVTFLoriginates from the improved charge transfer process at HTL/perovskite interface. Moreover, the recombination mechanism is further studied by measuring the ideal factor associated with a specific recombination characteristic as a function ofVoc. Figure 4(d) shows the dependence of light intensity onVoc. The curve is approximately fitted as a linear function curve. The ideal factors of the devices based on NiOx, Sr:NiOx, and NiOx/Sr:NiOxare 1.64,1.48,and 1.31,respectively. The ideality factor closer to 1 indicates a lower single-molecule Shockley-Read-Hall (SRH)recombination. This result is consistent with the increased FF values by introducing the bilayer HTL,induced by the enhanced charge extraction and decreased carrier recombination at HTL/perovskite interface.[49]Furthermore,EIS delivers carriers transferring and recombination behaviors, as shown in Fig. 4(e). Parameters fitted are summarized in Table S3.The transport resistanceRtr, series resistanceRs, and the recombination resistanceRrecat the interface of PVSK/HTLs are displayed.[47]It can be observed clearly thatRrecof the NiOx/Sr:NiOxbased device increases to 77428 Ω, which is much higher than the others. Compared with the control device,RsandRtrdo not change significantly based on different HTLs. This indicates that NiOx/Sr:NiOxhomojunction HTL devices restrain the recombination at the interface and accelerate the transfer of charge carriers,[48]EIS results are in accordance with the other measurements stated above.

    Fig.4. (a)Steady-state photoluminescence(PL)spectra,and(b)transient time-resolved photoluminescence spectrum of FTO/HTL/perovskite.(c)Dark I-V curves of the HTL-only devices. (d)Light intensity dependent Voc for inverted planar PSCs based on different HTLs. (e)Nyquist plots of devices based on different HTLs under a bias of 0.6 V.

    4. Conclusion

    The bilayer hole transport layer we constructed for inverted planar PSC is composed of NiOx/Sr:NiOx. Sr doping significantly increases the ratio of Ni3+/Ni2+in the Sr:NiOxfilm, thereby increasing its charge transfer property. The Fermi level of Sr:NiOxdecreases compared to NiOxand the band direction after contacting with NiOxcould produce a driving force for holes extracting and reduce the recombination at the interface between the perovskite and HTL layers.Based on this bilayer strategy, we obtain an inverted planar PSC with PCE of 18.44%,Jscof 22.81 mA·cm-2and FF of 0.80,higher than the ones using NiOxor Sr:NiOx. This strategy provides a new idea for the future design of novel hole transport layers,which is effective to make high performance solar cells.

    Acknowledgement

    This work was supported by the Fundamental Research Funds for the Central Universities, China (Grant No.2021QN1110).

    猜你喜歡
    趙亮學(xué)文
    包學(xué)文
    包學(xué)文
    收藏與投資(2022年7期)2022-08-02 08:28:08
    某MPV地板加速振動(dòng)優(yōu)化與控制
    《那一刻,我長大了》教學(xué)設(shè)計(jì)
    虎子的周日
    十幾歲(2021年5期)2021-11-22 23:37:22
    A well-balanced positivity preserving two-dimensional shallow flow model with wetting and drying fronts over irregular topography *
    Interannual variation of nutrients along a transect across the Kuroshio and shelf area in the East China Sea over 40 years*
    Simulating the responses of a low-trophic ecosystem in the East China Sea to decadal changes in nutrient load from the Changjiang (Yangtze) River*
    奔跑的月光
    作品(2017年7期)2017-07-31 20:11:24
    趙亮要給我介紹女朋友
    鴨綠江(2016年5期)2016-04-29 13:06:31
    国产亚洲欧美精品永久| 19禁男女啪啪无遮挡网站| 欧美日韩福利视频一区二区| 久热这里只有精品99| 精品不卡国产一区二区三区| 国产亚洲精品综合一区在线观看 | 麻豆国产av国片精品| 欧美乱妇无乱码| 99在线视频只有这里精品首页| bbb黄色大片| 桃色一区二区三区在线观看| 亚洲天堂国产精品一区在线| 夜夜躁狠狠躁天天躁| 人妻久久中文字幕网| 国产精品永久免费网站| 一级毛片高清免费大全| 日本成人三级电影网站| 女人高潮潮喷娇喘18禁视频| 美女高潮喷水抽搐中文字幕| 免费观看人在逋| 午夜福利在线观看吧| 亚洲国产欧美一区二区综合| 精品一区二区三区四区五区乱码| 国产精品永久免费网站| 成人永久免费在线观看视频| 又黄又爽又免费观看的视频| www.自偷自拍.com| 88av欧美| 一区二区三区精品91| 久久草成人影院| 可以在线观看毛片的网站| 美女国产高潮福利片在线看| 免费看a级黄色片| 精品国产美女av久久久久小说| 亚洲av电影在线进入| 视频在线观看一区二区三区| 91麻豆av在线| av电影中文网址| 夜夜看夜夜爽夜夜摸| 亚洲国产精品sss在线观看| 男女床上黄色一级片免费看| 丝袜人妻中文字幕| 欧美中文综合在线视频| 欧美精品啪啪一区二区三区| 亚洲成人精品中文字幕电影| 精品国产乱码久久久久久男人| 国产成人影院久久av| 特大巨黑吊av在线直播 | 免费看美女性在线毛片视频| 亚洲成av人片免费观看| 桃色一区二区三区在线观看| 欧美黑人欧美精品刺激| 99国产精品99久久久久| 久久婷婷人人爽人人干人人爱| 伊人久久大香线蕉亚洲五| 精品国产国语对白av| 高清在线国产一区| 男人操女人黄网站| 欧美午夜高清在线| 一级a爱视频在线免费观看| 九色国产91popny在线| 中国美女看黄片| 国产91精品成人一区二区三区| 国产激情偷乱视频一区二区| 99热6这里只有精品| 亚洲熟妇熟女久久| 国产黄片美女视频| 法律面前人人平等表现在哪些方面| 久久性视频一级片| 亚洲精品中文字幕一二三四区| 国产精品一区二区三区四区久久 | 一进一出好大好爽视频| 久久人人精品亚洲av| 亚洲精品一卡2卡三卡4卡5卡| 日韩精品青青久久久久久| 美女高潮喷水抽搐中文字幕| 最近在线观看免费完整版| 天堂影院成人在线观看| 手机成人av网站| 成人三级黄色视频| cao死你这个sao货| 成人18禁在线播放| 亚洲欧美精品综合一区二区三区| 在线永久观看黄色视频| 国产成人影院久久av| svipshipincom国产片| 日韩精品中文字幕看吧| 国产精品香港三级国产av潘金莲| 亚洲熟妇熟女久久| 日韩大尺度精品在线看网址| 超碰成人久久| 亚洲国产精品成人综合色| 精品国产超薄肉色丝袜足j| 久久青草综合色| 俺也久久电影网| 日韩欧美一区视频在线观看| 亚洲最大成人中文| 青草久久国产| 精品国产一区二区三区四区第35| 久久精品国产99精品国产亚洲性色| 欧美av亚洲av综合av国产av| 精品国内亚洲2022精品成人| 啦啦啦 在线观看视频| 啦啦啦观看免费观看视频高清| 欧美黄色片欧美黄色片| 日韩欧美 国产精品| 最新美女视频免费是黄的| 国产区一区二久久| 亚洲成人久久爱视频| 欧美乱妇无乱码| 又大又爽又粗| 欧美日韩中文字幕国产精品一区二区三区| 这个男人来自地球电影免费观看| 国产又黄又爽又无遮挡在线| 少妇粗大呻吟视频| 99国产综合亚洲精品| 成人国语在线视频| 一级黄色大片毛片| АⅤ资源中文在线天堂| 国产亚洲欧美98| 国产伦在线观看视频一区| 亚洲国产毛片av蜜桃av| 国产伦人伦偷精品视频| 久久久久精品国产欧美久久久| 精品少妇一区二区三区视频日本电影| 长腿黑丝高跟| 欧美黄色淫秽网站| 久久国产精品影院| 国产精品九九99| x7x7x7水蜜桃| 国产乱人伦免费视频| 婷婷六月久久综合丁香| 久久九九热精品免费| 日日夜夜操网爽| ponron亚洲| 亚洲熟妇中文字幕五十中出| 久久久久九九精品影院| 久久久久精品国产欧美久久久| 99久久国产精品久久久| 老司机深夜福利视频在线观看| 国产精品综合久久久久久久免费| 国产精品九九99| 99久久精品国产亚洲精品| 亚洲人成网站高清观看| 人人妻,人人澡人人爽秒播| 99精品欧美一区二区三区四区| 男人操女人黄网站| 一级毛片高清免费大全| 久久精品夜夜夜夜夜久久蜜豆 | 久久人妻av系列| 国产激情欧美一区二区| 中文字幕av电影在线播放| 99国产精品99久久久久| 亚洲专区中文字幕在线| 亚洲国产精品成人综合色| 精品一区二区三区四区五区乱码| 在线国产一区二区在线| 午夜福利欧美成人| 大型av网站在线播放| 午夜亚洲福利在线播放| 欧美成人免费av一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 一本大道久久a久久精品| 国产午夜福利久久久久久| 91成人精品电影| 日本一本二区三区精品| ponron亚洲| 色婷婷久久久亚洲欧美| xxx96com| 国产视频内射| 国产精品久久久久久人妻精品电影| 久热这里只有精品99| 妹子高潮喷水视频| 午夜福利在线在线| av中文乱码字幕在线| 亚洲第一青青草原| 国产精品一区二区三区四区久久 | 99精品欧美一区二区三区四区| 男人舔女人下体高潮全视频| 久久久久久久久久黄片| 18禁国产床啪视频网站| 最近最新免费中文字幕在线| 欧美黄色淫秽网站| 天堂影院成人在线观看| 最新美女视频免费是黄的| 在线观看舔阴道视频| 日韩精品免费视频一区二区三区| a级毛片在线看网站| 精品国产乱子伦一区二区三区| 欧美成人午夜精品| 国内毛片毛片毛片毛片毛片| 久久久久国产一级毛片高清牌| 亚洲午夜理论影院| 亚洲成av片中文字幕在线观看| a在线观看视频网站| 久久午夜综合久久蜜桃| 国产野战对白在线观看| 成在线人永久免费视频| 亚洲avbb在线观看| 日本免费一区二区三区高清不卡| 国产一区二区激情短视频| 女警被强在线播放| 美女国产高潮福利片在线看| 夜夜躁狠狠躁天天躁| 日日摸夜夜添夜夜添小说| 国产爱豆传媒在线观看 | 亚洲狠狠婷婷综合久久图片| 亚洲av电影在线进入| 美女免费视频网站| 欧美性猛交╳xxx乱大交人| av视频在线观看入口| 久久国产精品人妻蜜桃| 国产午夜福利久久久久久| 俄罗斯特黄特色一大片| 成人三级做爰电影| 国内少妇人妻偷人精品xxx网站 | 搡老岳熟女国产| 免费看美女性在线毛片视频| 50天的宝宝边吃奶边哭怎么回事| 自线自在国产av| 1024视频免费在线观看| 国产1区2区3区精品| 97人妻精品一区二区三区麻豆 | 在线av久久热| 亚洲成人久久性| 长腿黑丝高跟| 亚洲avbb在线观看| 亚洲国产精品合色在线| 色哟哟哟哟哟哟| 久久中文字幕一级| 亚洲第一欧美日韩一区二区三区| 香蕉久久夜色| 欧美午夜高清在线| 亚洲人成伊人成综合网2020| 91在线观看av| 天堂动漫精品| 亚洲av电影不卡..在线观看| 老熟妇仑乱视频hdxx| 欧美在线一区亚洲| 淫妇啪啪啪对白视频| 99re在线观看精品视频| 99久久无色码亚洲精品果冻| 午夜成年电影在线免费观看| 亚洲 欧美 日韩 在线 免费| 99久久无色码亚洲精品果冻| √禁漫天堂资源中文www| 久久精品人妻少妇| 久久久久久久精品吃奶| 午夜日韩欧美国产| 午夜a级毛片| 亚洲欧美激情综合另类| 夜夜躁狠狠躁天天躁| 伊人久久大香线蕉亚洲五| 色播亚洲综合网| 正在播放国产对白刺激| 大型黄色视频在线免费观看| 中国美女看黄片| 脱女人内裤的视频| 少妇被粗大的猛进出69影院| 中文字幕精品亚洲无线码一区 | 天天躁狠狠躁夜夜躁狠狠躁| a级毛片在线看网站| 一本综合久久免费| 亚洲av美国av| 国产高清videossex| 夜夜看夜夜爽夜夜摸| 国产精品一区二区三区四区久久 | 国产成人影院久久av| 91九色精品人成在线观看| 国产一区在线观看成人免费| 日韩 欧美 亚洲 中文字幕| 777久久人妻少妇嫩草av网站| av免费在线观看网站| 伊人久久大香线蕉亚洲五| 搡老岳熟女国产| 国产亚洲欧美在线一区二区| 国产精品久久久久久人妻精品电影| 欧美日韩福利视频一区二区| 国产日本99.免费观看| 亚洲第一电影网av| 国产成+人综合+亚洲专区| 久热爱精品视频在线9| 精品久久久久久,| 国产欧美日韩精品亚洲av| 黄色片一级片一级黄色片| 国产伦在线观看视频一区| 2021天堂中文幕一二区在线观 | 亚洲午夜精品一区,二区,三区| 少妇被粗大的猛进出69影院| a级毛片在线看网站| 最新美女视频免费是黄的| 999精品在线视频| 午夜免费成人在线视频| 中国美女看黄片| 正在播放国产对白刺激| 999久久久国产精品视频| 性色av乱码一区二区三区2| 最新美女视频免费是黄的| 国内揄拍国产精品人妻在线 | 国产片内射在线| 国语自产精品视频在线第100页| 一进一出好大好爽视频| 久久久久久亚洲精品国产蜜桃av| 成人av一区二区三区在线看| 日本a在线网址| 午夜久久久在线观看| 在线观看www视频免费| 免费高清在线观看日韩| 国产激情久久老熟女| 每晚都被弄得嗷嗷叫到高潮| 亚洲欧美一区二区三区黑人| 精品一区二区三区av网在线观看| 村上凉子中文字幕在线| 亚洲一码二码三码区别大吗| 精品国产国语对白av| www日本黄色视频网| a在线观看视频网站| 国产亚洲精品av在线| 久久亚洲精品不卡| 首页视频小说图片口味搜索| 亚洲三区欧美一区| 91成年电影在线观看| 精品日产1卡2卡| 日韩中文字幕欧美一区二区| 丰满的人妻完整版| 欧洲精品卡2卡3卡4卡5卡区| 人人妻人人看人人澡| 午夜免费成人在线视频| 日本 欧美在线| 免费观看精品视频网站| 巨乳人妻的诱惑在线观看| 国产麻豆成人av免费视频| 曰老女人黄片| 亚洲男人天堂网一区| 午夜精品久久久久久毛片777| 久久久久免费精品人妻一区二区 | 天天添夜夜摸| 在线观看免费午夜福利视频| 精品国产超薄肉色丝袜足j| 欧美日韩亚洲综合一区二区三区_| 中文字幕最新亚洲高清| av中文乱码字幕在线| 亚洲精品久久国产高清桃花| 色老头精品视频在线观看| 亚洲欧美一区二区三区黑人| 久久精品国产综合久久久| 国产蜜桃级精品一区二区三区| 国产欧美日韩一区二区精品| 麻豆久久精品国产亚洲av| 国产一区二区三区在线臀色熟女| 国内精品久久久久久久电影| 欧美日韩精品网址| 国产精品免费一区二区三区在线| 国产成人一区二区三区免费视频网站| 婷婷精品国产亚洲av在线| 男人的好看免费观看在线视频 | 国产熟女xx| 国产免费av片在线观看野外av| 欧美日韩一级在线毛片| 国产精品一区二区精品视频观看| 久久亚洲精品不卡| 日韩大码丰满熟妇| 两性午夜刺激爽爽歪歪视频在线观看 | 久9热在线精品视频| 中文字幕高清在线视频| 久久精品aⅴ一区二区三区四区| 制服诱惑二区| 婷婷精品国产亚洲av| 成在线人永久免费视频| 观看免费一级毛片| 免费电影在线观看免费观看| 美女扒开内裤让男人捅视频| 亚洲美女黄片视频| 欧美在线一区亚洲| 国产乱人伦免费视频| 国产精品自产拍在线观看55亚洲| 欧美另类亚洲清纯唯美| 少妇 在线观看| a级毛片在线看网站| 女人爽到高潮嗷嗷叫在线视频| 在线永久观看黄色视频| 一本精品99久久精品77| 亚洲全国av大片| 成人午夜高清在线视频 | 夜夜看夜夜爽夜夜摸| 嫁个100分男人电影在线观看| 国产激情久久老熟女| 97人妻精品一区二区三区麻豆 | 国产片内射在线| 午夜福利一区二区在线看| 老司机午夜十八禁免费视频| 99国产精品一区二区三区| 久久久久久国产a免费观看| 精品久久久久久成人av| 在线永久观看黄色视频| 亚洲国产精品久久男人天堂| 国产精品影院久久| 狂野欧美激情性xxxx| 欧美不卡视频在线免费观看 | 午夜免费观看网址| 丰满人妻熟妇乱又伦精品不卡| 91成人精品电影| 大型av网站在线播放| 色老头精品视频在线观看| 国产一区二区在线av高清观看| 成人亚洲精品av一区二区| 99久久久亚洲精品蜜臀av| 亚洲久久久国产精品| 亚洲欧洲精品一区二区精品久久久| 欧美激情久久久久久爽电影| 一个人观看的视频www高清免费观看 | 黄色女人牲交| 免费在线观看成人毛片| 午夜精品在线福利| 精品日产1卡2卡| 成人av一区二区三区在线看| 午夜两性在线视频| av欧美777| 波多野结衣高清作品| 人人妻人人澡欧美一区二区| 男女下面进入的视频免费午夜 | 老鸭窝网址在线观看| 真人一进一出gif抽搐免费| 日韩有码中文字幕| 欧美中文综合在线视频| 精品卡一卡二卡四卡免费| 亚洲激情在线av| 99在线视频只有这里精品首页| 男男h啪啪无遮挡| 国产一区二区三区视频了| 99久久无色码亚洲精品果冻| 两个人看的免费小视频| 伊人久久大香线蕉亚洲五| 亚洲国产欧美一区二区综合| 黄色丝袜av网址大全| 久久精品91蜜桃| 国产欧美日韩精品亚洲av| 国产麻豆成人av免费视频| 色综合婷婷激情| 黄色 视频免费看| 国产私拍福利视频在线观看| 欧美性猛交╳xxx乱大交人| 日日夜夜操网爽| 黑人欧美特级aaaaaa片| 欧美性长视频在线观看| www.自偷自拍.com| 久久久久久久久久黄片| 国产精品 国内视频| 国产亚洲av嫩草精品影院| 久久性视频一级片| 精品欧美国产一区二区三| 国产亚洲欧美精品永久| 日日摸夜夜添夜夜添小说| 一进一出抽搐gif免费好疼| 午夜福利免费观看在线| e午夜精品久久久久久久| 淫妇啪啪啪对白视频| 国产精品国产高清国产av| 午夜福利一区二区在线看| 两人在一起打扑克的视频| 日韩精品中文字幕看吧| 亚洲国产精品久久男人天堂| 白带黄色成豆腐渣| 欧美三级亚洲精品| 日本 av在线| 一级a爱视频在线免费观看| 午夜福利成人在线免费观看| 人妻丰满熟妇av一区二区三区| 免费在线观看视频国产中文字幕亚洲| 一区二区三区激情视频| 黄色成人免费大全| 久久中文字幕人妻熟女| 亚洲欧美日韩高清在线视频| 亚洲精品久久成人aⅴ小说| 成年免费大片在线观看| netflix在线观看网站| 久久精品国产清高在天天线| 精品午夜福利视频在线观看一区| 国产不卡一卡二| 亚洲成a人片在线一区二区| 国产精品综合久久久久久久免费| 免费搜索国产男女视频| 欧美性长视频在线观看| 欧美性猛交╳xxx乱大交人| 国产精品野战在线观看| 丰满的人妻完整版| 国产激情久久老熟女| 日本五十路高清| 啦啦啦观看免费观看视频高清| 国产爱豆传媒在线观看 | 亚洲av成人av| 成人欧美大片| 国产亚洲精品久久久久5区| 777久久人妻少妇嫩草av网站| 欧美日韩乱码在线| 国产精品亚洲一级av第二区| 一级作爱视频免费观看| 亚洲精品国产区一区二| 给我免费播放毛片高清在线观看| 一级毛片高清免费大全| 国产成人精品久久二区二区91| 一本综合久久免费| 叶爱在线成人免费视频播放| 国产亚洲精品一区二区www| 老鸭窝网址在线观看| 亚洲一区二区三区色噜噜| 十八禁人妻一区二区| 欧美精品亚洲一区二区| 久久精品国产亚洲av高清一级| 亚洲 欧美 日韩 在线 免费| 久久天躁狠狠躁夜夜2o2o| 成人国产综合亚洲| 一个人观看的视频www高清免费观看 | xxxwww97欧美| 久久久久久人人人人人| 麻豆国产av国片精品| 麻豆久久精品国产亚洲av| 日韩大码丰满熟妇| 999精品在线视频| 精品欧美国产一区二区三| 成人特级黄色片久久久久久久| 最近最新免费中文字幕在线| 侵犯人妻中文字幕一二三四区| 国产欧美日韩精品亚洲av| 午夜久久久久精精品| 90打野战视频偷拍视频| 亚洲午夜理论影院| 国产精品av久久久久免费| 黑人操中国人逼视频| 成人免费观看视频高清| 亚洲专区字幕在线| 亚洲一码二码三码区别大吗| 岛国在线观看网站| av超薄肉色丝袜交足视频| 亚洲一区二区三区色噜噜| 给我免费播放毛片高清在线观看| 亚洲精品中文字幕在线视频| 亚洲色图 男人天堂 中文字幕| 丝袜在线中文字幕| 校园春色视频在线观看| 午夜福利一区二区在线看| 欧美另类亚洲清纯唯美| 国产不卡一卡二| av福利片在线| 国产精品1区2区在线观看.| 久久精品国产亚洲av高清一级| 亚洲av成人一区二区三| avwww免费| 欧美成人免费av一区二区三区| 亚洲av成人不卡在线观看播放网| 久久久国产成人免费| 在线观看舔阴道视频| 听说在线观看完整版免费高清| 中文字幕精品免费在线观看视频| 欧美zozozo另类| 国产精品1区2区在线观看.| 免费人成视频x8x8入口观看| 国产爱豆传媒在线观看 | 女警被强在线播放| 精品人妻1区二区| 亚洲精品国产一区二区精华液| 91麻豆精品激情在线观看国产| 色尼玛亚洲综合影院| 一进一出好大好爽视频| 久久久久久久久中文| 久久精品影院6| 99久久99久久久精品蜜桃| 51午夜福利影视在线观看| 怎么达到女性高潮| 视频区欧美日本亚洲| 韩国av一区二区三区四区| 大型av网站在线播放| 一级a爱视频在线免费观看| 精品久久久久久久末码| 欧美又色又爽又黄视频| 首页视频小说图片口味搜索| 美女午夜性视频免费| 欧美国产日韩亚洲一区| 日韩三级视频一区二区三区| 成人欧美大片| 黑丝袜美女国产一区| 成人特级黄色片久久久久久久| 久99久视频精品免费| 韩国精品一区二区三区| 可以免费在线观看a视频的电影网站| 老汉色av国产亚洲站长工具| 亚洲av成人一区二区三| 亚洲精品中文字幕一二三四区| 又黄又粗又硬又大视频| 99riav亚洲国产免费| 一区二区三区高清视频在线| 99久久国产精品久久久| 亚洲第一av免费看| 精品国产乱子伦一区二区三区| 色综合站精品国产| 国产伦一二天堂av在线观看| 久久精品国产亚洲av高清一级| 中文字幕高清在线视频| 又大又爽又粗| 欧美日韩黄片免| 在线观看日韩欧美| 女人高潮潮喷娇喘18禁视频| 久久久久久久久免费视频了| 亚洲精品国产精品久久久不卡| 亚洲中文日韩欧美视频| 免费女性裸体啪啪无遮挡网站| 免费在线观看影片大全网站| 国内精品久久久久久久电影| 精华霜和精华液先用哪个| 精品久久久久久久久久久久久 | 亚洲,欧美精品.| 免费观看精品视频网站| 国产亚洲欧美在线一区二区| 韩国av一区二区三区四区| 久久久国产成人免费|