• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A DFT/TD-DFT study of effect of different substituent on ESIPT fluorescence features of 2-(2′-hydroxyphenyl)-4-chloromethylthiazole derivatives

    2022-03-12 07:49:42ShenYangSu蘇申陽XiuNingLiang梁秀寧andHuaFang方華
    Chinese Physics B 2022年3期

    Shen-Yang Su(蘇申陽), Xiu-Ning Liang(梁秀寧), and Hua Fang(方華)

    Department of Chemistry and Material Science,College of Science,Nanjing Forestry University,Nanjing 210037,China

    Keywords: excited-state intramolecular proton transfer(ESIPT),TD-DFT,substitution

    1. Introduction

    As a typical weak interaction, hydrogen bond (Hbond) plays a significant part in biology, chemistry, and physics, especially in many photochemical and photophysical processes.[1-6]Proton transfer (PT) usually occurs in molecules with acidic and basic groups, and the H-bond between the acidic group and basic group i acts as the bridge of proton transfer. Since the excited state proton transfer process was reported first by Weller,[7]a strong upsurge to study the excited state intramolecular and intermolecular proton transfer has sustained for decades.

    Excited-state intramoecular proton transfer(ESIPT)reaction is a sub-picosecond ultrafast photo-induced tautomerization process,in which the ground-state normal form(N)converts into the corresponding tautomer form(T)by undergoing a four-stage photocycle.[8-10]The transformation between N and T results in great changes in the physical and chemical properties of the compound, especially in the spectral behaviors. In the photocycle process,dual fluorescent emission and large Stokes shift are observed in ESIPT compound. Based on the unique photophysical features, ESIPT molecules are widely applied to photostabilizer,sensing technology,molecular switches,and laser dyes.[11-17]

    The fluorescent properties of ESIPT compound are obviously affected by the media environment, such as pH, solvent polarity, solvent type, viscosity,etc. Many researchers have performed a large number of studies on the effects of surrounding media on ESIPT process and luminescent properties.[18-22]In addition,the changes of geometrical structures of ESIPT compound can also control the spectral features. The substitution of functional groups may provide an effective way to fine-tune the ESIPT process and photophysical properties of compounds.[23-26]According to the previous reports, Maet al.[27]studied the substituent effect on ESIPT process of 1-(aclamino)-anhraquinones. Takagiet al.[28]probed the ESIPT fluorescence properties of methoxysubstituted 2-hydroxyphenylbenzimidazole. Songet al.[29]investigated the effect of different substiuents on ESIPT of 3-hydroxychromone. Zhanget al.[30]examined the relationship between the substituted position and ESIPT fluorescence features of 2-(2′-hydroxyphenyl)imidazo[1,2-a]-pyridine(HPIP).Zhanget al.[31]synthesized a series of new NH-type pyrroleindole compounds and discussed the effects of different functional groups on the ESIPT process and photophysical properties. Obviously,an approporiate substituent can greatly improve the properties of ESIPT materials. Therefore,structural modification with different functional groups can usually be used to design and develop new ESIPT compounds with good applications.

    Recently, a series of thiazole-based organic molecules[32-37]was synthesized experimentally and successfully used as fluorescent chemosensors with high selectivity in identifying metal ions (e.g., Ga3+, Al3+, Zn2+, Cu2+) and anions (e.g., CN-, F-, I-, HSO-4, H2P2O3-7). The diversities of fluorescence recognition functions of the parent thiazole molecule are due to the chemical modification in the positions 2 and 4 of the thiazole ring. Inspired by the previous reports, we investigate the effects of different substituents on the ESIPT process and photophysical properties of fluorescent probe molecule in the present work. We design four novel ESIPT compounds via chemical substitution based on 2-(2′-hydroxyphenyl)-4-chloromethylthiazole(HCT).[33]Two electron-donating groups(CH3,OH)and two electron-withdrawing groups (CF3, CHO) are introduced in the para position of hydroxyl group in the benzene ring of HCT, and denoted as R-HCT. The structures of the designed probes R-HCT are shown in Fig. 1. We employ the density functional theory (DFT) and time-dependent DFT (TD-DFT)to investigate the effects of different substituents on the intramolecular H-bond,the absorption/fluorescence spectra and ESIPT process of R-HCT. Detailed calculation results, such as structural parameter,vibrational spectra,topology analysis,reduced density gradient analysis, frontier molecular orbital,ESIPT process, and photophysical properties are investigated as follows. We hope our studies may provide much useful information for the design of ESIPT-based fluorescent probes with better photophysical properties.

    Fig.1. Structures of R-HCT(R:H,CH3,OH,CF3,CHO).

    2. Computational details

    In this work,all the calculations were performed by using the Gaussian 09 package.[38]The ground-state (S0) and the first excitedstate (S1) normal form (N), transition state (TS),and tautomer form (T) of R-HCT (R: CH3, OH, CF3, CHO)molecules were fully optimized by using the DFT and TDDFT methods with B3PW91 functional[39-41]and 6-31+G(d,p) basis set. The frequency calculations were carried out at the same computational level to verify the minima(N and T)and transition state, which have no imaginary frequency and only one imaginary frequency, respectively. Acetonitrile solvent and the integral equation polarizable continuum model(IEFPCM)[42-44]were chosen in order to be consistent with the experimental environment.[33]The absorption and fluorescence emission spectra were simulated at a TD-B3PW91/6-31+G(d,p)level based on the optimized S0structure and optimized S1structure, respectively. The topology analysis and the reduced density gradient isosurfaces were performed by using the Multiwfn program[45]and VMD program,[46]respectively.

    3. Results and discussion

    3.1. Optimized structures and infrared spectra

    All the structures of HCT derivatives R-HCT (R: CH3,OH,CF3,CHO)in the normal(N)and tautomer(T)forms in the S0and S1states are completely optimized and shown in Fig.2. The corresponding structural parameters related to intramolecular H-bond in R-HCT,such as bond lengths O1-H2,H2-N3,and bond angle O1-H2-N3,are listed in Table 1.

    Fig.2. Optimized geometries of normal form(N)and tautomer form(T)of R-HCT(R:CH3,OH,CF3,CHO)in S1 state.

    For the normal forms of CH3-HCT and OH-HCT compound,it can be seen in Table 1 that the bond distances of O1-H2and H2-N3,and the bond angle O1-H2-N3in the S0state are 0.996 °A,1.703 °A,147.9°,and 0.995 °A,1.709 °A,147.8°respectively.Comparing with HCT,[47]the H2-N3bonds and the angles O1-H2-N3of CH3-HCT and OH-HCT in the S0state are elongated and shortened, respectively, which means that the intramolecular H-bonds O1-H2...N3of CH3-HCT and OH-HCT in the S0state are weaker than those of HCT. The electron-donating groups CH3and OH evidently weaken the intramolecular H-bond of HCT in the S0state. For the CHOHCT compound and CF3-HCT compound, the H2-N3bond distances and the bond angles O1-H2-N3averagely decrease by 0.024 °A and increase by 0.15°,respectively,compared with the corresponding data of HCT. The shortened H2-N3bond and the enlarged O1-H2-N3angle confirm the existence of the strong intramolecular H-bond O1-H2...N3in CF3-HCT and CHO-HCT compounds in the S0state. However, the effects of different functional groups(CH3,OH,CF3,CHO)on the structure of HCT in the S1state are quite opposite. From Table 1 it follows that the bond distance of H2-N3and bond angle of O1-H2-N3for each of CH3-HCT and OH-HCT are averagely shortened by 0.059 °A and enlarged by 1.1°,respectively, and the corresponding parameters of R-HCT (R: CF3,CHO) are averagely elongated by 0.022 °A and reduced by 0.9°,respectively,compared with those of HCT.These results indicate that the intramolecular H-bond of HCT in the S1state is enhanced by the electron-donating group (CH3, OH) and weakened by the electron-withdrawing group(CF3,CHO).In addition, the O1-H2and H2-N3bond lengths and O1-H2-N3bond angle of R-HCT (R: CH3, OH, CF3, CHO) are in a range of 0.995 °A-1.003 °A, 1.670 °A-1.709 °A, and 147.8°-148.4°in the S0state, and in a range of 1.023 °A-1.057 °A,1.508 °A-1.610 °A, and 150.7°-152.9°in the S1state, respectively. The elongating O1-H2bond, the shortening H2-N3bond,and the enlarging O1-H2-N3bond angle of the R-HCT(R:CH3, OH,CF3, CHO)confirm that the intramolecular Hbond O1-H2...N3are strengthened in the S1state,which will be favorable to occur in the ESIPT process.

    For the R-HCT (R: CH3, OH, CF3, CHO) compounds,the tautomer forms cannot be obtained in the S0state. Each attempt to find the tautomer structures fails. These results suggest that the R-HCT compounds radioatively return to the ground state in the tautomer form, subsequently return to the normal forms in a barrierless manner.

    Table 1. Primary structural parameters(bond length(in unit °A)and bond angle in unit(°))of HCT and its derivatives R-HCT(R:CH3,OH,CF3,CHO)in S0 state and S1 state.

    The changing of intramolecular H-bond of R-HCT (R:CH3, OH, CF3, CHO) can be confirmed by the infrared (IR)vibration spectra of the O1-H2bond (normal form) in the RHCT compounds in acetonitrile(shown in Fig.3). In general,the strengthening or weakening of H-bond corresponds to the red-shift or blue-shift of O1-H2bond stretching vibrational frequency, respectively.[48-50]As shown in Fig. 3, the O1-H2stretching vibrational frequencies for CH3-HCT,OH-HCT,CF3-HCT, and CHO-HCT in the S0state are at 3189 cm-1,3215 cm-1, 3110 cm-1, and 3063 cm-1, respectively. When R-HCT (R: CH3, OH, CF3, CHO) compounds are in the S1state, the corresponding vibrational frequencies are situated on 2153 cm-1, 2266 cm-1, 2680 cm-1, and 2551 cm-1,respectively. The O1-H2stretching vibrational frequencies of HCT replaced by electron-donating group and electronwithdrawing group are slightly blue-shifted and red-shifted in the S0state, respectively, in comparison with the corresponding value of HCT.[47]These results confirm the electrondonating group (CH3and OH) and electron-withdrawing group (CF3, CHO) weaken and strengthen the intramolecular H-bond O1-H2...N3in the S0state,respectively. In the S1state,the substituents have opposite effects on the intramolecular H-bond based on the changes between HCT and R-HCT(R:CH3,OH,CHO,CF3). In addition,the apparent red-shifts 1036 cm-1,949 cm-1,430 cm-1,and 512 cm-1of the O1-H2stretching vibrational frequency of CH3-HCT,OH-HCT,CF3-HCT,and CHO-HCT in the S1state,respectively,represent the strengthening intramolecular H-bond O1-H2...N3,compared with the corresponding IR frequencies in the S0state. The proton might transfer more easily in the S1state than in the S0state. The red-shift values between S0and S1states in CH3-HCT and OH-HCT are larger than those values in R-HCT(R:CHO,CF3),which means that the electron-donating group has stronger effects on enhancing the intramolecular H-bond than electron-withdrawing group. The conclusion obtained by the structural parameters is proved by the analysis of IR vibration.

    Fig.3. IR spectra for R-HCT(R:CH3,OH,CF3,CHO)in the normal form in a region of O1-H2 stretching vibration spectra in S0 state and S1 state.

    3.2. Topology analysis and reduced density gradient analysis

    To further explore the strength of intramolecular H-bond of R-HCT (R: CH3, OH, CF3, CHO), the topological analysis based on the electron density is performed. Topology parameters (ρ(r), ?2ρ(r),V(r),EHB,G(r),H(r), and ELF)are obtained at the bond critical point (BCP, [3,-1] type) between H2atom and N3atom and listed in Table 2. The value of ?2ρ(r)can be used to determine the type of interaction,and the value ofρ(r)andEHBare closely related to the strength of the H-bond.[51]The positive or negative value of ?2ρ(r)represents the closed-shell interaction(e.g.,ionic bond and H-bond)or shared interaction (e.g., covalent bond), respectively. The H-bond strength can be divided into three types based on the value ofρ(r)at BCP:[52](i)weak,ρ(r)≤0.02;(ii)medium,0.02<ρ(r)<0.03; (iii)strong,ρ(r)≥0.03. The bigger the values ofρ(r)andEHBare,the stronger the H-bond is. It can be found in Table 2 that the electron densityρ(r) of R-HCT(R:CH3,OH,CF3,CHO)in the S0and S1states are in a range of 0.0512 a.u.-0.0547 a.u. and 0.0648 a.u.-0.0845 a.u., respectively, and the value of Laplacian ?2ρ(r) in the S0state and the S1state are larger than 0.10 a.u.

    Table 2. Calculated BCP parameters associated with intramolecular H-bond of R-HCT(R:CH3,OH,CF3,CHO)in S0 state and S1 state.

    Fig.4. Scatter plots of S versus sign(λ2)ρ and gradient isosurfaces of R-HCT(R:CH3,OH,CF3,CHO)in S0 state and S1 state.

    These results mean that the strong intramolecular Hbonds exist in the R-HCT(R:CH3,OH,CF3,CHO)in the S0state and S1state, and the H-bond in the S1state is stronger than that in the S0state. The same conclusion is obtained from the value ofEHBof R-HCT. Evidently, the introduction of different substituents gives rise to different effects on the H-bond strength. In the S0state, the electron-donating group(CH3,OH)weakens the intramolecular H-bond of HCT,and the electron-withdrawing group (CF3, CHO) strengthens the corresponding H-bond. In the S1state, the introducing electron-donating group(CH3,OH)and electron-withdrawing group (CF3, CHO) make the intramolecular H-bond of HCT strengthen and weaken,respectively. The above conclusion is consistent with that drawn from the structures.

    We also employ the reduced density gradient (RDG)function to analyze the intramolecular H-bond of R-HCT.The RDG analysis proposed by Johnsonet al.[53]and Garc′?aet al.[54]is based on the electron densityρa(bǔ)nd its reduced gradientS, and can be used to distinguish non-covalent bond interaction. Herein, a real space function sign(λ2)ρis defined,in whichρis the electron density in corresponding region andλ2is the second largest eigenvalue of Hessian matrix ofρ.Large negative or positive value of sign(λ2)ρrepresents the interaction such as H-bond or steric effect, respectively. The near zero value of sign(λ2)ρrepresents weak van der Waals interactions.

    The RDGversussign(λ2)ρof R-HCT(R:CH3,OH,CF3,CHO)in the S0state and S1state are shown in Fig.4. For the S0and S1R-HCT compounds, their spike peaks are located at-0.06<ρ <-0.05 a.u.and-0.09<ρ <-0.06 a.u., respectively, which confirms that the strong intramolecular Hbond O1-H2...N3exists separately in the S0state and S1state,and the intramolecular H-bonds in the S1state are stronger than those in the S0state. In comparison with HCT,[47]the introduced electron-donating/electron-withdrawing group weakens/enhances and enhances/weakens the intramolelcular H-bond of HCT in the S0and S1states, respectively. Based on the non-covalent interaction analysis,the above-mentioned conclusion is affirmed again.

    3.3. Excited-state intramolecular proton transfer

    In order to further study the effects of different substitutents on ESIPT process of HCT, we completely optimize the structure of transition state(TS).The TS structures of R-HCT(R: CH3, OH, CF3, CHO) are verified by frequency calculations as shown in Fig. A1 in Appendix A. The reaction barrier and reverse reaction barrier in the S0state and S1state of the studied compounds are calculated and displayed in Table 3. The corresponding energy diagram for proton transfer in R-HCT is shown in Fig. 5. It is worth noting that only S1tautomer geometries of R-HCT(R:CH3,OH,CF3,CHO)are obtained. All the attempts to obtain the tautomer structures of CH3-HCT, OH-HCT, CF3-HCT, and CHO-HCT fail and end in their corresponding normal structures. This is probably because the energy values of forming the stable tautomer structures in the S0state are too high.

    Table 3. Calculated reaction barrier (in units kcal/mol) for forward and reverse proton transfer in R-HCT(R:CH3,OH,CF3,CHO)in S1 state.

    Fig.5. Potential energy profiles of proton transfer in R-HCT(R:CH3,OH,CF3,CHO)in S1 state.

    These result suggest that the proton transfer from O-H group to thiazolic nitrogen atom is impossible for R-HCT(R:CH3,OH,CF3,CHO)in the ground state. However,it should be mentioned that there is a low reaction barrier less than 1 kcal/mol in the S1state for proton transfer process from N to T.Obviously, the low reaction barrier is prone to ESIPT process. The ESIPT process should be an ultrafast process due to the lower barrier. After ESIPT behavior,the S1tautomer form of R-HCT (R: CH3, OH, CF3, CHO) will transform into the corresponding unstable S0tautomer structure through emission fluorescence,then occur a barrierless reverse ground-state proton transfer(RGSPT)process and return to the most stable S0normal structure. We also find that the replacement of different substituents can modulate the ESIPT process of HCT.As shown in Table 3,the electron-donating group(CH3,OH)and electron-withdrawing group (CF3, CHO) reduce and increase the ESIPT reaction barrier of HCT, respectively. Evidently, the introduction of electron-donating group into the HCT is more favorable to the ESIPT process. In addition,the reverse proton transfer barrier of CH3-HCT, OH-HCT, CF3-HCT,and CHO-HCT are 5.62,4.02,7.54,and 8.11 kcal/mol,respectively, and they are all higher than the corresponding ESIPT barrier. The larger reaction barrier implies that the reverse ESIPT process is difficult to occur,and the corresponding tautomer structures of R-HCT (R: CH3, OH, CF3, CHO)are the stable structures in the S1state.

    3.4. Frontier molecular orbitals and electronic spectra

    As is well known, the analysis of frontier molecular orbitals(FMOs),as an effective method,is often used to explore the charge distribution characteristics in the excited state.[55,56]Therefore,the calculated FMOs of R-HCT(R:CH3,OH,CF3,CHO) are displayed in Fig. 6. The calculated absorption and fluorescence emission wavelengths, corresponding oscillator strength(f)and the orbital compositions are listed in Tables 4 and 5.Obviously,the first singlet transition(S0-S1)of R-HCT corresponds to the electronic transition from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital(LUMO),making large orbital contributions(see Table 4). Hence,only the HOMO and LUMO orbitals of R-HCT in the S1state are displayed in Fig. 6. From Fig. 6,we can draw the conclusion that the HOMOs of R-HCT (R:CH3,OH,CF3,CHO)haveπcharacter while the corresponding LUMOs haveπ*character. The transition process from HOMO to LUMO hasππ*-type features in view of the charge distribution between HOMO and LUMO.

    For the R-HCT (R: CH3, OH, CF3, CHO), the electron density of hydroxyl O1atom (proton donor) decreases,while the electron density of N3atom (proton acceptor) increases after the transition from HOMO to LUMO. Namely,the intramolecular charge transfer exists in the S0→S1transition, and renders the hydroxyl O1atom and N3atom more acidic and basic, respectively, which is more favorable to the occurrence of ESIPT. However, the remarkable intramolecular charge transfer features in R-HCT (R: CH3, OH, CF3,CHO)compound are totally different because of different substituents.We find that the HOMOs of CH3-HCT and OH-HCT are mainly located on the hydroxyl benzene ring,whereas the LUMOs are distributed mainly on phenol-thiazole ring due to push-pull electron effect(CH3and OH as electron donor and thiazole as electron acceptor). While for the CF3-HCT compound and CHO-HCT compound, electron densities of both HOMOs and LUMOs are mainly in phenol-thiazole ring due to the electron-withdrawing effects of CF3and CHO.

    Table 4. Values of vertical excitation energy of S0 →Sn (n=1-3)and oscillator strength(f),and major orbital contributions of R-HCT(R:H,CH3,OH,CF3,CHO)obtained at TD-B3PW91/6-31+G(d,p)level in acetonitrile.

    Table 5. Values of vertical emission energy of S1 →S0 and oscillator strength (f), and major orbital contributions of R-HCT (R: H, CH3, OH,CF3,CHO)obtained at TD-B3PW91/6-31+G(d,p)level in acetonitrile.

    Fig.6. Frontier molecular orbitals(HOMO and LUMO)of R-HCT(R:CH3,OH,CF3,CHO)in acetonitrile.

    The related energy values of HOMO,LUMO,energy gap of R-HCT (R: H, CH3, OH, CF3, CHO) in the S1states are listed in Table 6. It can be seen that the HOMO and LUMO energy values of CF3-HCT and CHO-HCT are all a little lower than those of HCT, which does not render the energy gaps of CF3-HCT and CHO-HCT significantly different from those of HCT. For compounds with electron-donating group (CH3,OH),the LUMO energy values are obviously increased while their LUMO energy values are a little increased,which results in the smaller energy gaps than that of HCT.The smaller energy gaps of CH3-HCT, OH-HCT are corresponding to the red-shift absorption peaks. The smaller the energy gap, the stronger the red-shift absorption peak is.

    Table 6. Energy values (in unit eV) of HOMO, LUMO, and the HOMOLUMO gaps(in unit eV)of HCT and their derivatives R-HCT(R:CH3,OH,CF3,CHO)in S1 state.

    Fig.7. Calculated absorption(Abs)and fluorescence(Flu)emission spectra of R-HCT(R:CH3,OH,CF3,CHO)in acetonitrile.

    The absorption and fluorescence spectra of R-HCT (R:CH3, OH, CF3, CHO) at the normal and tautomer forms are also simulated and the results are shown in Fig.7.The detailed transition properties of R-HCT(R:CH3,OH,CF3,CHO)are listed in Tables 4 and 5.As shown in Tables 4 and 5 and Fig.7,it can be found that the maximum absorption peaks of CH3-HCT, OH-HCT, CF3-HCT, and CHO-HCT are at 347 nm,373 nm, 328 nm, and 328 nm, respectively. And the corresponding maximum fluorescent peaks are at 402 nm,438 nm,381 nm,and 379 nm. The electron-donating group(CH3,OH)gives rise to a red-shift in both the absorption and fluorescent peaks of HCT,which results in an increase in the Stokes shift (from 48 nm (HCT) to 55 nm (CH3-HCT) and 65 nm(OH-HCT)). However, the electron-withdrawing group (CF3,CHO)makes the electronic spectra blue-shift a little. The redshift or blue-shift electronic spectral wavelengths imply that the intramolecular H-bond is strengthened or weakened.[57,58]Obviously, electron-donating group (CH3, OH) and electronwithdrawing group(CF3,CHO)strengthen and weaken the intramolecular H-bond O1-H2...N3in the S1state,respectively.

    The calculated fluorescence spectra of R-HCT (R: CH3,OH,CF3,CHO)show dual fluorescent emission bands which correspond to their normal and tautomer forms, respectively.For the tautomer forms of R-HCT, the fluorescence peaks of CH3-HCT, OH-HCT, CF3-HCT, and CHO-HCT are at 502 nm,536 nm,467 nm,and 451 nm,respectively,showing the corresponding Stokes shift of 155 nm, 163 nm, 139 nm,and 123 nm. The effects of different substituents on the fluorescent emission peaks in the tautomer form are consistent with those on the absorption peaks and fluorescent peaks in the normal form.

    4. Conclusions

    In summary, DFT and TD-DFT methods with IEFPCM solvent model have been used to investigate the effects of different substituents on the H-bond strength, ESIPT behaviors and photophysical properties of R-HCT (R: CH3, OH, CF3,CHO)compounds in acetonitrile. From the results of primary structural parameters,infrared(IR)vibration spectra,topological analysis and reduced density gradient(RDG)analysis,the strengths of intramolecular H-bond of all title compounds enhanced in the S1state are confirmed, which will be favorable for the ESIPT process. The electron-donating groups (CH3,OH)and electron-withdrawing groups(CF3,CHO)strengthen and weaken the intramolecular H-bond in the S1state,respectively. The enhanced intramolecular H-bond in the CH3-HCT and OH-HCT and the weakened H-bond in the CF3-HCT and CHO-HCT make ESIPT process take place much more easily and more difficultly, respectively. The substitution effect on the H-bond strength in the S0state is opposite. The frontier molecular orbitals prove that the transition process from HOMO to LUMO in R-HCT compounds showππ*-type feature. The electron-donating groups (CH3, OH) narrow the energy gaps of HCT, and electron-withdrawing groups (CF3,CHO)do not show significant difference from those of HCT.The smaller the energy gap,the stronger the red-shift absorption peakis. In addition, the electron-donating groups (CH3,OH) red-shift both the absorption and fluorescence emission peaks of HCT,respectively,and then causing the Stokes shift to increase. The electron-withdrawing groups (CF3, CHO)have a little effect on electronic spectra.

    Appendix A:Supporting information

    Fig.A1. Optimized transition state of R-HCT(R:CH3,OH,CF3,CHO)in the S1 state.

    欧美在线一区亚洲| 97人妻天天添夜夜摸| 黄色 视频免费看| 一区福利在线观看| 电影成人av| 国产亚洲欧美98| 50天的宝宝边吃奶边哭怎么回事| 老汉色∧v一级毛片| 欧美在线黄色| 高清黄色对白视频在线免费看| 日韩一卡2卡3卡4卡2021年| 久久青草综合色| 在线观看www视频免费| 午夜福利一区二区在线看| 久久中文字幕人妻熟女| 国产单亲对白刺激| 不卡av一区二区三区| 亚洲伊人色综图| 女生性感内裤真人,穿戴方法视频| 男人的好看免费观看在线视频 | 18禁黄网站禁片午夜丰满| 国产成人av激情在线播放| 一级黄色大片毛片| 男女做爰动态图高潮gif福利片 | 少妇熟女aⅴ在线视频| 国产av在哪里看| 在线天堂中文资源库| 午夜福利视频1000在线观看 | 欧美激情极品国产一区二区三区| 女警被强在线播放| 精品久久久精品久久久| 亚洲国产毛片av蜜桃av| 欧美日韩乱码在线| 亚洲avbb在线观看| 亚洲午夜精品一区,二区,三区| 无遮挡黄片免费观看| 国产精品爽爽va在线观看网站 | e午夜精品久久久久久久| 免费一级毛片在线播放高清视频 | 在线av久久热| 国产亚洲精品综合一区在线观看 | 午夜两性在线视频| 男女做爰动态图高潮gif福利片 | 一级a爱视频在线免费观看| 在线视频色国产色| 亚洲国产精品成人综合色| www国产在线视频色| 精品久久久精品久久久| 日韩 欧美 亚洲 中文字幕| 国产亚洲精品久久久久5区| 免费在线观看亚洲国产| 超碰成人久久| 久久亚洲精品不卡| 久久久久九九精品影院| 国产人伦9x9x在线观看| 丝袜在线中文字幕| 国产黄a三级三级三级人| 桃红色精品国产亚洲av| 正在播放国产对白刺激| 麻豆成人av在线观看| 一区福利在线观看| 18美女黄网站色大片免费观看| 国产成人啪精品午夜网站| 日韩精品中文字幕看吧| av欧美777| 国产精品久久久久久人妻精品电影| 成人三级做爰电影| 午夜两性在线视频| 视频区欧美日本亚洲| 久久这里只有精品19| 一区二区三区国产精品乱码| 无遮挡黄片免费观看| 精品免费久久久久久久清纯| 老司机福利观看| 色婷婷久久久亚洲欧美| 亚洲视频免费观看视频| 黄片大片在线免费观看| 黄色毛片三级朝国网站| 亚洲自拍偷在线| 日本免费a在线| 免费不卡黄色视频| 国产免费男女视频| 一a级毛片在线观看| 国产精品久久久久久人妻精品电影| 国产精品久久电影中文字幕| 变态另类成人亚洲欧美熟女 | 国产1区2区3区精品| 日本免费一区二区三区高清不卡 | 免费无遮挡裸体视频| 国产精品久久久av美女十八| 日本 欧美在线| 久久伊人香网站| 又紧又爽又黄一区二区| 亚洲,欧美精品.| 亚洲精品久久国产高清桃花| 国产激情欧美一区二区| 日韩成人在线观看一区二区三区| www.www免费av| 淫妇啪啪啪对白视频| 亚洲精品中文字幕在线视频| 俄罗斯特黄特色一大片| 国产精品永久免费网站| 久久精品91蜜桃| 十八禁网站免费在线| 一级作爱视频免费观看| 久久精品亚洲精品国产色婷小说| 国产91精品成人一区二区三区| 高清毛片免费观看视频网站| 天天躁夜夜躁狠狠躁躁| 99国产精品一区二区蜜桃av| 午夜免费鲁丝| 色在线成人网| 久久久久九九精品影院| 女人爽到高潮嗷嗷叫在线视频| 丁香欧美五月| 给我免费播放毛片高清在线观看| 黄色毛片三级朝国网站| 神马国产精品三级电影在线观看 | 黄色视频不卡| 亚洲欧美激情综合另类| 老熟妇乱子伦视频在线观看| 日韩欧美一区二区三区在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 丝袜美足系列| 91成人精品电影| 18禁美女被吸乳视频| 美女扒开内裤让男人捅视频| 动漫黄色视频在线观看| 波多野结衣高清无吗| 日韩欧美一区视频在线观看| 给我免费播放毛片高清在线观看| 无限看片的www在线观看| 巨乳人妻的诱惑在线观看| 国产精品 国内视频| 91大片在线观看| 老司机靠b影院| 国产一区二区三区在线臀色熟女| √禁漫天堂资源中文www| 亚洲成人免费电影在线观看| 国产精品av久久久久免费| 狂野欧美激情性xxxx| 欧美日韩精品网址| 美女高潮喷水抽搐中文字幕| x7x7x7水蜜桃| 午夜激情av网站| 国产精品二区激情视频| 欧美中文日本在线观看视频| 国产99白浆流出| 国产三级黄色录像| 欧美丝袜亚洲另类 | 最近最新免费中文字幕在线| 91精品国产国语对白视频| 欧美日本亚洲视频在线播放| 亚洲国产精品成人综合色| 久久人人爽av亚洲精品天堂| 免费看a级黄色片| 电影成人av| 看免费av毛片| 美女免费视频网站| tocl精华| 中文字幕精品免费在线观看视频| 亚洲av成人av| x7x7x7水蜜桃| 亚洲电影在线观看av| 90打野战视频偷拍视频| 国产av一区在线观看免费| 亚洲精品中文字幕在线视频| 亚洲一码二码三码区别大吗| 国产aⅴ精品一区二区三区波| 国产高清视频在线播放一区| 黄频高清免费视频| 久久青草综合色| 亚洲欧美日韩无卡精品| 久久午夜亚洲精品久久| 少妇熟女aⅴ在线视频| 国产成年人精品一区二区| 国产亚洲av嫩草精品影院| 国产亚洲精品av在线| 日本欧美视频一区| 国产精品美女特级片免费视频播放器 | 不卡一级毛片| 亚洲av第一区精品v没综合| 欧美大码av| 日本免费一区二区三区高清不卡 | 亚洲中文字幕一区二区三区有码在线看 | 久久影院123| 999久久久国产精品视频| 国产伦人伦偷精品视频| 欧美久久黑人一区二区| av中文乱码字幕在线| 久久久久久久久久久久大奶| 一区二区三区国产精品乱码| 在线免费观看的www视频| 免费在线观看亚洲国产| 999精品在线视频| 搡老妇女老女人老熟妇| 看免费av毛片| 美女午夜性视频免费| 禁无遮挡网站| 成年版毛片免费区| 免费高清在线观看日韩| 久久人妻av系列| 国产野战对白在线观看| 精品欧美国产一区二区三| 欧美绝顶高潮抽搐喷水| 久久久水蜜桃国产精品网| 亚洲成国产人片在线观看| 国产午夜福利久久久久久| av在线天堂中文字幕| 亚洲欧洲精品一区二区精品久久久| 欧美+亚洲+日韩+国产| 日本 欧美在线| 在线国产一区二区在线| 久久中文看片网| 在线av久久热| 女人被躁到高潮嗷嗷叫费观| 亚洲人成电影观看| 99国产精品一区二区三区| 国产精品二区激情视频| 亚洲欧美精品综合久久99| 妹子高潮喷水视频| 久久精品成人免费网站| 国产成+人综合+亚洲专区| 18禁国产床啪视频网站| 1024香蕉在线观看| 午夜亚洲福利在线播放| 亚洲精品久久成人aⅴ小说| 丝袜美腿诱惑在线| 如日韩欧美国产精品一区二区三区| 久久青草综合色| 女人被躁到高潮嗷嗷叫费观| 久久久国产精品麻豆| 日韩一卡2卡3卡4卡2021年| 久久精品亚洲精品国产色婷小说| 一级a爱片免费观看的视频| 人成视频在线观看免费观看| 人妻久久中文字幕网| netflix在线观看网站| 99国产极品粉嫩在线观看| 男女之事视频高清在线观看| 人妻久久中文字幕网| 免费av毛片视频| 亚洲aⅴ乱码一区二区在线播放 | 丁香欧美五月| 啪啪无遮挡十八禁网站| 午夜久久久久精精品| 亚洲精品国产区一区二| 国产午夜精品久久久久久| 无人区码免费观看不卡| 黑人操中国人逼视频| 人人妻人人澡欧美一区二区 | 搞女人的毛片| 国产又爽黄色视频| 18禁美女被吸乳视频| 多毛熟女@视频| 午夜两性在线视频| 久久久水蜜桃国产精品网| x7x7x7水蜜桃| 国产精品乱码一区二三区的特点 | 成人18禁在线播放| 精品国产亚洲在线| 19禁男女啪啪无遮挡网站| 黄色片一级片一级黄色片| 亚洲国产日韩欧美精品在线观看 | 精品国产亚洲在线| 变态另类丝袜制服| 精品无人区乱码1区二区| 亚洲专区字幕在线| 一区福利在线观看| 又大又爽又粗| 黄片播放在线免费| 女人被躁到高潮嗷嗷叫费观| 午夜福利免费观看在线| 非洲黑人性xxxx精品又粗又长| 精品久久久久久久人妻蜜臀av | 日本a在线网址| 成人亚洲精品av一区二区| 国产精品免费视频内射| 99精品欧美一区二区三区四区| 99在线视频只有这里精品首页| 精品久久久久久久人妻蜜臀av | 一夜夜www| 大码成人一级视频| 两性午夜刺激爽爽歪歪视频在线观看 | 99国产精品一区二区蜜桃av| 老司机福利观看| 老司机在亚洲福利影院| 亚洲成人国产一区在线观看| 女警被强在线播放| 久久精品亚洲熟妇少妇任你| 欧美黑人精品巨大| 男人的好看免费观看在线视频 | 午夜福利在线观看吧| 一级毛片女人18水好多| 97碰自拍视频| 一夜夜www| 午夜成年电影在线免费观看| 亚洲国产高清在线一区二区三 | 色在线成人网| av网站免费在线观看视频| 久久午夜综合久久蜜桃| 精品国产超薄肉色丝袜足j| 国产午夜精品久久久久久| 日本vs欧美在线观看视频| 色婷婷久久久亚洲欧美| 久久中文看片网| 一进一出抽搐动态| 国产熟女xx| avwww免费| 国产亚洲av嫩草精品影院| 免费一级毛片在线播放高清视频 | 精品久久蜜臀av无| 国产亚洲av高清不卡| 欧美激情极品国产一区二区三区| aaaaa片日本免费| 欧美 亚洲 国产 日韩一| 婷婷六月久久综合丁香| 日本 欧美在线| 久久久久久久久免费视频了| 亚洲全国av大片| а√天堂www在线а√下载| 女人被狂操c到高潮| 国产视频一区二区在线看| 久久久久久国产a免费观看| 日本撒尿小便嘘嘘汇集6| 国产精品国产高清国产av| 午夜福利一区二区在线看| 日韩有码中文字幕| 老司机深夜福利视频在线观看| avwww免费| a在线观看视频网站| 黄色毛片三级朝国网站| 亚洲欧美日韩无卡精品| 中国美女看黄片| 亚洲欧洲精品一区二区精品久久久| 日韩精品青青久久久久久| 亚洲av电影在线进入| 老司机午夜福利在线观看视频| 国产精品乱码一区二三区的特点 | 免费在线观看影片大全网站| 亚洲中文av在线| 久久久国产成人精品二区| 亚洲欧美日韩另类电影网站| 啦啦啦 在线观看视频| 中出人妻视频一区二区| 在线观看免费视频日本深夜| 国产亚洲欧美在线一区二区| 少妇的丰满在线观看| 少妇 在线观看| 岛国视频午夜一区免费看| 很黄的视频免费| 手机成人av网站| 久久久水蜜桃国产精品网| 色综合欧美亚洲国产小说| 成人特级黄色片久久久久久久| 亚洲精品国产精品久久久不卡| 亚洲成a人片在线一区二区| 亚洲av五月六月丁香网| 亚洲成av片中文字幕在线观看| 欧美色欧美亚洲另类二区 | av超薄肉色丝袜交足视频| 免费一级毛片在线播放高清视频 | 精品日产1卡2卡| 欧美亚洲日本最大视频资源| 俄罗斯特黄特色一大片| 一进一出抽搐gif免费好疼| 精品人妻1区二区| 中国美女看黄片| 国产亚洲精品一区二区www| 国产精品香港三级国产av潘金莲| 在线观看免费日韩欧美大片| 中文字幕高清在线视频| 国产又色又爽无遮挡免费看| 免费搜索国产男女视频| 99精品在免费线老司机午夜| 91成人精品电影| 亚洲五月婷婷丁香| 久久精品亚洲精品国产色婷小说| 亚洲激情在线av| 国产精品秋霞免费鲁丝片| 欧美日韩精品网址| 欧美日韩中文字幕国产精品一区二区三区 | 18禁黄网站禁片午夜丰满| 97人妻天天添夜夜摸| 成人免费观看视频高清| www.精华液| 99久久久亚洲精品蜜臀av| 国产高清有码在线观看视频 | 日韩欧美一区视频在线观看| 在线观看日韩欧美| 又黄又粗又硬又大视频| 亚洲激情在线av| 性欧美人与动物交配| 97人妻天天添夜夜摸| 成人亚洲精品一区在线观看| 国产av一区在线观看免费| 亚洲美女黄片视频| 后天国语完整版免费观看| 欧美激情久久久久久爽电影 | 一级毛片女人18水好多| 亚洲欧美日韩无卡精品| 黄片大片在线免费观看| 无限看片的www在线观看| 亚洲精品美女久久av网站| 人妻久久中文字幕网| 欧美+亚洲+日韩+国产| 一本久久中文字幕| 亚洲最大成人中文| 他把我摸到了高潮在线观看| e午夜精品久久久久久久| 精品一区二区三区视频在线观看免费| 久久人妻熟女aⅴ| 亚洲精品av麻豆狂野| 色综合亚洲欧美另类图片| 欧美黄色淫秽网站| 亚洲专区中文字幕在线| 久久精品91无色码中文字幕| 91精品国产国语对白视频| 日韩 欧美 亚洲 中文字幕| bbb黄色大片| 亚洲中文字幕日韩| 欧美日韩乱码在线| 看免费av毛片| av欧美777| 亚洲欧美激情综合另类| 亚洲中文字幕日韩| 狠狠狠狠99中文字幕| 国产激情欧美一区二区| 久久婷婷人人爽人人干人人爱 | 18禁观看日本| 电影成人av| 欧美乱色亚洲激情| 日韩三级视频一区二区三区| 免费久久久久久久精品成人欧美视频| 日本五十路高清| 在线观看日韩欧美| 国产精品1区2区在线观看.| 精品国产乱码久久久久久男人| 免费观看精品视频网站| 精品人妻在线不人妻| 极品人妻少妇av视频| 亚洲一区二区三区色噜噜| 国产精品 国内视频| 99久久99久久久精品蜜桃| 深夜精品福利| 色综合欧美亚洲国产小说| 亚洲精品在线观看二区| 91国产中文字幕| 国产精品亚洲一级av第二区| 日本a在线网址| 久久国产亚洲av麻豆专区| 人人妻人人爽人人添夜夜欢视频| 美女扒开内裤让男人捅视频| av中文乱码字幕在线| 国产成人av教育| 亚洲成人免费电影在线观看| 日本a在线网址| 久久久久久久久中文| 国产欧美日韩精品亚洲av| 国产aⅴ精品一区二区三区波| 在线国产一区二区在线| 成人三级黄色视频| 热99re8久久精品国产| 成人特级黄色片久久久久久久| 中文字幕另类日韩欧美亚洲嫩草| 精品高清国产在线一区| 18禁国产床啪视频网站| 亚洲第一电影网av| 亚洲欧美日韩无卡精品| 一级作爱视频免费观看| 动漫黄色视频在线观看| 1024视频免费在线观看| 9热在线视频观看99| а√天堂www在线а√下载| 精品国产国语对白av| 免费在线观看完整版高清| 级片在线观看| 亚洲国产精品999在线| 国产成人一区二区三区免费视频网站| 不卡一级毛片| 久久九九热精品免费| 女同久久另类99精品国产91| 日韩视频一区二区在线观看| 国产在线精品亚洲第一网站| 国产高清激情床上av| 精品久久蜜臀av无| 色在线成人网| 亚洲欧美激情综合另类| 国产高清视频在线播放一区| 欧美乱妇无乱码| 亚洲熟女毛片儿| 久久天躁狠狠躁夜夜2o2o| 欧美激情久久久久久爽电影 | 欧美另类亚洲清纯唯美| av中文乱码字幕在线| 国产极品粉嫩免费观看在线| 久久久久久人人人人人| 欧美成狂野欧美在线观看| 亚洲五月色婷婷综合| 老鸭窝网址在线观看| 亚洲国产精品合色在线| 18禁美女被吸乳视频| 韩国av一区二区三区四区| 亚洲人成77777在线视频| 免费在线观看日本一区| 亚洲国产看品久久| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲国产精品999在线| 日本撒尿小便嘘嘘汇集6| 精品欧美一区二区三区在线| 亚洲国产毛片av蜜桃av| 精品久久蜜臀av无| 一a级毛片在线观看| 午夜久久久在线观看| 日韩成人在线观看一区二区三区| 午夜老司机福利片| 91字幕亚洲| 国产欧美日韩一区二区精品| 欧美日韩黄片免| 真人一进一出gif抽搐免费| 激情视频va一区二区三区| 在线观看午夜福利视频| 国产精品亚洲一级av第二区| 一级,二级,三级黄色视频| 9热在线视频观看99| 一级片免费观看大全| 免费无遮挡裸体视频| 人成视频在线观看免费观看| 国产精品国产高清国产av| 啪啪无遮挡十八禁网站| 曰老女人黄片| 夜夜爽天天搞| 亚洲专区国产一区二区| 久久久久九九精品影院| 精品少妇一区二区三区视频日本电影| av超薄肉色丝袜交足视频| 曰老女人黄片| 电影成人av| 变态另类成人亚洲欧美熟女 | 国产精品一区二区精品视频观看| av网站免费在线观看视频| 免费无遮挡裸体视频| 母亲3免费完整高清在线观看| 老司机在亚洲福利影院| 国产精品 国内视频| 一边摸一边做爽爽视频免费| 黄片大片在线免费观看| 色哟哟哟哟哟哟| 在线观看日韩欧美| 欧美+亚洲+日韩+国产| e午夜精品久久久久久久| 丁香欧美五月| 亚洲男人的天堂狠狠| 久久精品aⅴ一区二区三区四区| 亚洲avbb在线观看| 久久精品国产亚洲av香蕉五月| 国产精品永久免费网站| 亚洲成人国产一区在线观看| 欧美久久黑人一区二区| АⅤ资源中文在线天堂| 国产1区2区3区精品| 亚洲无线在线观看| 中文字幕高清在线视频| 俄罗斯特黄特色一大片| 少妇熟女aⅴ在线视频| 中亚洲国语对白在线视频| 女同久久另类99精品国产91| 欧美乱妇无乱码| 成人国产一区最新在线观看| 大码成人一级视频| 午夜a级毛片| 最新美女视频免费是黄的| 天堂√8在线中文| 国产伦一二天堂av在线观看| cao死你这个sao货| 一区二区三区激情视频| 中文字幕人妻熟女乱码| 好男人电影高清在线观看| 首页视频小说图片口味搜索| av在线播放免费不卡| 久久伊人香网站| 国产主播在线观看一区二区| 国产日韩一区二区三区精品不卡| 国产午夜精品久久久久久| 久久精品国产综合久久久| 亚洲欧美一区二区三区黑人| 亚洲专区国产一区二区| 大香蕉久久成人网| 老汉色∧v一级毛片| 亚洲人成伊人成综合网2020| 国产又爽黄色视频| 国产精品一区二区在线不卡| 日本精品一区二区三区蜜桃| 色综合婷婷激情| 久久久久久久精品吃奶| 日韩中文字幕欧美一区二区| tocl精华| 亚洲精品在线观看二区| 亚洲av电影不卡..在线观看| 国产精品,欧美在线| 窝窝影院91人妻| 免费女性裸体啪啪无遮挡网站| 欧美精品亚洲一区二区| 禁无遮挡网站| 乱人伦中国视频| 熟女少妇亚洲综合色aaa.| 在线免费观看的www视频| 91精品国产国语对白视频| 18禁美女被吸乳视频| 亚洲欧美日韩另类电影网站| 一级作爱视频免费观看| 无遮挡黄片免费观看| svipshipincom国产片| 亚洲熟妇熟女久久| 无限看片的www在线观看|