• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage

    2022-03-12 07:44:38NingLi李寧XinLi李鑫MingYueZhang張明越JingYingMiao苗景迎ShenChengFu付申成andXinTongZhang張昕彤
    Chinese Physics B 2022年3期
    關(guān)鍵詞:李鑫李寧

    Ning Li(李寧) Xin Li(李鑫) Ming-Yue Zhang(張明越) Jing-Ying Miao(苗景迎)Shen-Cheng Fu(付申成) and Xin-Tong Zhang(張昕彤)

    1Center for Advanced Optoelectronic Functional Material Research,Northeast Normal University,Changchun 130024,China

    2Key Laboratory of UV-Emitting Materials and Technology(Northeast Normal University),Ministry of Education,Changchun 130024,China

    Keywords: holographic,ZnO nanowires,Ag nanoparticles

    1. Introduction

    With the rapid development of information communication technology, massive data are exchanged in the Internet every moment. It is estimated that the amount of information generated in the world will reach 175 ZB(zettabyte)in 2025.A big challenge to store large-volume data in photosensitive media efficiently still exists.[1]Compared with electromagnetic storage,optical memory has potential advantages of high density,long life and low power consumption.[2-6]The shorter the wavelength of recording light,the higher the storage density. Holographic technology can use interference fringes to record the whole object information at the Airy disc of photosensitive materials.[7-10]In addition,the“page”mode of holographic recording also provides possibility for a high-speed data transmission.[7]

    In recent years, noble-metal/metal-oxide-semiconductor nanostructures have attracted much attention for their excellent photoelectric and chemical properties.[11-20]Especially,the discovery of photochromism in such an inorganic system promotes the development of holographic storage.[21-25]ZnO has advantages of wide band gap, large exciton binding energy and high electron mobility, which make it being a candidate for multifunctional devices.[26]ZnO nanomaterials with wurtzite structure can be made into a variety of morphologies in nanoscale, such as nanorods,[27]nanosheets,[28]and nanotubes.[29]Among them,the regularly arranged ZnO nanowire arrays need no complex preparation process while have large specific surface area afterc-axis oriented growth.[30]So far, nano-Ag/ZnO nanocomposites have been widely investigated in the fields of gas sensors, photocatalysis and photo-electrochemistry.[31-33]Unfortunately,no reports are found on the holographic storage in nano-Ag/ZnO nanocomposite films. As ZnO nanowires (NWs) have low chemical activity on their surface, hot electrons in localized surface plasmon resonance (LSPR) are difficult to transfer from metal to the semiconductor sides.The transition from Ag to Ag+is thus partly inhibited.To resolve the issue,ZnO NWs with oxygen defects are fabricated by hydrothermal method in this paper. Meanwhile, an idea of “electron reverse transfer”is proposed that visible light induces reduction of Ag+ions through the excitation of ZnO. An obvious plasmon spectral enhancement is observed after a blue-ray excitation. Highefficient hologram reconstruction is realized after optimizing nanowire density,oxygen defects and surface roughness.

    2. Experimental details

    2.1. Preparation of Ag+/ZnO NWs

    A two-step hydrothermal method was used to synthesize ZnO NWs. Before preparation, the FTO glass substrates of 2 cm×2 cm were ultrasonically treated in ultra-pure water,acetone and isopropanol for 15 min, respectively, and were dried naturally in air.Meanwhile,in order to remove the residual organic compounds and increase the surface hydrophilicity,the FTO substrate was pretreated with ultraviolet ozone for 15 min. Afterwards,zinc acetate,ethanolamine and methanol were mixed by magnetic stirring at room temperature for 90 min to obtain ZnO seed solution. Then, the ZnO seed solution(50 μL)was spin-coated on the FTO substrate with the speed of 1500 r/min for 30 s. The sample was then placed on a hot plate at 350°C and annealed for 30 min to form a ZnO seed layer. Next, zinc nitrate hexahydrate, polyethylenimine and urotropine(HMTA)were mixed with ultrapure water and stirred at room temperature (300 K) for 60 min to obtain homogeneous ZnO growth solution. Finally,the growth solution and the sample loaded with seed layer were put into a stainless steel reactor and heated in an oven at 95°C for 1 h, 2 h,and 3 h to obtain three kinds of NWs with different lengths.ZnO NWs were then immersed in AgNO3solution of 0.2 M for 10 min in darkness so that Ag+ions can be adsorbed on the NW surface sufficiently. After air-gun drying,Ag+/ZnO NW complexes,named Ag+/ZnO1h,Ag+/ZnO2hand Ag+/ZnO3h,respectively,were obtained. The whole preparation process is shown in Fig.1.

    Fig. 1. Preparation process of Ag+/ZnO nanowires composite films.Hydrothermal times are 1 h,2 h and 3 h,respectively.

    2.2. Optics setup

    The optical devices for holographic kinetics are shown in Fig. 2. Two coherent beams (403.4 nm, 140 mW·cm-2, spolarized) are generated from a blue-violet laser. One of the beams loaded with information is incident on the Ag+/ZnO NW arrays, and the other beam irradiates at the same point of the sample to inscribe holograms. A red laser (671 nm,14 mW·cm-2,s-polarized)is used as a detect source to monitor the formation of holographic fringes. The first-order diffraction signal is recorded on a photodiode which is connected to a computer. The diffraction efficiency of the holographic grating with Fresnel loss can be defined as the ratio of the intensity of the first-order diffraction beam to that of the probe beam passing through the sample.

    Fig.2. Optical device of Ag+/ZnO nanowire for dynamic recordings in holographic gratings and holograms(M:mirror;BS:beam splitter;PD:photodiode;BE:beam expander).

    3. Results and discussion

    A scanning electron microscope (SEM) was used to observe the surface morphology of ZnO NWs. The top views of ZnO NWs are shown in Figs.3(a)-3(c),and the cross-sectional views are inserted, correspondingly. ZnO NWs with a good vertical growth state on the FTO substrate is observed. The length of the NWs increases with prolonging hydrothermal time, which is measured to be 300 nm, 600 nm and 750 nm for the hydrothermal times of 1 h, 2 h and 3 h, respectively.From the top view of SEM images,the surface nanowire density is also dependent on hydrothermal time, which is statistically analyzed. The results show that the surface density of ZnO NWs for hydrothermal time of 1 h is the highest,reaching 2.5×1010cm-2. With the increase of hydrothermal time,the surface linear density decreases to 1.74×1010cm-2and 8.3×109cm-2for 2 h and 3 h, respectively. The difference may result from the fact that the ZnO NWs hardly keep growing vertically and uniformly all the time during the hydrothermal treatment process. Thus,some of the NWs cannot be observed on the sample surface. Figures 3(d)-3(f)show the NW diameter distribution and the cumulative percentage of volume fraction. The results show that the average values of NW diameters are 27.62 nm and 31.36 nm for ZnO1hand ZnO2h,respectively. The NW diameter less than 40 nm occupies 97.4%(ZnO1h)and 88.8%(ZnO2h).However,for ZnO3h,the NW diameter increases significantly,almost to 37.81 nm. Therefore,hydrothermal time plays a key role in the longitudinal length and surface diameters of NWs.

    X-ray diffraction(XRD)tests were carried out on ZnO1h,as shown in Fig. 4(a). Compared with the standard card of ZnO (PDF #79-0207), it is observed that the prepared ZnO NWs have excellent crystallinity. The diffraction angles of 34.381°and 36.181°correspond to the (002) and (101) crystal planes of wurtzite ZnO,respectively. Disappearance of the(100)diffraction pike that corresponds to the diffraction angle of 31.698°is most possibly resulted from thec-axis orientation growth of ZnO NWs. However,the(100)crystal plane can be observed by a transmission electron microscope(TEM)(data not shown here).Figure 4(b)shows electron paramagnetic resonance (ESR) for the three kinds of samples. The peak ofg=2.01 proves the existence of oxygen vacancy defect. The formation of this defect originates from the oxygen-deficient conditions such as the hydrothermally grown NWs.[34]The ESR signal intensity increases with prolonging hydrothermal time,which confirms that the defect content increases accordingly. Figure 4(c) shows that the absorbance of oxide NWs is weak in visible band for ZnO1h,which is enhanced significantly for ZnO3h. It is demonstrated that the sensitivity of the sample in the visible band is greatly improved after increasing hydrothermal time. Figure 4(d)shows the photoluminescence spectra for the three samples. Two luminescence peaks are found. One is the UV luminescence peak at 380 nm,which is called near-band-edge emission and generated by free-exciton recombination in the ZnO nanostructures through an excitonexciton collision process. The other is the weak broad greenyellow emission(~570 nm)that originates from the electronhole recombination at deep level defects namely in singly ionized oxygen vacancies(V+O).

    Fig. 3. Top view of SEM images of ZnO NWs for different hydrothermal times. The corresponding cross-sectional images are inserted. The NW diameter distribution and volume fraction cumulative percentages are shown below: (a)and(d)for ZnO1h,(b)and(e)for ZnO2h,(c)and(f)for ZnO3h.

    Fig. 4. (a) XRD pattern of ZnO1h NWs. (b) ESR spectra of ZnO NWs with different hydrothermal times. (c) Absorption spectra and (d)photoluminescence spectra of ZnO nanowires for different hydrothermal times.

    The prepared ZnO NWs have hexagonal wurtzite structure wherec-axis acts as the polar axis. In this case, oxygen ions are arranged in hexagonal dense packing while Zn ions fill the tetrahedral gap. Half of the tetrahedral gap in the structure is empty,which is easy to produce intrinsic donors of Zn gap defects and O vacancy defects. With prolonging hydrothermal time,the luminescence intensity in UV and visible regions are both enhanced, indicating the increasement of the V+Odefect population. The spectral observations are consistent with the ESR results.

    The large amount of defect states greatly enhances the photoelectron generation under visible light excitation,which provides an effective way for the photoreduction of metal ions.Hence,we used blue-ray(403.4 nm,140 mW·cm-2)as the excitation light to investigate photochromism of the Ag+/ZnO1hcomposite system,as shown in Fig.5(a). The absorption spectra for the irradiation times from 0 min to 25 min are obtained. The differential absorption spectra exhibit an effective absorption enhancement covering the whole visible region from 400 nm to 800 nm, which is centered at 405 nm. The band is hard to be found within the initial irradiation period of 3 min, but increases significantly in the subsequent process. A similar result is obtained for the other two samples of Ag+/ZnO2hand Ag+/ZnO3h. We also measured thein situphotoluminescence spectra of Ag+/ZnO1hnanocomposite system under the excitation from a UV laser (325 nm, 35 mW)with different excitation periods (0 min, 5 min and 10 min,respectively), as shown in Fig. 5(b). It can be seen that the UV luminescence intensity of the ZnO loaded with silver ions decreases obviously. Differently, we found that the luminescence ability of ZnO in the visible region(centered at 570 nm)increases slightly after the adsorption of silver ions[Fig.5(b),inserted], which may be related to the localized surface plasmon enhancement.

    Fig.5.(a)Absorption spectra and differential absorption spectra(inserted)of the Ag/ZnO1h nanocomposite under the 403.4 nm laser irradiation.(b)Photoluminescence spectra of the ZnO1h NWs before and after the treatment of AgNO3 solution,as well as that under 325 nm excitation for different periods (0 min, 5 min and 10 min). The magnification graph in visible region is inserted. (c) Top view of SEM images for the nanocomposite system before and after the blue-ray irradiation. The TEM image is inserted for the ZnO1h NWs without Ag particle deposition.(d)TEM and HRTEM observations for the blue-ray induced emerging of Ag NPs on ZnO NWs via scratching from the prepared Ag/ZnO film.

    The absorption and photoluminescence spectral changes in visible region both indicate the possibility of generation of plasmonic particles. Accordingly, surface morphological change was measured byin situSEM for Ag+/ZnO1hbefore and after laser irradiation (140 mW·cm-2), as shown in Fig. 5(c). Before the irradiation, only the ZnO NW surface morphology can be observed, as shown in the inserted graph of Fig. 5(c). After the blue-violet excitation, Ag nanorods appear on the surface of ZnO NWs. The TEM was used to observe the change in the gap of ZnO NWs, as shown in Fig. 5(d). A large amount of spherical Ag nanoparticles(NPs)appear on ZnO NWs with a wide size distribution from 5 nm to 35 nm. High-resolution transmission electron microscopy (HRTEM, the right-side image in Fig. 5(d) proves the nature of the Ag/ZnO contact. The(111)crystal plane of Ag NPs and the (002) crystal plane of ZnO are determined.As ZnO is usually n-type, the Schottky contact may form at the metal-semiconductor interfaces according to our previous investigation.[35]The description equations of photochemical reaction process are expressed as follows:

    As is known, the electrons at ZnO defect state can absorb photons and jump to the conduction band under the irradiation of the blue-violet light. Ag+ions adsorbed on the surface of ZnO NWs during previous immersion are further photo-reduced. ZnO in exciting state is thus used as an electron donor,and the photogenerated electrons of ZnO interface are transferred to Ag+to generate Ag nucleus. Photochemical reaction is conducted on the surface or in the gap of NW arrays to induce Ag nuclei self-assembly. The regular surface structure of NWs provides convenience for the Ag particle aggregation,which results in large-sized Ag nanorods rather than small spherical NPs. Finally,rod-like Ag NPs emerges on the surface of the NW arrays. However,spherical Ag NPs tend to form in the gap of ZnO NWs due to the limited space. The one-dimensional NW structure has large specific surface area than planar structure,which can provide multiple sites for Ag+loading and form point/line heterojunction. In the reduction process, multiple electron transport channels are provided by sufficient contacting sites, which accelerate the reduction of the Ag+ions adsorbed on the NW surface. The emergence of Ag NPs results in LSPR absorption, which well explains the absorption band in visible region from 400 nm to 800 nm in Fig.5(a). However,in Fig.5(b),under the continuous irradiation of the excitation light source,the UV luminescence intensity decreases firstly(from 0 min to 5 min)and then increases(from 5 min to 10 min). We believe that this process is related to the capture of photogenerated electrons by silver ions and the resultant emergence of Ag NPs. The population decrease of the photoelectrons for recombination with holes results in weakening of intrinsic luminescence. After UV irradiation for 5 min,some silver nuclei are formed and quite amount of silver ions exist. At this time,the Ag+/ZnO nanocomposite system has a strong ability to absorb the 325 nm light energy to generate Ag NPs. When the system is illuminated for 10 min,the content of the resident silver ions decreases significantly,so the light absorption capacity at 325 nm is weakened and the intrinsic emission capacity is partially restored.

    The results from Fig. 5 indicate that blue-ray irradiation plays a key role in variation of optical properties of the Ag+/ZnO NWs system. Thus holographic fringes with periodically bright and dark regions can be copied onto such a photosensitive medium. ZnO NWs in the bright area generate photoelectrons for the reduction of Ag+ions; while the medium in the dark area is not irradiated by the laser,and thus maintains its original properties. The Ag0in the bright area and Ag+in the dark area have a sharp contrast in absorbance and refractive index,and the information is thus stored on the sample as a form of interference fringes.The results for testing holographic efficiency are shown in Fig.6.

    Fig. 6. First-order diffraction efficiency versus time for Ag+/ZnO1h,Ag+/ZnO2h and Ag+/ZnO3h.

    The highest diffraction efficiency of Ag+/ZnO1hcomposite film can reach 0.08%. However, the diffraction efficiencies of the other two composite films of Ag+/ZnO2hand Ag+/ZnO3hare lower than that of the Ag+/ZnO1hcomposite system, with the highest diffraction efficiencies reaching 0.05% and 0.03%, respectively. We believe that the diffraction efficiency of the nanocomposite system is related to the factors such as generation efficiency of photoelectrons, loading amount of Ag+ions and light-scattering on sample surface. According to ESR test results,ZnO3hexhibits the largest amount of oxygen defects among the three kinds of samples. Under the same conditions, the number of photogenerated electrons is the largest. The formed holographic gratings should have presented the highest contrast between bright and dark regions. However, the test results show that the composite film of Ag+/ZnO3hhas the lowest diffraction efficiency during the same excitation period. That means that light scattering on the sample surface must be taken into account.When the length of ZnO NWs increases, it is impossible to ensure that each NW grows at the same rate. With the long-term growth of NWs, the surface flatness decreases. The incident light in the bright region can be easily scattered to the dark one,also weakening the grating contrast.At the same time,the amount of Ag+loading sites is insufficient on the surface due to the lowest NW density on the surface of Ag+/ZnO3h. Thus,the lowest diffraction efficiency for Ag+/ZnO3his reasonable.The above results indicate that the Ag+/ZnO nanocomposite system can effectively memorize holographic gratings under visible light excitation in short wavelength region,and the high diffraction efficiency of the Ag+/ZnO1hsample provides possibility for the storage and reconstruction of holographic images. Using red light(671 nm)as the read-out light,the image of the “Eiffel Tower” is stored. Figure 7 shows the original image and its holographic reconstruction at the writing times of 50 s, 100 s and 300 s, respectively. It is worth pointing out that the amount of defects generated in the hydrothermal process is still limited, although the internal defects of ZnO have provided important support for improving the diffraction efficiency of the sample. Towards the application of ultra-fast and high-density holographic storage,the sample performance can be optimized in two aspects: One is introducing impurities or plasma treatment in the ZnO to create more defects so as to expand optical response range and to increase the population of photogenerated electrons. The other is increasing the loading amount of Ag+ions to enhance the reduction reaction,to improve the grating contrast, and to realize more efficient hologram storage.

    Fig.7. Original image(left,black),and the hologram reconstruction in the Ag+/ZnO1h composite by red light.

    4. Conclusion

    In summary, an Ag+/ZnO nanocomposite system has been constructed using the hydrothermal-immersion method.The internal oxygen defects in ZnO broaden the light response band, and photogenerated electrons can be effectively generated under blue-violet excitation. The length and the defect content of NWs are dependent on hydrothermal time. Onedimensional nanostructures provide a large number of contacting sites for the subsequent loading of silver ions,forming multiple point/line hetero-interfaces, which are used to transfer photogenerated electrons from the semiconductor side to the silver ions, resulting in the formation of Ag nuclei. In addition, the NW structure provides an excellent growth environment for the formation of Ag nanorods on the array surface.We also compared the effect of NW length on the diffraction efficiency. The results show that the surface of ZnO1hNWs can reduce the light scattering,and improve the light energy utilization.The holographic diffraction efficiency reaches 0.08% for Ag+/ZnO1h. Efficient integration of generation,transmission and storage for optical information is expected to be realized in ZnO-based nano-devices.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China(Grant Nos.11974073,U19A2091,and 51732003), the Overseas Expertise Introduction Project for Discipline Innovation (Grant No. B13013), the Natural Science Foundation of Jilin Province of China (Grant No. 20180101218JC), and The 13th Five-Year Scientific Research Planning Project of the Education Department of Jilin Province,China(Grant No.JJKH20201161KJ).

    猜你喜歡
    李鑫李寧
    On Coupled Dirac Systems Under Chirality Boundary Condition
    回望祖山圖
    磁懸浮列車相關(guān)問題賞析
    What Is Guochao?
    In situ measurement on nonuniform velocity distribution in external detonation exhaust flow by analysis of spectrum features using TDLAS
    再不能分擔(dān)的孤獨(dú)
    Progress in quantum well and quantum cascade infrared photodetectors in SITP?
    憂傷詞
    滇池(2017年6期)2017-06-14 20:29:14
    跌宕起伏“李寧”
    商界評論(2017年5期)2017-05-17 18:44:16
    那一縷陽光
    国产真人三级小视频在线观看| 免费看不卡的av| kizo精华| 亚洲中文av在线| 大型av网站在线播放| 后天国语完整版免费观看| 一本—道久久a久久精品蜜桃钙片| 美女扒开内裤让男人捅视频| 日本欧美国产在线视频| 欧美日韩黄片免| 久久人人爽人人片av| 欧美日韩成人在线一区二区| 少妇猛男粗大的猛烈进出视频| 激情五月婷婷亚洲| 国产av国产精品国产| 亚洲自偷自拍图片 自拍| 国产精品免费视频内射| 老汉色∧v一级毛片| 在线观看www视频免费| 黄色a级毛片大全视频| 亚洲熟女精品中文字幕| 成年美女黄网站色视频大全免费| 亚洲人成网站在线观看播放| 国产片内射在线| 欧美成狂野欧美在线观看| 中文字幕精品免费在线观看视频| 可以免费在线观看a视频的电影网站| 成人三级做爰电影| 18禁黄网站禁片午夜丰满| cao死你这个sao货| 一个人免费看片子| 国产日韩欧美在线精品| av在线老鸭窝| 亚洲国产看品久久| 精品人妻1区二区| 日本欧美国产在线视频| 亚洲少妇的诱惑av| 高清av免费在线| 首页视频小说图片口味搜索 | 国产一区亚洲一区在线观看| 亚洲欧洲国产日韩| 极品人妻少妇av视频| 亚洲欧美一区二区三区黑人| 国产淫语在线视频| 精品国产超薄肉色丝袜足j| 国产精品免费大片| 日韩中文字幕视频在线看片| 午夜久久久在线观看| 制服人妻中文乱码| 精品久久久久久电影网| 国产亚洲av片在线观看秒播厂| 男人添女人高潮全过程视频| 99国产精品免费福利视频| 国产成人精品久久久久久| 亚洲激情五月婷婷啪啪| 日韩av在线免费看完整版不卡| 午夜av观看不卡| 少妇人妻久久综合中文| av网站在线播放免费| 国产亚洲午夜精品一区二区久久| 久久ye,这里只有精品| 精品第一国产精品| 国产1区2区3区精品| 老司机亚洲免费影院| 亚洲三区欧美一区| 午夜视频精品福利| av在线app专区| 国产精品麻豆人妻色哟哟久久| 男人舔女人的私密视频| 日本欧美视频一区| 亚洲视频免费观看视频| 91精品三级在线观看| 中文字幕人妻丝袜制服| 高清黄色对白视频在线免费看| 欧美亚洲 丝袜 人妻 在线| 欧美日韩福利视频一区二区| 极品人妻少妇av视频| av网站在线播放免费| 久久国产精品人妻蜜桃| 一级毛片女人18水好多 | 别揉我奶头~嗯~啊~动态视频 | 国产精品国产三级专区第一集| 又大又爽又粗| 91国产中文字幕| 久久久久久久久久久久大奶| 美女大奶头黄色视频| 日韩大码丰满熟妇| 欧美日韩视频精品一区| 人人妻人人澡人人看| 一区二区av电影网| 免费观看a级毛片全部| 国产精品成人在线| 成人手机av| 亚洲人成电影免费在线| 老司机午夜十八禁免费视频| 精品久久蜜臀av无| av网站在线播放免费| 中文字幕最新亚洲高清| 丁香六月欧美| 一本大道久久a久久精品| 欧美日韩av久久| 99热全是精品| 亚洲专区中文字幕在线| 亚洲精品一区蜜桃| 久热这里只有精品99| 国产av一区二区精品久久| 午夜免费男女啪啪视频观看| 国产精品久久久人人做人人爽| 亚洲精品久久成人aⅴ小说| 亚洲精品一二三| 久久国产精品男人的天堂亚洲| 亚洲第一av免费看| av欧美777| 啦啦啦 在线观看视频| 黑丝袜美女国产一区| 国产精品av久久久久免费| 岛国毛片在线播放| 国产在线免费精品| www.av在线官网国产| 精品久久久久久久毛片微露脸 | 国产亚洲av高清不卡| 日韩一区二区三区影片| 免费看av在线观看网站| 超碰97精品在线观看| 老汉色∧v一级毛片| 成人国语在线视频| av网站免费在线观看视频| 免费高清在线观看视频在线观看| 日本色播在线视频| 一区二区av电影网| 亚洲精品国产一区二区精华液| 日本猛色少妇xxxxx猛交久久| 国产高清videossex| 天堂8中文在线网| 亚洲自偷自拍图片 自拍| 人妻人人澡人人爽人人| av电影中文网址| 国产精品久久久久久精品电影小说| 久久 成人 亚洲| 免费一级毛片在线播放高清视频 | 老司机影院毛片| 国产av精品麻豆| 精品免费久久久久久久清纯 | 亚洲人成电影观看| 欧美亚洲 丝袜 人妻 在线| 只有这里有精品99| 这个男人来自地球电影免费观看| 成年人黄色毛片网站| 日本av免费视频播放| 后天国语完整版免费观看| 成人国产av品久久久| 久久ye,这里只有精品| 国产视频首页在线观看| 亚洲综合色网址| 欧美日韩亚洲国产一区二区在线观看 | 9色porny在线观看| 精品国产国语对白av| www日本在线高清视频| 99久久综合免费| 女人爽到高潮嗷嗷叫在线视频| 9191精品国产免费久久| 国产片特级美女逼逼视频| 亚洲欧美中文字幕日韩二区| 欧美日韩av久久| 国产视频一区二区在线看| 欧美日韩黄片免| 欧美少妇被猛烈插入视频| 在线观看国产h片| 在线观看免费高清a一片| 最近手机中文字幕大全| 侵犯人妻中文字幕一二三四区| 亚洲av综合色区一区| 波多野结衣av一区二区av| 国产一卡二卡三卡精品| 国产精品一区二区在线观看99| a级毛片在线看网站| 国产熟女午夜一区二区三区| av网站在线播放免费| 国产免费视频播放在线视频| www日本在线高清视频| 久久久久久久大尺度免费视频| 亚洲精品久久成人aⅴ小说| 夫妻性生交免费视频一级片| 国产精品 国内视频| 精品国产一区二区久久| 精品第一国产精品| 久久久久网色| 国产亚洲一区二区精品| av在线app专区| 99re6热这里在线精品视频| 99精国产麻豆久久婷婷| 国产黄色免费在线视频| 亚洲国产欧美在线一区| 日日夜夜操网爽| 手机成人av网站| 久久久久久人人人人人| 久热这里只有精品99| 香蕉丝袜av| 免费高清在线观看视频在线观看| 一本色道久久久久久精品综合| 啦啦啦中文免费视频观看日本| 老司机在亚洲福利影院| 蜜桃国产av成人99| 在线观看免费视频网站a站| 国产亚洲精品久久久久5区| 午夜老司机福利片| 免费不卡黄色视频| 一级毛片女人18水好多 | 肉色欧美久久久久久久蜜桃| 中文欧美无线码| 午夜久久久在线观看| 亚洲自偷自拍图片 自拍| 欧美+亚洲+日韩+国产| 亚洲国产毛片av蜜桃av| 亚洲av电影在线进入| 极品人妻少妇av视频| 亚洲色图综合在线观看| 欧美日韩av久久| 免费少妇av软件| 视频区欧美日本亚洲| 亚洲精品日韩在线中文字幕| 狂野欧美激情性xxxx| 精品高清国产在线一区| 国产精品久久久久久精品古装| 少妇被粗大的猛进出69影院| 男女边摸边吃奶| 大片电影免费在线观看免费| 久久国产亚洲av麻豆专区| 蜜桃国产av成人99| av视频免费观看在线观看| 国产成人精品久久久久久| 日本wwww免费看| av国产精品久久久久影院| 国产黄色视频一区二区在线观看| 国产日韩欧美亚洲二区| 欧美人与善性xxx| 成人亚洲欧美一区二区av| 亚洲天堂av无毛| 黑人猛操日本美女一级片| 99国产精品一区二区三区| 丝瓜视频免费看黄片| 欧美黑人欧美精品刺激| 伊人亚洲综合成人网| 日韩伦理黄色片| 国产成人av激情在线播放| 欧美日韩精品网址| 亚洲伊人色综图| 99国产精品免费福利视频| 一级片免费观看大全| 国产亚洲欧美精品永久| 亚洲国产最新在线播放| 韩国精品一区二区三区| 日本黄色日本黄色录像| 国产精品国产三级专区第一集| 一边亲一边摸免费视频| 无限看片的www在线观看| 天天躁夜夜躁狠狠躁躁| 国产欧美日韩精品亚洲av| 这个男人来自地球电影免费观看| 国产精品免费大片| 97人妻天天添夜夜摸| av在线老鸭窝| 久久中文字幕一级| 欧美激情 高清一区二区三区| 黄色一级大片看看| 国产色视频综合| 欧美精品av麻豆av| 97精品久久久久久久久久精品| 国产在线观看jvid| 肉色欧美久久久久久久蜜桃| 欧美黄色淫秽网站| 一本综合久久免费| 日本五十路高清| 免费高清在线观看日韩| 黄色片一级片一级黄色片| 看免费av毛片| 欧美亚洲日本最大视频资源| 久久亚洲国产成人精品v| 亚洲五月婷婷丁香| 欧美大码av| 欧美精品亚洲一区二区| 国产xxxxx性猛交| 精品国产乱码久久久久久男人| 99久久精品国产亚洲精品| 亚洲成人手机| 午夜免费成人在线视频| 国产男女超爽视频在线观看| 久久国产精品人妻蜜桃| 女性被躁到高潮视频| 日本欧美视频一区| 免费高清在线观看日韩| 最黄视频免费看| 91老司机精品| a 毛片基地| 在线观看免费视频网站a站| 国产精品九九99| 最近最新中文字幕大全免费视频 | 中文字幕亚洲精品专区| 亚洲国产日韩一区二区| 日本wwww免费看| 国产成人精品久久二区二区免费| 成人国产一区最新在线观看 | 久久热在线av| 97精品久久久久久久久久精品| 一本一本久久a久久精品综合妖精| 国产精品 国内视频| 午夜久久久在线观看| 久热爱精品视频在线9| av在线app专区| 成年美女黄网站色视频大全免费| 国产精品亚洲av一区麻豆| 欧美乱码精品一区二区三区| 韩国精品一区二区三区| 亚洲中文av在线| 波多野结衣一区麻豆| 亚洲精品国产一区二区精华液| 女人爽到高潮嗷嗷叫在线视频| 91成人精品电影| 最近中文字幕2019免费版| 一级毛片 在线播放| 久久精品国产综合久久久| 18禁观看日本| av有码第一页| 久久精品久久久久久噜噜老黄| 一级毛片我不卡| 国产野战对白在线观看| 国产亚洲精品久久久久5区| 欧美中文综合在线视频| 亚洲精品国产区一区二| 男女床上黄色一级片免费看| 久久免费观看电影| 久久久精品94久久精品| 悠悠久久av| 国产免费现黄频在线看| 国产国语露脸激情在线看| 99国产精品99久久久久| av在线app专区| 丝袜美腿诱惑在线| 日韩中文字幕视频在线看片| 婷婷色综合www| 久久亚洲精品不卡| 久久久久久久久久久久大奶| 精品一区在线观看国产| 亚洲中文字幕日韩| 亚洲久久久国产精品| 免费在线观看黄色视频的| 久久 成人 亚洲| 亚洲图色成人| 免费女性裸体啪啪无遮挡网站| 成人国语在线视频| 2021少妇久久久久久久久久久| 一个人免费看片子| 欧美xxⅹ黑人| 自拍欧美九色日韩亚洲蝌蚪91| 下体分泌物呈黄色| 久久久欧美国产精品| 亚洲一卡2卡3卡4卡5卡精品中文| 久久青草综合色| 自线自在国产av| 最近最新中文字幕大全免费视频 | 久久国产精品男人的天堂亚洲| 18在线观看网站| 少妇猛男粗大的猛烈进出视频| 每晚都被弄得嗷嗷叫到高潮| www.av在线官网国产| 免费在线观看黄色视频的| 丰满少妇做爰视频| 丝瓜视频免费看黄片| 天天影视国产精品| 男女之事视频高清在线观看 | 性少妇av在线| 手机成人av网站| 男女床上黄色一级片免费看| 一区二区av电影网| 超碰成人久久| 午夜福利一区二区在线看| 欧美日韩福利视频一区二区| 咕卡用的链子| 涩涩av久久男人的天堂| 交换朋友夫妻互换小说| 日本av手机在线免费观看| 美女视频免费永久观看网站| 成人免费观看视频高清| 十分钟在线观看高清视频www| 午夜激情av网站| 国产精品.久久久| 成人三级做爰电影| 久久久久久免费高清国产稀缺| 成人亚洲欧美一区二区av| 欧美日韩亚洲国产一区二区在线观看 | 精品国产一区二区久久| 99国产精品一区二区三区| 18禁国产床啪视频网站| 又大又黄又爽视频免费| www日本在线高清视频| 亚洲av美国av| 99热网站在线观看| 久热爱精品视频在线9| 亚洲av日韩精品久久久久久密 | 日本欧美国产在线视频| 午夜福利,免费看| 99热网站在线观看| 国产亚洲av高清不卡| 色网站视频免费| 国产精品欧美亚洲77777| 国产精品99久久99久久久不卡| 欧美日本中文国产一区发布| 亚洲免费av在线视频| 水蜜桃什么品种好| 九草在线视频观看| 中文精品一卡2卡3卡4更新| 18禁观看日本| 亚洲国产精品一区二区三区在线| 亚洲欧洲精品一区二区精品久久久| 黄色 视频免费看| 国产精品九九99| 国产精品三级大全| 晚上一个人看的免费电影| 美女脱内裤让男人舔精品视频| 熟女少妇亚洲综合色aaa.| 悠悠久久av| 久久久亚洲精品成人影院| 欧美日韩国产mv在线观看视频| 国产91精品成人一区二区三区 | 黄片小视频在线播放| 国产一区二区在线观看av| 一本大道久久a久久精品| 一本一本久久a久久精品综合妖精| 成人国语在线视频| 蜜桃国产av成人99| 亚洲七黄色美女视频| 青青草视频在线视频观看| 亚洲成人免费av在线播放| 久久精品亚洲av国产电影网| 无限看片的www在线观看| 尾随美女入室| 一边亲一边摸免费视频| 999久久久国产精品视频| 欧美精品人与动牲交sv欧美| 中文字幕av电影在线播放| 男女无遮挡免费网站观看| 一区在线观看完整版| 在线 av 中文字幕| 国产主播在线观看一区二区 | 免费看av在线观看网站| 性色av乱码一区二区三区2| 久久热在线av| 美女午夜性视频免费| 人人妻人人澡人人看| 丁香六月欧美| 宅男免费午夜| 777米奇影视久久| 久久久久久久国产电影| 成在线人永久免费视频| 熟女少妇亚洲综合色aaa.| 91字幕亚洲| 亚洲国产欧美一区二区综合| 黄色毛片三级朝国网站| 午夜免费男女啪啪视频观看| 各种免费的搞黄视频| 免费看av在线观看网站| 亚洲黑人精品在线| 日韩中文字幕视频在线看片| 欧美精品高潮呻吟av久久| 免费女性裸体啪啪无遮挡网站| 看免费av毛片| 午夜福利乱码中文字幕| 一区二区av电影网| 天堂俺去俺来也www色官网| 少妇裸体淫交视频免费看高清 | 免费一级毛片在线播放高清视频 | 精品久久久久久久毛片微露脸 | 男的添女的下面高潮视频| 91精品伊人久久大香线蕉| 人妻 亚洲 视频| av福利片在线| 不卡av一区二区三区| 国产精品.久久久| 久久久久精品国产欧美久久久 | 国产精品久久久久成人av| 国产一区二区三区综合在线观看| 国产成人啪精品午夜网站| 欧美亚洲日本最大视频资源| 久久女婷五月综合色啪小说| 精品第一国产精品| 日本欧美视频一区| 午夜老司机福利片| 建设人人有责人人尽责人人享有的| 久久人妻熟女aⅴ| 国产一区二区 视频在线| 久久国产精品男人的天堂亚洲| 日韩伦理黄色片| 侵犯人妻中文字幕一二三四区| 黄频高清免费视频| 亚洲精品久久午夜乱码| 午夜福利乱码中文字幕| 国产成人免费观看mmmm| 女人被躁到高潮嗷嗷叫费观| 免费看十八禁软件| 婷婷色综合www| 99re6热这里在线精品视频| 国产精品 欧美亚洲| 欧美+亚洲+日韩+国产| 又大又爽又粗| 一边摸一边抽搐一进一出视频| 国产av精品麻豆| 国产av国产精品国产| 亚洲男人天堂网一区| 精品一区在线观看国产| 午夜福利视频在线观看免费| 国产欧美日韩综合在线一区二区| 亚洲欧美一区二区三区国产| 精品国产一区二区三区久久久樱花| 久久影院123| 成年动漫av网址| 91麻豆av在线| 亚洲 国产 在线| 久久九九热精品免费| 久久久久网色| 色网站视频免费| 男男h啪啪无遮挡| 久久精品国产亚洲av涩爱| www.熟女人妻精品国产| 乱人伦中国视频| 成人黄色视频免费在线看| 777久久人妻少妇嫩草av网站| 国产熟女欧美一区二区| 国产1区2区3区精品| 日韩,欧美,国产一区二区三区| 久久国产精品人妻蜜桃| 免费少妇av软件| 国产精品亚洲av一区麻豆| 韩国精品一区二区三区| 观看av在线不卡| 另类精品久久| 日韩人妻精品一区2区三区| 热re99久久国产66热| 欧美激情极品国产一区二区三区| 久久午夜综合久久蜜桃| 久久精品熟女亚洲av麻豆精品| 777米奇影视久久| 在线观看人妻少妇| 日本一区二区免费在线视频| 久久久久久免费高清国产稀缺| 亚洲精品日韩在线中文字幕| 国产精品久久久久成人av| 99国产综合亚洲精品| 热re99久久国产66热| 国产一区二区三区综合在线观看| 日本av手机在线免费观看| 91精品三级在线观看| 欧美久久黑人一区二区| 久久天堂一区二区三区四区| 欧美少妇被猛烈插入视频| 国产成人系列免费观看| 捣出白浆h1v1| 丰满人妻熟妇乱又伦精品不卡| 国产主播在线观看一区二区 | 亚洲av成人不卡在线观看播放网 | 69精品国产乱码久久久| 妹子高潮喷水视频| 久久性视频一级片| 久久精品久久久久久久性| 亚洲精品久久久久久婷婷小说| 中文乱码字字幕精品一区二区三区| 久久人妻福利社区极品人妻图片 | 国产在线免费精品| 欧美日韩视频高清一区二区三区二| 久久久欧美国产精品| 亚洲欧洲精品一区二区精品久久久| 搡老岳熟女国产| 久久久久国产一级毛片高清牌| 精品亚洲乱码少妇综合久久| 免费观看a级毛片全部| 性色av一级| 国产精品偷伦视频观看了| 在线观看www视频免费| 男人操女人黄网站| 国产亚洲av高清不卡| 纯流量卡能插随身wifi吗| 亚洲天堂av无毛| 男人舔女人的私密视频| 各种免费的搞黄视频| 人妻 亚洲 视频| 黄片播放在线免费| 岛国毛片在线播放| 久久精品国产综合久久久| 久久人妻福利社区极品人妻图片 | 看免费成人av毛片| av国产精品久久久久影院| 黄色视频不卡| 国语对白做爰xxxⅹ性视频网站| 纵有疾风起免费观看全集完整版| 亚洲精品第二区| 久久99一区二区三区| 水蜜桃什么品种好| 亚洲av国产av综合av卡| 悠悠久久av| 亚洲免费av在线视频| 久久精品aⅴ一区二区三区四区| 亚洲欧洲精品一区二区精品久久久| 十八禁网站网址无遮挡| 99久久99久久久精品蜜桃| 国产有黄有色有爽视频| 国产黄色视频一区二区在线观看| 久久精品亚洲av国产电影网| 在线亚洲精品国产二区图片欧美| 久久久久久亚洲精品国产蜜桃av| 午夜福利一区二区在线看| 亚洲欧美日韩高清在线视频 | 男男h啪啪无遮挡| 欧美xxⅹ黑人| 亚洲成人免费电影在线观看 | 每晚都被弄得嗷嗷叫到高潮| 久久这里只有精品19|