• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage

    2022-03-12 07:44:38NingLi李寧XinLi李鑫MingYueZhang張明越JingYingMiao苗景迎ShenChengFu付申成andXinTongZhang張昕彤
    Chinese Physics B 2022年3期
    關(guān)鍵詞:李鑫李寧

    Ning Li(李寧) Xin Li(李鑫) Ming-Yue Zhang(張明越) Jing-Ying Miao(苗景迎)Shen-Cheng Fu(付申成) and Xin-Tong Zhang(張昕彤)

    1Center for Advanced Optoelectronic Functional Material Research,Northeast Normal University,Changchun 130024,China

    2Key Laboratory of UV-Emitting Materials and Technology(Northeast Normal University),Ministry of Education,Changchun 130024,China

    Keywords: holographic,ZnO nanowires,Ag nanoparticles

    1. Introduction

    With the rapid development of information communication technology, massive data are exchanged in the Internet every moment. It is estimated that the amount of information generated in the world will reach 175 ZB(zettabyte)in 2025.A big challenge to store large-volume data in photosensitive media efficiently still exists.[1]Compared with electromagnetic storage,optical memory has potential advantages of high density,long life and low power consumption.[2-6]The shorter the wavelength of recording light,the higher the storage density. Holographic technology can use interference fringes to record the whole object information at the Airy disc of photosensitive materials.[7-10]In addition,the“page”mode of holographic recording also provides possibility for a high-speed data transmission.[7]

    In recent years, noble-metal/metal-oxide-semiconductor nanostructures have attracted much attention for their excellent photoelectric and chemical properties.[11-20]Especially,the discovery of photochromism in such an inorganic system promotes the development of holographic storage.[21-25]ZnO has advantages of wide band gap, large exciton binding energy and high electron mobility, which make it being a candidate for multifunctional devices.[26]ZnO nanomaterials with wurtzite structure can be made into a variety of morphologies in nanoscale, such as nanorods,[27]nanosheets,[28]and nanotubes.[29]Among them,the regularly arranged ZnO nanowire arrays need no complex preparation process while have large specific surface area afterc-axis oriented growth.[30]So far, nano-Ag/ZnO nanocomposites have been widely investigated in the fields of gas sensors, photocatalysis and photo-electrochemistry.[31-33]Unfortunately,no reports are found on the holographic storage in nano-Ag/ZnO nanocomposite films. As ZnO nanowires (NWs) have low chemical activity on their surface, hot electrons in localized surface plasmon resonance (LSPR) are difficult to transfer from metal to the semiconductor sides.The transition from Ag to Ag+is thus partly inhibited.To resolve the issue,ZnO NWs with oxygen defects are fabricated by hydrothermal method in this paper. Meanwhile, an idea of “electron reverse transfer”is proposed that visible light induces reduction of Ag+ions through the excitation of ZnO. An obvious plasmon spectral enhancement is observed after a blue-ray excitation. Highefficient hologram reconstruction is realized after optimizing nanowire density,oxygen defects and surface roughness.

    2. Experimental details

    2.1. Preparation of Ag+/ZnO NWs

    A two-step hydrothermal method was used to synthesize ZnO NWs. Before preparation, the FTO glass substrates of 2 cm×2 cm were ultrasonically treated in ultra-pure water,acetone and isopropanol for 15 min, respectively, and were dried naturally in air.Meanwhile,in order to remove the residual organic compounds and increase the surface hydrophilicity,the FTO substrate was pretreated with ultraviolet ozone for 15 min. Afterwards,zinc acetate,ethanolamine and methanol were mixed by magnetic stirring at room temperature for 90 min to obtain ZnO seed solution. Then, the ZnO seed solution(50 μL)was spin-coated on the FTO substrate with the speed of 1500 r/min for 30 s. The sample was then placed on a hot plate at 350°C and annealed for 30 min to form a ZnO seed layer. Next, zinc nitrate hexahydrate, polyethylenimine and urotropine(HMTA)were mixed with ultrapure water and stirred at room temperature (300 K) for 60 min to obtain homogeneous ZnO growth solution. Finally,the growth solution and the sample loaded with seed layer were put into a stainless steel reactor and heated in an oven at 95°C for 1 h, 2 h,and 3 h to obtain three kinds of NWs with different lengths.ZnO NWs were then immersed in AgNO3solution of 0.2 M for 10 min in darkness so that Ag+ions can be adsorbed on the NW surface sufficiently. After air-gun drying,Ag+/ZnO NW complexes,named Ag+/ZnO1h,Ag+/ZnO2hand Ag+/ZnO3h,respectively,were obtained. The whole preparation process is shown in Fig.1.

    Fig. 1. Preparation process of Ag+/ZnO nanowires composite films.Hydrothermal times are 1 h,2 h and 3 h,respectively.

    2.2. Optics setup

    The optical devices for holographic kinetics are shown in Fig. 2. Two coherent beams (403.4 nm, 140 mW·cm-2, spolarized) are generated from a blue-violet laser. One of the beams loaded with information is incident on the Ag+/ZnO NW arrays, and the other beam irradiates at the same point of the sample to inscribe holograms. A red laser (671 nm,14 mW·cm-2,s-polarized)is used as a detect source to monitor the formation of holographic fringes. The first-order diffraction signal is recorded on a photodiode which is connected to a computer. The diffraction efficiency of the holographic grating with Fresnel loss can be defined as the ratio of the intensity of the first-order diffraction beam to that of the probe beam passing through the sample.

    Fig.2. Optical device of Ag+/ZnO nanowire for dynamic recordings in holographic gratings and holograms(M:mirror;BS:beam splitter;PD:photodiode;BE:beam expander).

    3. Results and discussion

    A scanning electron microscope (SEM) was used to observe the surface morphology of ZnO NWs. The top views of ZnO NWs are shown in Figs.3(a)-3(c),and the cross-sectional views are inserted, correspondingly. ZnO NWs with a good vertical growth state on the FTO substrate is observed. The length of the NWs increases with prolonging hydrothermal time, which is measured to be 300 nm, 600 nm and 750 nm for the hydrothermal times of 1 h, 2 h and 3 h, respectively.From the top view of SEM images,the surface nanowire density is also dependent on hydrothermal time, which is statistically analyzed. The results show that the surface density of ZnO NWs for hydrothermal time of 1 h is the highest,reaching 2.5×1010cm-2. With the increase of hydrothermal time,the surface linear density decreases to 1.74×1010cm-2and 8.3×109cm-2for 2 h and 3 h, respectively. The difference may result from the fact that the ZnO NWs hardly keep growing vertically and uniformly all the time during the hydrothermal treatment process. Thus,some of the NWs cannot be observed on the sample surface. Figures 3(d)-3(f)show the NW diameter distribution and the cumulative percentage of volume fraction. The results show that the average values of NW diameters are 27.62 nm and 31.36 nm for ZnO1hand ZnO2h,respectively. The NW diameter less than 40 nm occupies 97.4%(ZnO1h)and 88.8%(ZnO2h).However,for ZnO3h,the NW diameter increases significantly,almost to 37.81 nm. Therefore,hydrothermal time plays a key role in the longitudinal length and surface diameters of NWs.

    X-ray diffraction(XRD)tests were carried out on ZnO1h,as shown in Fig. 4(a). Compared with the standard card of ZnO (PDF #79-0207), it is observed that the prepared ZnO NWs have excellent crystallinity. The diffraction angles of 34.381°and 36.181°correspond to the (002) and (101) crystal planes of wurtzite ZnO,respectively. Disappearance of the(100)diffraction pike that corresponds to the diffraction angle of 31.698°is most possibly resulted from thec-axis orientation growth of ZnO NWs. However,the(100)crystal plane can be observed by a transmission electron microscope(TEM)(data not shown here).Figure 4(b)shows electron paramagnetic resonance (ESR) for the three kinds of samples. The peak ofg=2.01 proves the existence of oxygen vacancy defect. The formation of this defect originates from the oxygen-deficient conditions such as the hydrothermally grown NWs.[34]The ESR signal intensity increases with prolonging hydrothermal time,which confirms that the defect content increases accordingly. Figure 4(c) shows that the absorbance of oxide NWs is weak in visible band for ZnO1h,which is enhanced significantly for ZnO3h. It is demonstrated that the sensitivity of the sample in the visible band is greatly improved after increasing hydrothermal time. Figure 4(d)shows the photoluminescence spectra for the three samples. Two luminescence peaks are found. One is the UV luminescence peak at 380 nm,which is called near-band-edge emission and generated by free-exciton recombination in the ZnO nanostructures through an excitonexciton collision process. The other is the weak broad greenyellow emission(~570 nm)that originates from the electronhole recombination at deep level defects namely in singly ionized oxygen vacancies(V+O).

    Fig. 3. Top view of SEM images of ZnO NWs for different hydrothermal times. The corresponding cross-sectional images are inserted. The NW diameter distribution and volume fraction cumulative percentages are shown below: (a)and(d)for ZnO1h,(b)and(e)for ZnO2h,(c)and(f)for ZnO3h.

    Fig. 4. (a) XRD pattern of ZnO1h NWs. (b) ESR spectra of ZnO NWs with different hydrothermal times. (c) Absorption spectra and (d)photoluminescence spectra of ZnO nanowires for different hydrothermal times.

    The prepared ZnO NWs have hexagonal wurtzite structure wherec-axis acts as the polar axis. In this case, oxygen ions are arranged in hexagonal dense packing while Zn ions fill the tetrahedral gap. Half of the tetrahedral gap in the structure is empty,which is easy to produce intrinsic donors of Zn gap defects and O vacancy defects. With prolonging hydrothermal time,the luminescence intensity in UV and visible regions are both enhanced, indicating the increasement of the V+Odefect population. The spectral observations are consistent with the ESR results.

    The large amount of defect states greatly enhances the photoelectron generation under visible light excitation,which provides an effective way for the photoreduction of metal ions.Hence,we used blue-ray(403.4 nm,140 mW·cm-2)as the excitation light to investigate photochromism of the Ag+/ZnO1hcomposite system,as shown in Fig.5(a). The absorption spectra for the irradiation times from 0 min to 25 min are obtained. The differential absorption spectra exhibit an effective absorption enhancement covering the whole visible region from 400 nm to 800 nm, which is centered at 405 nm. The band is hard to be found within the initial irradiation period of 3 min, but increases significantly in the subsequent process. A similar result is obtained for the other two samples of Ag+/ZnO2hand Ag+/ZnO3h. We also measured thein situphotoluminescence spectra of Ag+/ZnO1hnanocomposite system under the excitation from a UV laser (325 nm, 35 mW)with different excitation periods (0 min, 5 min and 10 min,respectively), as shown in Fig. 5(b). It can be seen that the UV luminescence intensity of the ZnO loaded with silver ions decreases obviously. Differently, we found that the luminescence ability of ZnO in the visible region(centered at 570 nm)increases slightly after the adsorption of silver ions[Fig.5(b),inserted], which may be related to the localized surface plasmon enhancement.

    Fig.5.(a)Absorption spectra and differential absorption spectra(inserted)of the Ag/ZnO1h nanocomposite under the 403.4 nm laser irradiation.(b)Photoluminescence spectra of the ZnO1h NWs before and after the treatment of AgNO3 solution,as well as that under 325 nm excitation for different periods (0 min, 5 min and 10 min). The magnification graph in visible region is inserted. (c) Top view of SEM images for the nanocomposite system before and after the blue-ray irradiation. The TEM image is inserted for the ZnO1h NWs without Ag particle deposition.(d)TEM and HRTEM observations for the blue-ray induced emerging of Ag NPs on ZnO NWs via scratching from the prepared Ag/ZnO film.

    The absorption and photoluminescence spectral changes in visible region both indicate the possibility of generation of plasmonic particles. Accordingly, surface morphological change was measured byin situSEM for Ag+/ZnO1hbefore and after laser irradiation (140 mW·cm-2), as shown in Fig. 5(c). Before the irradiation, only the ZnO NW surface morphology can be observed, as shown in the inserted graph of Fig. 5(c). After the blue-violet excitation, Ag nanorods appear on the surface of ZnO NWs. The TEM was used to observe the change in the gap of ZnO NWs, as shown in Fig. 5(d). A large amount of spherical Ag nanoparticles(NPs)appear on ZnO NWs with a wide size distribution from 5 nm to 35 nm. High-resolution transmission electron microscopy (HRTEM, the right-side image in Fig. 5(d) proves the nature of the Ag/ZnO contact. The(111)crystal plane of Ag NPs and the (002) crystal plane of ZnO are determined.As ZnO is usually n-type, the Schottky contact may form at the metal-semiconductor interfaces according to our previous investigation.[35]The description equations of photochemical reaction process are expressed as follows:

    As is known, the electrons at ZnO defect state can absorb photons and jump to the conduction band under the irradiation of the blue-violet light. Ag+ions adsorbed on the surface of ZnO NWs during previous immersion are further photo-reduced. ZnO in exciting state is thus used as an electron donor,and the photogenerated electrons of ZnO interface are transferred to Ag+to generate Ag nucleus. Photochemical reaction is conducted on the surface or in the gap of NW arrays to induce Ag nuclei self-assembly. The regular surface structure of NWs provides convenience for the Ag particle aggregation,which results in large-sized Ag nanorods rather than small spherical NPs. Finally,rod-like Ag NPs emerges on the surface of the NW arrays. However,spherical Ag NPs tend to form in the gap of ZnO NWs due to the limited space. The one-dimensional NW structure has large specific surface area than planar structure,which can provide multiple sites for Ag+loading and form point/line heterojunction. In the reduction process, multiple electron transport channels are provided by sufficient contacting sites, which accelerate the reduction of the Ag+ions adsorbed on the NW surface. The emergence of Ag NPs results in LSPR absorption, which well explains the absorption band in visible region from 400 nm to 800 nm in Fig.5(a). However,in Fig.5(b),under the continuous irradiation of the excitation light source,the UV luminescence intensity decreases firstly(from 0 min to 5 min)and then increases(from 5 min to 10 min). We believe that this process is related to the capture of photogenerated electrons by silver ions and the resultant emergence of Ag NPs. The population decrease of the photoelectrons for recombination with holes results in weakening of intrinsic luminescence. After UV irradiation for 5 min,some silver nuclei are formed and quite amount of silver ions exist. At this time,the Ag+/ZnO nanocomposite system has a strong ability to absorb the 325 nm light energy to generate Ag NPs. When the system is illuminated for 10 min,the content of the resident silver ions decreases significantly,so the light absorption capacity at 325 nm is weakened and the intrinsic emission capacity is partially restored.

    The results from Fig. 5 indicate that blue-ray irradiation plays a key role in variation of optical properties of the Ag+/ZnO NWs system. Thus holographic fringes with periodically bright and dark regions can be copied onto such a photosensitive medium. ZnO NWs in the bright area generate photoelectrons for the reduction of Ag+ions; while the medium in the dark area is not irradiated by the laser,and thus maintains its original properties. The Ag0in the bright area and Ag+in the dark area have a sharp contrast in absorbance and refractive index,and the information is thus stored on the sample as a form of interference fringes.The results for testing holographic efficiency are shown in Fig.6.

    Fig. 6. First-order diffraction efficiency versus time for Ag+/ZnO1h,Ag+/ZnO2h and Ag+/ZnO3h.

    The highest diffraction efficiency of Ag+/ZnO1hcomposite film can reach 0.08%. However, the diffraction efficiencies of the other two composite films of Ag+/ZnO2hand Ag+/ZnO3hare lower than that of the Ag+/ZnO1hcomposite system, with the highest diffraction efficiencies reaching 0.05% and 0.03%, respectively. We believe that the diffraction efficiency of the nanocomposite system is related to the factors such as generation efficiency of photoelectrons, loading amount of Ag+ions and light-scattering on sample surface. According to ESR test results,ZnO3hexhibits the largest amount of oxygen defects among the three kinds of samples. Under the same conditions, the number of photogenerated electrons is the largest. The formed holographic gratings should have presented the highest contrast between bright and dark regions. However, the test results show that the composite film of Ag+/ZnO3hhas the lowest diffraction efficiency during the same excitation period. That means that light scattering on the sample surface must be taken into account.When the length of ZnO NWs increases, it is impossible to ensure that each NW grows at the same rate. With the long-term growth of NWs, the surface flatness decreases. The incident light in the bright region can be easily scattered to the dark one,also weakening the grating contrast.At the same time,the amount of Ag+loading sites is insufficient on the surface due to the lowest NW density on the surface of Ag+/ZnO3h. Thus,the lowest diffraction efficiency for Ag+/ZnO3his reasonable.The above results indicate that the Ag+/ZnO nanocomposite system can effectively memorize holographic gratings under visible light excitation in short wavelength region,and the high diffraction efficiency of the Ag+/ZnO1hsample provides possibility for the storage and reconstruction of holographic images. Using red light(671 nm)as the read-out light,the image of the “Eiffel Tower” is stored. Figure 7 shows the original image and its holographic reconstruction at the writing times of 50 s, 100 s and 300 s, respectively. It is worth pointing out that the amount of defects generated in the hydrothermal process is still limited, although the internal defects of ZnO have provided important support for improving the diffraction efficiency of the sample. Towards the application of ultra-fast and high-density holographic storage,the sample performance can be optimized in two aspects: One is introducing impurities or plasma treatment in the ZnO to create more defects so as to expand optical response range and to increase the population of photogenerated electrons. The other is increasing the loading amount of Ag+ions to enhance the reduction reaction,to improve the grating contrast, and to realize more efficient hologram storage.

    Fig.7. Original image(left,black),and the hologram reconstruction in the Ag+/ZnO1h composite by red light.

    4. Conclusion

    In summary, an Ag+/ZnO nanocomposite system has been constructed using the hydrothermal-immersion method.The internal oxygen defects in ZnO broaden the light response band, and photogenerated electrons can be effectively generated under blue-violet excitation. The length and the defect content of NWs are dependent on hydrothermal time. Onedimensional nanostructures provide a large number of contacting sites for the subsequent loading of silver ions,forming multiple point/line hetero-interfaces, which are used to transfer photogenerated electrons from the semiconductor side to the silver ions, resulting in the formation of Ag nuclei. In addition, the NW structure provides an excellent growth environment for the formation of Ag nanorods on the array surface.We also compared the effect of NW length on the diffraction efficiency. The results show that the surface of ZnO1hNWs can reduce the light scattering,and improve the light energy utilization.The holographic diffraction efficiency reaches 0.08% for Ag+/ZnO1h. Efficient integration of generation,transmission and storage for optical information is expected to be realized in ZnO-based nano-devices.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China(Grant Nos.11974073,U19A2091,and 51732003), the Overseas Expertise Introduction Project for Discipline Innovation (Grant No. B13013), the Natural Science Foundation of Jilin Province of China (Grant No. 20180101218JC), and The 13th Five-Year Scientific Research Planning Project of the Education Department of Jilin Province,China(Grant No.JJKH20201161KJ).

    猜你喜歡
    李鑫李寧
    On Coupled Dirac Systems Under Chirality Boundary Condition
    回望祖山圖
    磁懸浮列車相關(guān)問題賞析
    What Is Guochao?
    In situ measurement on nonuniform velocity distribution in external detonation exhaust flow by analysis of spectrum features using TDLAS
    再不能分擔(dān)的孤獨(dú)
    Progress in quantum well and quantum cascade infrared photodetectors in SITP?
    憂傷詞
    滇池(2017年6期)2017-06-14 20:29:14
    跌宕起伏“李寧”
    商界評論(2017年5期)2017-05-17 18:44:16
    那一縷陽光
    亚洲无线观看免费| 丰满少妇做爰视频| 亚洲精品456在线播放app| 免费人成在线观看视频色| 插逼视频在线观看| 少妇被粗大猛烈的视频| 观看美女的网站| 在线 av 中文字幕| 亚洲国产精品国产精品| 熟女电影av网| 亚洲精品色激情综合| 王馨瑶露胸无遮挡在线观看| 日日啪夜夜爽| 亚洲最大成人中文| 免费播放大片免费观看视频在线观看| 91在线精品国自产拍蜜月| 性色av一级| 精品视频人人做人人爽| 午夜福利高清视频| 亚洲精品国产色婷婷电影| 成年人午夜在线观看视频| 涩涩av久久男人的天堂| 久久久久久久久久人人人人人人| 五月伊人婷婷丁香| 欧美激情在线99| 婷婷色av中文字幕| 99久久九九国产精品国产免费| 黄色视频在线播放观看不卡| videos熟女内射| 白带黄色成豆腐渣| 亚洲av成人精品一二三区| 国产av国产精品国产| 男人狂女人下面高潮的视频| 看免费成人av毛片| 国产精品秋霞免费鲁丝片| 女人十人毛片免费观看3o分钟| 干丝袜人妻中文字幕| 亚洲欧美成人精品一区二区| 日本色播在线视频| 嫩草影院新地址| 啦啦啦啦在线视频资源| 人妻一区二区av| 亚洲av国产av综合av卡| 一级毛片久久久久久久久女| 欧美 日韩 精品 国产| 99re6热这里在线精品视频| 自拍偷自拍亚洲精品老妇| 国产高清国产精品国产三级 | 欧美xxxx性猛交bbbb| 精品一区二区三卡| 日韩av在线免费看完整版不卡| 久久人人爽人人爽人人片va| 国产人妻一区二区三区在| 国产色婷婷99| freevideosex欧美| 色视频在线一区二区三区| 美女高潮的动态| 尾随美女入室| 国产一区二区在线观看日韩| 少妇猛男粗大的猛烈进出视频 | 亚州av有码| 大香蕉97超碰在线| 久久久精品免费免费高清| 欧美精品一区二区大全| 成人特级av手机在线观看| 日韩 亚洲 欧美在线| 99久久精品一区二区三区| 交换朋友夫妻互换小说| 亚洲国产欧美人成| 国产69精品久久久久777片| 国产毛片在线视频| 视频区图区小说| 天天躁日日操中文字幕| 在线观看一区二区三区激情| 日韩av不卡免费在线播放| 男女边吃奶边做爰视频| 国产精品久久久久久精品古装| 人人妻人人爽人人添夜夜欢视频 | 亚洲在久久综合| 国产真实伦视频高清在线观看| 免费大片18禁| 亚洲人成网站在线播| h日本视频在线播放| 精品久久久久久电影网| 麻豆成人午夜福利视频| 国产伦在线观看视频一区| 亚洲自拍偷在线| 免费观看性生交大片5| 狠狠精品人妻久久久久久综合| 精品酒店卫生间| 亚洲国产av新网站| 丰满少妇做爰视频| 午夜视频国产福利| 美女主播在线视频| 国产精品久久久久久av不卡| 高清在线视频一区二区三区| 永久免费av网站大全| 亚洲欧洲日产国产| 婷婷色av中文字幕| 精品国产露脸久久av麻豆| 日韩大片免费观看网站| 最近2019中文字幕mv第一页| 国产成人freesex在线| 少妇被粗大猛烈的视频| 欧美xxxx黑人xx丫x性爽| av在线老鸭窝| 亚洲精品乱码久久久久久按摩| 国产精品爽爽va在线观看网站| a级毛色黄片| 欧美激情国产日韩精品一区| 亚洲国产精品专区欧美| 国产精品一区www在线观看| 国产午夜精品一二区理论片| av线在线观看网站| 亚洲性久久影院| 亚洲精品日韩av片在线观看| 国产亚洲av嫩草精品影院| 美女被艹到高潮喷水动态| 亚洲av国产av综合av卡| 国精品久久久久久国模美| 99久久人妻综合| 国产精品久久久久久久电影| 亚洲精品国产成人久久av| 女人被狂操c到高潮| 国产精品一区二区三区四区免费观看| 久久久久久久久大av| 国内精品宾馆在线| 欧美人与善性xxx| 又大又黄又爽视频免费| 美女cb高潮喷水在线观看| 国产日韩欧美在线精品| 2021天堂中文幕一二区在线观| 久久97久久精品| 久久精品国产鲁丝片午夜精品| 欧美三级亚洲精品| 男女边吃奶边做爰视频| 内地一区二区视频在线| 欧美xxⅹ黑人| 日本av手机在线免费观看| 成年av动漫网址| 欧美日韩综合久久久久久| 大码成人一级视频| 麻豆精品久久久久久蜜桃| 看免费成人av毛片| 有码 亚洲区| 青春草国产在线视频| 亚洲最大成人中文| 国产黄a三级三级三级人| 久久精品国产亚洲网站| 免费av不卡在线播放| 国产成年人精品一区二区| 最近2019中文字幕mv第一页| 久久女婷五月综合色啪小说 | 亚洲美女搞黄在线观看| 久久久久久九九精品二区国产| 欧美一区二区亚洲| tube8黄色片| 午夜福利高清视频| 亚洲精品影视一区二区三区av| 日本一本二区三区精品| 免费观看a级毛片全部| 一区二区三区乱码不卡18| 亚洲性久久影院| 男女下面进入的视频免费午夜| 插阴视频在线观看视频| 色5月婷婷丁香| 亚洲欧洲国产日韩| 在线免费观看不下载黄p国产| 伊人久久精品亚洲午夜| 国产av不卡久久| 性色av一级| 大陆偷拍与自拍| 有码 亚洲区| 嘟嘟电影网在线观看| 最近中文字幕2019免费版| 国产男女内射视频| 蜜桃亚洲精品一区二区三区| 1000部很黄的大片| 欧美成人a在线观看| 夜夜爽夜夜爽视频| 久久精品人妻少妇| 能在线免费看毛片的网站| 亚洲丝袜综合中文字幕| 日韩中字成人| 水蜜桃什么品种好| 老司机影院毛片| 自拍欧美九色日韩亚洲蝌蚪91 | 男人和女人高潮做爰伦理| 亚洲无线观看免费| 久久人人爽人人爽人人片va| 内地一区二区视频在线| 亚洲精品,欧美精品| 性插视频无遮挡在线免费观看| 欧美一级a爱片免费观看看| 亚洲自拍偷在线| 亚洲综合精品二区| 国产精品国产av在线观看| 最新中文字幕久久久久| 少妇熟女欧美另类| 天堂中文最新版在线下载 | 成年女人在线观看亚洲视频 | 老女人水多毛片| 亚洲av国产av综合av卡| 热99国产精品久久久久久7| 亚洲无线观看免费| 国产黄a三级三级三级人| 国产精品蜜桃在线观看| 91午夜精品亚洲一区二区三区| 国产高清有码在线观看视频| 赤兔流量卡办理| 成人国产麻豆网| 熟女人妻精品中文字幕| 夜夜看夜夜爽夜夜摸| 我要看日韩黄色一级片| 日韩电影二区| 免费av毛片视频| 99热6这里只有精品| 亚洲成色77777| 久久久久久国产a免费观看| 亚洲人成网站在线播| av网站免费在线观看视频| 国精品久久久久久国模美| 成年女人在线观看亚洲视频 | 中文字幕久久专区| 七月丁香在线播放| 国产精品久久久久久精品古装| 大话2 男鬼变身卡| 一区二区三区免费毛片| 亚洲在久久综合| 在线观看三级黄色| 亚洲国产精品国产精品| 久久99精品国语久久久| 午夜爱爱视频在线播放| 三级男女做爰猛烈吃奶摸视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产黄色视频一区二区在线观看| www.色视频.com| 亚洲人成网站高清观看| av专区在线播放| 在线a可以看的网站| 免费观看在线日韩| 久久热精品热| a级毛片免费高清观看在线播放| 大香蕉97超碰在线| 女人被狂操c到高潮| 涩涩av久久男人的天堂| a级一级毛片免费在线观看| 99re6热这里在线精品视频| 99视频精品全部免费 在线| 在线观看av片永久免费下载| 亚洲精品日韩av片在线观看| 亚洲国产欧美人成| 一本久久精品| 国产中年淑女户外野战色| 别揉我奶头 嗯啊视频| 国产午夜精品一二区理论片| av天堂中文字幕网| 久久久午夜欧美精品| 色吧在线观看| 一级毛片久久久久久久久女| 亚洲精品第二区| 中文字幕人妻熟人妻熟丝袜美| 亚洲无线观看免费| 国产乱人视频| xxx大片免费视频| 简卡轻食公司| 欧美激情国产日韩精品一区| 亚洲精品日韩av片在线观看| 久久久久九九精品影院| 日韩视频在线欧美| 91午夜精品亚洲一区二区三区| 青春草亚洲视频在线观看| 中文字幕制服av| 九九在线视频观看精品| 少妇的逼好多水| 欧美激情在线99| 下体分泌物呈黄色| 欧美高清性xxxxhd video| 午夜视频国产福利| 欧美日韩一区二区视频在线观看视频在线 | 中文乱码字字幕精品一区二区三区| 狂野欧美白嫩少妇大欣赏| av线在线观看网站| 免费看不卡的av| 全区人妻精品视频| 成人黄色视频免费在线看| 大码成人一级视频| 色播亚洲综合网| 精品人妻熟女av久视频| 国产久久久一区二区三区| www.av在线官网国产| 国产乱人视频| 黑人高潮一二区| 欧美激情在线99| 国产精品国产三级国产专区5o| 亚洲天堂国产精品一区在线| 伦精品一区二区三区| 寂寞人妻少妇视频99o| 国产精品av视频在线免费观看| 国产精品爽爽va在线观看网站| 亚洲国产最新在线播放| 久热久热在线精品观看| 日韩一区二区视频免费看| 精品国产一区二区三区久久久樱花 | 午夜福利视频精品| 色视频www国产| 国产在线男女| 欧美xxⅹ黑人| 亚洲av.av天堂| 国模一区二区三区四区视频| 成人亚洲精品av一区二区| 欧美老熟妇乱子伦牲交| 欧美精品一区二区大全| 亚洲av男天堂| 国产av国产精品国产| 青春草国产在线视频| 人妻一区二区av| 精品国产乱码久久久久久小说| 午夜福利视频1000在线观看| 少妇的逼水好多| 国内揄拍国产精品人妻在线| 婷婷色综合www| kizo精华| 免费看a级黄色片| 麻豆国产97在线/欧美| 亚洲av免费高清在线观看| 日本一本二区三区精品| av天堂中文字幕网| 免费电影在线观看免费观看| 五月天丁香电影| 亚洲国产色片| 精品99又大又爽又粗少妇毛片| 黄色一级大片看看| 少妇被粗大猛烈的视频| 69人妻影院| 欧美成人精品欧美一级黄| 日韩国内少妇激情av| 日韩欧美精品v在线| 久久综合国产亚洲精品| 亚洲精品中文字幕在线视频 | 亚洲激情五月婷婷啪啪| 最近最新中文字幕免费大全7| 性插视频无遮挡在线免费观看| 免费看日本二区| 一个人看视频在线观看www免费| 久久99精品国语久久久| 国产高清国产精品国产三级 | 在线 av 中文字幕| 免费少妇av软件| 天堂中文最新版在线下载 | 精品久久久久久久末码| 高清毛片免费看| 国产精品一区二区在线观看99| 黄片wwwwww| 免费观看无遮挡的男女| av在线app专区| 国产免费一级a男人的天堂| 国产av不卡久久| 2021少妇久久久久久久久久久| 新久久久久国产一级毛片| 大陆偷拍与自拍| 我的女老师完整版在线观看| 禁无遮挡网站| 亚洲在线观看片| 国产爱豆传媒在线观看| 久久影院123| 亚洲成人一二三区av| 看免费成人av毛片| 亚洲av成人精品一二三区| 高清欧美精品videossex| av在线老鸭窝| 久久精品人妻少妇| 偷拍熟女少妇极品色| 性色av一级| 99re6热这里在线精品视频| 五月伊人婷婷丁香| 国产成人a∨麻豆精品| 亚洲国产精品国产精品| 熟女电影av网| 又粗又硬又长又爽又黄的视频| 午夜激情福利司机影院| 亚洲,欧美,日韩| 免费播放大片免费观看视频在线观看| 97热精品久久久久久| 男人添女人高潮全过程视频| 亚洲av国产av综合av卡| 嫩草影院新地址| 久久精品国产鲁丝片午夜精品| 亚洲av日韩在线播放| 在线观看国产h片| 极品教师在线视频| 免费观看在线日韩| 97在线视频观看| 国产精品伦人一区二区| h日本视频在线播放| 亚洲精品色激情综合| 简卡轻食公司| 久久精品国产亚洲av涩爱| 国产真实伦视频高清在线观看| 91在线精品国自产拍蜜月| av在线app专区| 中文天堂在线官网| 我要看日韩黄色一级片| 亚洲精品456在线播放app| 少妇高潮的动态图| 久久久成人免费电影| 18禁裸乳无遮挡免费网站照片| 人妻 亚洲 视频| 日产精品乱码卡一卡2卡三| 国产免费视频播放在线视频| 又黄又爽又刺激的免费视频.| 中文天堂在线官网| 一级毛片久久久久久久久女| 日日啪夜夜爽| 欧美精品人与动牲交sv欧美| 国精品久久久久久国模美| 国产色婷婷99| 国产精品成人在线| 18禁在线无遮挡免费观看视频| 美女被艹到高潮喷水动态| 亚洲欧美日韩无卡精品| 性色avwww在线观看| 少妇的逼水好多| 亚洲av成人精品一二三区| 精品人妻熟女av久视频| 国产成人freesex在线| 免费电影在线观看免费观看| 秋霞在线观看毛片| 网址你懂的国产日韩在线| 大码成人一级视频| 欧美丝袜亚洲另类| 国产欧美亚洲国产| 国产成年人精品一区二区| 免费看av在线观看网站| 久久女婷五月综合色啪小说 | 国产免费一区二区三区四区乱码| 久久久a久久爽久久v久久| 久久99精品国语久久久| 欧美成人一区二区免费高清观看| 亚洲三级黄色毛片| 亚洲精品日韩av片在线观看| 大香蕉97超碰在线| 国产伦理片在线播放av一区| 草草在线视频免费看| 熟女人妻精品中文字幕| 看免费成人av毛片| 国产亚洲91精品色在线| 女人被狂操c到高潮| 成年女人看的毛片在线观看| av在线天堂中文字幕| 国产色爽女视频免费观看| 国产精品偷伦视频观看了| 亚洲欧美清纯卡通| 中国美白少妇内射xxxbb| 日日撸夜夜添| 99热这里只有是精品在线观看| 熟女电影av网| 色视频在线一区二区三区| 国产成人精品一,二区| 亚洲成人中文字幕在线播放| 久久久色成人| 日本熟妇午夜| 有码 亚洲区| 熟妇人妻不卡中文字幕| 男女啪啪激烈高潮av片| 91精品伊人久久大香线蕉| 在线播放无遮挡| 在线观看三级黄色| 特大巨黑吊av在线直播| 99久久精品国产国产毛片| 精品久久久噜噜| 亚洲欧洲国产日韩| 亚洲成人久久爱视频| 国产精品一区二区在线观看99| 亚洲国产欧美人成| 乱码一卡2卡4卡精品| 男女边摸边吃奶| 18禁在线无遮挡免费观看视频| 免费av观看视频| 国产精品国产三级国产av玫瑰| 一级黄片播放器| 夜夜看夜夜爽夜夜摸| 嫩草影院新地址| 欧美潮喷喷水| 久久久久久伊人网av| 亚洲av欧美aⅴ国产| 国产精品精品国产色婷婷| 欧美极品一区二区三区四区| 午夜日本视频在线| 国语对白做爰xxxⅹ性视频网站| 国产成人午夜福利电影在线观看| 高清av免费在线| 中文字幕人妻熟人妻熟丝袜美| 九九久久精品国产亚洲av麻豆| 久久精品夜色国产| 三级男女做爰猛烈吃奶摸视频| 国产精品精品国产色婷婷| 成人美女网站在线观看视频| 久久精品久久久久久噜噜老黄| 好男人在线观看高清免费视频| 国产黄片美女视频| 欧美性猛交╳xxx乱大交人| 欧美一级a爱片免费观看看| 国内揄拍国产精品人妻在线| 成人鲁丝片一二三区免费| 成人毛片a级毛片在线播放| 精品久久久久久久末码| 国产一区二区三区综合在线观看 | 大又大粗又爽又黄少妇毛片口| 在线观看一区二区三区| 国产亚洲一区二区精品| av在线蜜桃| 亚洲精品国产av成人精品| 99久久九九国产精品国产免费| 日韩强制内射视频| 国产成人精品一,二区| 国产精品秋霞免费鲁丝片| 婷婷色av中文字幕| 男人舔奶头视频| 午夜爱爱视频在线播放| 国产男女超爽视频在线观看| 亚洲精品久久午夜乱码| 亚洲av中文字字幕乱码综合| 亚洲精品色激情综合| 伊人久久国产一区二区| 五月伊人婷婷丁香| 三级国产精品片| 在线天堂最新版资源| 男男h啪啪无遮挡| 精品少妇黑人巨大在线播放| 色哟哟·www| 伊人久久国产一区二区| 久久久久精品久久久久真实原创| 热re99久久精品国产66热6| 日韩一本色道免费dvd| 亚洲国产色片| 成年女人看的毛片在线观看| 嫩草影院入口| 日韩国内少妇激情av| 青春草亚洲视频在线观看| 日韩一区二区视频免费看| 亚洲av福利一区| 亚洲天堂国产精品一区在线| 九九久久精品国产亚洲av麻豆| 精品99又大又爽又粗少妇毛片| 免费观看a级毛片全部| 啦啦啦啦在线视频资源| 国产精品偷伦视频观看了| 美女高潮的动态| 日本色播在线视频| 欧美丝袜亚洲另类| freevideosex欧美| 精品人妻熟女av久视频| av网站免费在线观看视频| 国产老妇伦熟女老妇高清| 国产午夜福利久久久久久| 禁无遮挡网站| 亚洲电影在线观看av| 国精品久久久久久国模美| 久久鲁丝午夜福利片| 少妇裸体淫交视频免费看高清| 尾随美女入室| 久久综合国产亚洲精品| 在线精品无人区一区二区三 | 亚洲av福利一区| av在线老鸭窝| 国产欧美另类精品又又久久亚洲欧美| tube8黄色片| 亚洲自偷自拍三级| 在线观看一区二区三区激情| 成人国产av品久久久| 国产精品一区www在线观看| 大话2 男鬼变身卡| 国语对白做爰xxxⅹ性视频网站| 国产男女超爽视频在线观看| 国产精品久久久久久av不卡| 日韩,欧美,国产一区二区三区| 综合色丁香网| 亚洲在久久综合| 听说在线观看完整版免费高清| 人人妻人人看人人澡| 久久久久久国产a免费观看| 精品视频人人做人人爽| 亚洲内射少妇av| 成人欧美大片| 一级a做视频免费观看| 男人添女人高潮全过程视频| 国产亚洲91精品色在线| 男人添女人高潮全过程视频| 九色成人免费人妻av| 成人欧美大片| 欧美另类一区| 小蜜桃在线观看免费完整版高清| 国国产精品蜜臀av免费| 成人午夜精彩视频在线观看| 欧美另类一区| 亚洲精品一二三| 久久精品综合一区二区三区| 久久久精品免费免费高清| 欧美少妇被猛烈插入视频| 亚洲丝袜综合中文字幕| 国产亚洲午夜精品一区二区久久 | 国产精品一及| 国产亚洲av片在线观看秒播厂| 中国三级夫妇交换| 男女那种视频在线观看| 在线观看三级黄色| 亚洲丝袜综合中文字幕| 精品一区在线观看国产| 人妻一区二区av| 日本av手机在线免费观看| 五月开心婷婷网| 一区二区三区免费毛片| 亚洲欧美精品自产自拍| 国产精品久久久久久精品电影小说 |