• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On Coupled Dirac Systems Under Chirality Boundary Condition

    2024-04-12 23:42:06YANGXu楊旭LIXin李鑫
    應(yīng)用數(shù)學(xué) 2024年1期
    關(guān)鍵詞:楊旭李鑫

    YANG Xu(楊旭) ,LI Xin(李鑫)

    ( 1.School of Mathematics , Yunnan Normal University, Kunming 650500, China;2.Yunnan Key Laboratory of Modern Analytical Mathematics and Applications,Kunming 650500, China)

    Abstract: In this article we study the existence of solutions for the Dirac systems with the chirality boundary condition.Using an analytic framework of proper products of fractional Sobolev spaces,the solutions existence results of the coupled Dirac systems are obtained for nonlinearity with superquadratic growth rates.The results obtained by GONG and LU (2017) are extended to the case of chiral boundary condition.

    Key words: Dirac system;Boundary condition;Variational method

    1.Introduction and Main Results

    Dirac operators on compact spin manifolds play prominent role in the geometry and mathematical physics,such as the generalized Weierstrass representation of the surface in three manifolds[9]and the supersymmetric nonlinear sigma model in quantum field theory[4].The existence of solutions of the Dirac equation has been studied on compact spin manifolds without boundaries by Ammann[1],Isobe[12].In addition,being different with these existing works,DING and LI[5]studied a class of boundary value problem on a compact spin manifoldMwith smooth boundary.The problem is a general relativistic model of confined particles by means of nonlinear Dirac fields onM.In this paper,we are concerned with a nonlinear Dirac systems on compact spin manifolds with smooth boundary,and deal with some existence results.

    Spin manifold (M,g) equipped with a spin structureσ:Pspin(M)→Pso(M),and let ΣM=Pspin(M)×σΣmdenote the complex spinor bundle onM,which is a complex vector bundle of rank 2[m/2]endowed with the spinorial Levi-Civita connection?and a pointwise Hermitian scalar product〈·,·〉.We always assumem ≥2 in this paper.Consider Whitney direct sum ΣM ⊕ΣMand write a point of it as (x,u,v),wherex ∈Mandu,v ∈ΣxM.Pis the Dirac operator under the boundary conditionBCHIu=BCHIv=0 on?M.We consider the following system of the coupled equations

    where fiber preserving mapH: ΣM ⊕ΣM →R is a real valued superquadratic function of classC1with subcritical growth rates.(1.1) is the Euler-lagrange equation of the functional

    where dxis the Riemann volume measure onMwith respect to the metricg,〈·,·〉 is the compatible metric on ΣM.

    The problem (1.1) describes two coupled fermionic fields in quantum.It can be viewed as a spinorial analogue of other strongly indefinite variational problems such as elliptic systems[2,8,11].A typical way to deal with such problems is the min-max method,including the mountain pass theorem,linking arguments.Another is a homological method,the Morse theory and Rabinowitz-Floer homology.For the Dirac operator associated with appropriate boundary condition,Farinell and Schwarz[7]prove that Dirac operatorPis elliptic and extends to a self-adjoint operator with a discrete spectrum.In this paper we use the techniques introduced by Hulshof and Van Der Vorst[11]to prove the existence of solutions of(1.1),and apply a generalized fountain theorem established by Batkam and Colin[2]to obtain infinitely many solutions of the coupled Dirac system provided the nonlinearityHis even.In the following we assume that two real numbersp,qsatisfy

    For the nonlinearityH,we make the following hypotheses:

    H ∈C0(ΣM ⊕ΣM,R) isC1in the fiber direction.Real constants 2

    (H1) There exist a constantC1>0 such that

    (H2) There existR1>0,such that

    for all (x,u,v)∈ΣM ⊕ΣMwith|(u,v)|≥R1.

    (H3)H(x,u,v)≥0 for all (x,u,v)∈ΣM ⊕ΣM.

    (H4)H(x,u,v)=o(|(u,v)|2) as|(u,v)|→0 uniformly forx ∈M.

    (H5)H(x,-u,-v)=H(x,u,v) forany (x,u,v)∈ΣM⊕ΣM.

    Note1.1ThatH(x,u,v)=|u|p+|v|qsatisfies these conditions.In[15]existence results for the Dirac system without boundary condition are given under the same assumptions onH(x,u,v).The above condition (H2) looses associated condition in [10].

    Our main result is as follow.

    Theorem 1.1If the aboveHsatisfies (H1)-(H4),then the Dirac system(1.1) possesses at least one solution.

    Furthermore,for odd nonlinearities we have the following multiplicity result:

    Theorem 1.2If the aboveHsatisfies (H1)-(H5),then there exists a sequence of solutionsto (1.1) with L(uk,vk)→∞ask →∞.

    2.About Boundary Condition

    We collect here some basic definitions and facts about spin structures on manifolds and Dirac operators.For more detailed exposition,please consult [5,13].

    Define(ΣM,〈,〉,γ,?)is a Dirac bundle if?:C∞(M,ΣM)→C∞(M,T?M ?ΣM)andγ:C∞(M,T?M ?ΣM)→C∞(M,ΣM) satisfies:

    for anyω ∈TMand?,ψ ∈C∞(M,ΣM).We have used the identificationT?M ~=TMby the metric onM,thenC∞(M,T?M ?ΣM)~=C∞(M,TM ?ΣM),therefore,Dirac operatorPact on spinors onMis defined by

    In particular,if we choose an local orthogonal tangent frame{e1,e2,···,em},the Dirac operatorPbecomes

    Then we consider a Chirality operator associated with the Dirac bundle〈ΣM,〈·〉,γ,?〉.If a linear mapF:EndC(ΣM)→EndC(ΣM)satisfies

    for each vector fieldX ∈TMand spinor fieldsψ,φ ∈C∞(M,ΣM).

    The boundary hypersurface?Mis also a spin manifold and so we have the corresponding spinor bundle Σ?M,the clifford multiplicationγ?M,the spin connection??Mand the intrinsic Dirac operatorP?M.The restricted Hermitian bundle ΣM|?Mcan be identified with the intrinsic Hermitian spinor bundle Σ?M,provided thatmis odd.Instead,ifmis even,the restricted Hermitian bundle ΣM|?Mcould be identified with the sum Σ?M ⊕Σ?M.

    Define an operatorΓ:=F|?M γ(N),whereNdenotes the unite inner normal vector field on?M.By the definition,we knowFis a local operator on the spinor bundle over?M.Fis a self-adjoint operator and has two eigenvalues +1 and-1.The corresponding eigenspaces are

    For the spaceC∞(M,ΣM),defineaninnerproduct

    ThenH1(M,ΣM) is the completion of the spaceC∞(M,ΣM) with respect to the norm∥·∥H1.SincePis a first operator,it extends to a linear operatorP:H1(M,ΣM)→L2(M,ΣM) andP|?M:H1(M,ΣM)→L2(?M,Σ?M).Let

    Then the Dirac operatorPwith Chirality boundary conditionBCHIψ|?M=0 is well defined in the domain D(P).For simplicity,in the following,we will denote the D(P) by D.

    Forψ,φ ∈D,by the integrated version of Lichnerowitz Formula,we have (Pψ,φ)=(ψ,Pφ).Actually,Pis a self-adjoint operator inL2(M,ΣM) with domain D.

    3.The Analytic Framework

    If (M,g) has positive scalar curvature,it is obviously 0Spec(P),by Fridrich’s inequality.

    is a Hilbert space isomorphism by the arguments above.Hence

    It is a self-adjoint isometry operator andB?B=Id:E →Eis identity operator.Introducing the “diagonals”

    Note thatBz±=±z±,soE+andE-are the mutually orthogonal eigenspaces of the eigenvalues 1 and-1 ofB.Orthonormal bases consisting of eigenvectors ofE±are given by

    Then for eachz=z++z-,we have

    Now we can define a functionalL:E →R as

    whereH(z)=H(x,z)dx.

    SinceMis compact,by the assumption (H1) and integrating we obtain

    And letu=0.Similarly,we prove that

    From (3.2),(3.3) and Young’ inequality to derive

    for some constantC>0.

    By an analysis of interpolation of the Sobolev spaces,

    Since (D,∥·∥1,2) embedsH1(M,ΣM) continuously,there holds the continuous embeddingThen using (3.4) we can define the functionalH:E →R as

    is of classC1and its derivative at (u,v)∈Eis given by

    MoreoverDH:E →E?is a compact operator.

    In fact,using the H¨older inequality and embeddings we have

    In a similar way we obtain an inequality for the derivative with respect tov.ThusDH(u,v)is well defined and bounded inE.Next,by the Sobolev embeddings,usual arguments give thatDH(u,v) is compact.

    4.The Palais-Smale Condition for L

    LetFbe aC1functional on a Banach spaceE,c ∈R.Recall that a sequence{xn}?Eis called a (PS)c-sequence ifF(xn)→casn →∞and∥DF(xn)∥E?→0 asn →∞.If all(PS)c-sequences converge inE,we say thatFsatisfies the (PS)ccondition.In this section we prove the (PS)ccondition for L.

    Lemma 4.1SupposeHsatisfies (H1),(H2).Then for anyc ∈R,L satisfies the (PS)ccondition with respect toE.

    ProofLet{zn}={(un,vn)} ?Ebe a (PS)c-sequence with respect toE,i.e.,zn ∈Eand satisfy

    Claim 4.1{zn}?Eis bounded.

    The condition (H2) implies that there are constantsC2,C3>0 such that

    See [6] for a proof.By (4.1)-(4.3) and (H2),for largenwe have

    Using the conditions (iii) an d (iv) above (H1),an analogous reasoning yields

    Moreover,it also holds that

    By (4.7)-(4.12),we deduce

    Hence (4.13) and (4.5) lead to

    For anyz-∈E-,then the similar arguments will lead to

    Adding (4.14) and (4.15) yields

    By the assumptions onp,q,μabove (H1),it is easily checked that the total exponent each term in the right-hand side of (4.16) is less than 2.It follows that the sequence{zn}is bounded inE.Claim 4.1 is proved.

    Passing to a subsequence we may assume that for somez ∈E,zn ?zweakly inE.From here on a usual argument based on the compactness ofDHand invertibility ofBgive the existence of a subsequence ofzn=B-1(DL(zn)+DH(zn)) that convergeszinE.So the(PS)c-condition is verified.

    5.Proof of the Theorems

    The proof of Theorem 1.1 is based on an application of the following theorem of Benci and Rabinowtitz[3].

    Theorem 5.1(Indefinite Functional Theorem) LetHbe a real Hilbert space withH=H1H2.satisfies the Palais-Smale conditon,and

    (I1)L(z)=(Lz,z)-H(z),whereL:H →His bounded and self-adjoint,andLleavesH1andH2invariant;

    (I2)DHis compact;

    (I3) there exists a subspace?Hand setsS ?H,Q ?and constantsα>ωsuch that

    (i)S ?H1andL|S≥α,

    (ii)Qis bounded and L≤ωon the boundary?QofQ ∈

    (iii)Sand?Qlink,then L possesses a critical valuec ≥α.

    Before giving the geometric conditions for the first linking property,we sets1,s2,ρ>0 with 0<ρ

    whereBρdenotes an open ball with radiusρcentered at the origin,e+=(ξ+,η+)∈E+withη+some eigenspinor ofPcorresponding to the first positive eigenvalue

    Lemma 5.1There existsρ>0 andα>0 such that

    ProofConditons (H1),(H3) and (H4) imply that for anyε>0 there exists a constantC(ε)>0 such that

    for all (u,v)∈E.Combining (5.1) and the Sobolev embedding,it is straightforward to show that

    for some constantsC4>0 andC5>0.Thus we can fixε0,α>0 such that L(z+)≥αonS.

    Lemma 5.2There existss1,s2,ρ>0 with 0<ρ

    ProofNote that the boundary?Qof the cylinderQis taken in the spaceand consists of three parts,namely the bottomQ∩{s=0},the lidQ∩{s=s1},and[0,s1e+]⊕(∩E-).

    Clearly L(z)≤0 on the bottom by (H3).For the remaining two parts of the boundary we first observe that,forz=z-+re+∈

    By definition ofE+we haveξ+=|P|-1Pη+=η+,therefore,e+=(η+,η+).

    We setz-=(u-,v-),forz-+re+=(u-+rη+,v-+rη+).Using (4.3),we have

    Thus,writingv-=tη++,whereη+is orthogonal toinL2(M,ΣM).By definition ofE±we have

    Similarly,η+is orthogonal to|P|-1inL2(M,ΣM).By H¨older’s inequality,

    for some constantC6depending onη+.Similarly,we have

    Therefore,we deduce from (5.3),(5.4) and (5.5)that

    Byμ>2,takingr=s1large enough we see in (5.6) that L(z-+re+)<0 on the lidQ ∩{s=s1}.

    Forz-+re+∈[0,s1e+]⊕(?Bs2∩E-),we deduce from the condition (H3) that

    Taking∥z-∥E=s2large enough,it holds that

    The desired result is proved.

    Proof of Theorem 1.1LetH=E,H1=E+,H2=E-,we apply Lemma 4.1 to the functional L.The Palais-Smale conditon is satisfied.We can use the standard methods to show that Conditions I1,I2and L is continuously differentiable.The geometric conditions I3(i),(ii) is proved in Lemma 5.1 and Lemma 5.2.For the proof of (I3)(iii) we refer to [3].Therefore L possesses a critical value pointz ∈Eand satisfies L(z)≥α>0.

    To obtain Theorem 1.2,we recall the Generalized fountain theorem for semi-definite functionals (see [6] for the detailed exposition).

    (A3) L satisfies the Palais-Smale condition;where

    Then L has an unbounded sequence of critical values.

    We will define the following subsets for giving the geometric conditions of the linking property:

    Bk:={z ∈Yk|∥z ∥E≤ρk},Nk:={z ∈Zk|∥z ∥E=rk},?Bk:={z ∈Yk|∥z ∥E=ρk},where 0

    Lemma 5.3There existsρk>rk>0 such that

    (A1)ak:=L(z)→∞,k →∞;

    (A2)bk:=L(z)≤0 anddk:=L(z)<∞.

    Proof(i) Letz=(u,v)∈Zk,T=max{p,q},t=min{p,q},Then by (5.1),which implies that

    We know by Lemma 3.8 in [14] thatαk →0 ask →∞,so L(z)→∞ask →∞,and the condition (A1) is satisfied.

    SinceE+is orthogonal toE-inL2(M,ΣM ⊕ΣM),we deduce

    Combining (3.1) with (5.9) yields

    Takingδ>shows that L(z)→-∞as∥z ∥E→∞,so (A2) is satisfied forρklarge enough.The desired result is proved.

    LetΠ-:E →E-andΠ+:E →E+be the orthogonal projections,be an orthonormal basis ofE-.OnEwe consider a new norm

    We use theτ-topology is generated by the norm||||·||||[14].It is clear that∥Π+z ∥E≤||||z||||≤∥z ∥E.Moreover,if{zn}is a bounded sequence inEthen

    Lemma 5.4Under the assumptions (H1) and (H3),L isτ-upper semicontinuous andDL is weakly sequentially continuous.

    This shows thatDL is weakly sequentially continuous.

    Now we use Theorem 5.2 to obtain infinitely many critical points of the even functional L in Theorem 1.2.

    Proof of Theorem 1.2We know by Lemma 4.1 that L satisfies the Palais-Smale condition.From Lemma 5.3,it can be seen that the geometric conditions (A1) and (A2)hold.Lemma 5.4 implies that L isτ-upper semicontinuous andDL is weakly sequentially continuous.Then L has an unbounded sequence of critical values.

    猜你喜歡
    楊旭李鑫
    磁懸浮列車相關(guān)問(wèn)題賞析
    Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
    二代目!“魔鏡”新飛船喜馬拉雅號(hào)登場(chǎng)
    Thickness-dependent magnetic anisotropy in obliquely deposited Fe(001)/Pd thin film bilayers probed by VNA-FMR?
    再不能分擔(dān)的孤獨(dú)
    月亮從午后升起
    憂傷詞
    滇池(2017年6期)2017-06-14 20:29:14
    火柴棒擺“箭”
    那一縷陽(yáng)光
    更正啟事
    亚洲精品久久午夜乱码| 久久久久精品性色| 婷婷成人精品国产| 巨乳人妻的诱惑在线观看| 午夜福利在线免费观看网站| 街头女战士在线观看网站| 一本色道久久久久久精品综合| 久久99热这里只频精品6学生| 狂野欧美激情性bbbbbb| 午夜福利一区二区在线看| 欧美最新免费一区二区三区| 国产黄色免费在线视频| 中文天堂在线官网| av不卡在线播放| 丰满饥渴人妻一区二区三| 国产免费视频播放在线视频| 亚洲精品国产av成人精品| 国产成人精品无人区| 亚洲人成电影观看| 五月伊人婷婷丁香| 日韩av免费高清视频| 国产精品女同一区二区软件| 亚洲一区中文字幕在线| 国产日韩欧美视频二区| 国产精品麻豆人妻色哟哟久久| 另类亚洲欧美激情| 国产精品av久久久久免费| 男女边摸边吃奶| 欧美日韩成人在线一区二区| 亚洲人成电影观看| 国产一区二区三区av在线| 精品一区二区三区四区五区乱码 | 中文字幕精品免费在线观看视频| 久久韩国三级中文字幕| 高清欧美精品videossex| 国产 精品1| 另类精品久久| 亚洲av在线观看美女高潮| 亚洲第一av免费看| 国产精品不卡视频一区二区| 女人久久www免费人成看片| 久久国产精品大桥未久av| 日本免费在线观看一区| 日日撸夜夜添| 夫妻午夜视频| 久久精品国产综合久久久| 91aial.com中文字幕在线观看| 精品一区二区免费观看| 中文字幕av电影在线播放| 亚洲三区欧美一区| 精品99又大又爽又粗少妇毛片| 久久这里有精品视频免费| 欧美日韩一区二区视频在线观看视频在线| 亚洲国产精品一区二区三区在线| 国产精品一国产av| 亚洲一级一片aⅴ在线观看| 啦啦啦视频在线资源免费观看| a 毛片基地| 精品国产一区二区三区四区第35| 亚洲人成77777在线视频| 日产精品乱码卡一卡2卡三| 又粗又硬又长又爽又黄的视频| 午夜日韩欧美国产| 99热全是精品| 亚洲三区欧美一区| av在线老鸭窝| 成年女人在线观看亚洲视频| 两个人免费观看高清视频| 国产毛片在线视频| 女性生殖器流出的白浆| 纵有疾风起免费观看全集完整版| 亚洲人成电影观看| 日本色播在线视频| 亚洲精品国产一区二区精华液| 亚洲色图综合在线观看| 国产在视频线精品| 777久久人妻少妇嫩草av网站| 欧美 日韩 精品 国产| 日韩,欧美,国产一区二区三区| 99香蕉大伊视频| 毛片一级片免费看久久久久| 国产免费又黄又爽又色| 男女边摸边吃奶| 丰满迷人的少妇在线观看| 亚洲精品在线美女| 亚洲人成77777在线视频| 久久精品国产自在天天线| 免费观看无遮挡的男女| 一级爰片在线观看| 2022亚洲国产成人精品| 日日爽夜夜爽网站| 久久精品国产亚洲av天美| 最近中文字幕2019免费版| 18禁裸乳无遮挡动漫免费视频| 欧美人与性动交α欧美软件| 久久久a久久爽久久v久久| 成人毛片60女人毛片免费| 国产精品欧美亚洲77777| 久久人人爽人人片av| 亚洲第一青青草原| 免费观看a级毛片全部| 高清不卡的av网站| 国产免费又黄又爽又色| 91aial.com中文字幕在线观看| 国产av国产精品国产| 亚洲美女搞黄在线观看| 最近中文字幕2019免费版| av又黄又爽大尺度在线免费看| 亚洲国产精品成人久久小说| 日韩,欧美,国产一区二区三区| 日韩不卡一区二区三区视频在线| 国产片特级美女逼逼视频| 一区二区日韩欧美中文字幕| 少妇被粗大猛烈的视频| 久久久久网色| 午夜福利,免费看| 成人黄色视频免费在线看| 日日摸夜夜添夜夜爱| 男女午夜视频在线观看| 国产成人精品久久二区二区91 | 亚洲av.av天堂| 2021少妇久久久久久久久久久| 成年女人在线观看亚洲视频| 欧美日韩精品成人综合77777| 国产精品久久久久久av不卡| 久久精品aⅴ一区二区三区四区 | 曰老女人黄片| 国产在线免费精品| √禁漫天堂资源中文www| 青春草国产在线视频| 捣出白浆h1v1| 中文精品一卡2卡3卡4更新| 亚洲欧美一区二区三区国产| 大香蕉久久网| 亚洲欧洲日产国产| 妹子高潮喷水视频| 免费观看av网站的网址| 99久久中文字幕三级久久日本| 亚洲国产色片| 精品酒店卫生间| 成人国产av品久久久| 国产一级毛片在线| 亚洲人成77777在线视频| 亚洲av福利一区| 久久人人爽人人片av| 欧美激情极品国产一区二区三区| av网站在线播放免费| 日韩一区二区三区影片| 看十八女毛片水多多多| 亚洲欧洲精品一区二区精品久久久 | 日韩成人av中文字幕在线观看| 99久久人妻综合| 国产有黄有色有爽视频| 精品第一国产精品| 一级爰片在线观看| 久久精品国产自在天天线| 一本大道久久a久久精品| 考比视频在线观看| 99热网站在线观看| 免费看av在线观看网站| 国产福利在线免费观看视频| 中文字幕av电影在线播放| 欧美av亚洲av综合av国产av | 中国国产av一级| 热re99久久精品国产66热6| 久久亚洲国产成人精品v| 欧美日本中文国产一区发布| 天天躁狠狠躁夜夜躁狠狠躁| 老司机影院毛片| 少妇的丰满在线观看| 国产精品久久久久成人av| 国产精品久久久久久久久免| 女性生殖器流出的白浆| 成人国语在线视频| 久久久久精品性色| 欧美老熟妇乱子伦牲交| 国产熟女午夜一区二区三区| 日本爱情动作片www.在线观看| 久久久久久久国产电影| 欧美激情极品国产一区二区三区| 免费播放大片免费观看视频在线观看| 青春草亚洲视频在线观看| 免费黄色在线免费观看| h视频一区二区三区| 亚洲精品aⅴ在线观看| 亚洲综合色网址| av电影中文网址| 久久久a久久爽久久v久久| 国产精品一区二区在线观看99| 男女啪啪激烈高潮av片| 中国三级夫妇交换| 久久久久久久精品精品| 少妇熟女欧美另类| 一区福利在线观看| 人体艺术视频欧美日本| 最新中文字幕久久久久| 成人18禁高潮啪啪吃奶动态图| 国产片特级美女逼逼视频| av在线老鸭窝| 亚洲成人av在线免费| 亚洲美女视频黄频| 国产精品一区二区在线不卡| 亚洲国产色片| 丁香六月天网| 美女脱内裤让男人舔精品视频| 亚洲国产av新网站| 人人妻人人添人人爽欧美一区卜| 999精品在线视频| 免费看不卡的av| av网站免费在线观看视频| 人人妻人人澡人人看| 久久精品久久精品一区二区三区| 黄色视频在线播放观看不卡| 男人舔女人的私密视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 寂寞人妻少妇视频99o| 精品久久蜜臀av无| 美国免费a级毛片| 中文字幕制服av| 亚洲欧美成人精品一区二区| 亚洲一区二区三区欧美精品| 亚洲精品国产色婷婷电影| 久久久久久人人人人人| 亚洲精品日韩在线中文字幕| 99久久精品国产国产毛片| 人人妻人人爽人人添夜夜欢视频| 精品午夜福利在线看| 婷婷成人精品国产| 这个男人来自地球电影免费观看 | 亚洲国产精品国产精品| 国产黄频视频在线观看| 九色亚洲精品在线播放| 性高湖久久久久久久久免费观看| 久久热在线av| 人妻 亚洲 视频| 亚洲av成人精品一二三区| 九色亚洲精品在线播放| 最近最新中文字幕大全免费视频 | 国产日韩一区二区三区精品不卡| 亚洲三级黄色毛片| 18禁裸乳无遮挡动漫免费视频| 老汉色∧v一级毛片| 寂寞人妻少妇视频99o| 国精品久久久久久国模美| 一区福利在线观看| 少妇的丰满在线观看| 女人被躁到高潮嗷嗷叫费观| 亚洲精品久久久久久婷婷小说| 亚洲成人手机| 看免费成人av毛片| 成人漫画全彩无遮挡| 日本欧美视频一区| 亚洲av男天堂| 午夜精品国产一区二区电影| 黄片无遮挡物在线观看| 亚洲五月色婷婷综合| 国产有黄有色有爽视频| 王馨瑶露胸无遮挡在线观看| 国产在线视频一区二区| 91久久精品国产一区二区三区| 十八禁高潮呻吟视频| 欧美日韩成人在线一区二区| 久久精品夜色国产| 亚洲精品aⅴ在线观看| 久久青草综合色| 人妻 亚洲 视频| 中国三级夫妇交换| www.自偷自拍.com| 观看av在线不卡| 亚洲精品第二区| 成年美女黄网站色视频大全免费| 色播在线永久视频| 十八禁网站网址无遮挡| 黑人欧美特级aaaaaa片| 精品人妻在线不人妻| 亚洲国产av影院在线观看| 妹子高潮喷水视频| 一区二区三区精品91| 五月天丁香电影| 成人亚洲精品一区在线观看| 亚洲精品久久午夜乱码| 黄片小视频在线播放| 国产成人精品婷婷| 国产日韩欧美在线精品| 一本色道久久久久久精品综合| 午夜精品国产一区二区电影| 国产熟女午夜一区二区三区| 999精品在线视频| 亚洲精品自拍成人| 国产 精品1| 狠狠婷婷综合久久久久久88av| 啦啦啦在线免费观看视频4| 免费看不卡的av| 欧美日韩亚洲国产一区二区在线观看 | 国产精品无大码| 9热在线视频观看99| 色网站视频免费| 亚洲,一卡二卡三卡| kizo精华| 男女国产视频网站| 久久这里有精品视频免费| 少妇的丰满在线观看| 老熟女久久久| 免费播放大片免费观看视频在线观看| 久久久久久人人人人人| 欧美日韩一级在线毛片| 国产精品久久久久久久久免| 亚洲熟女精品中文字幕| 亚洲精品在线美女| 如日韩欧美国产精品一区二区三区| 国产成人aa在线观看| av.在线天堂| 男男h啪啪无遮挡| 亚洲精品美女久久av网站| 国产高清国产精品国产三级| 热99久久久久精品小说推荐| 97在线视频观看| 天天影视国产精品| 中文精品一卡2卡3卡4更新| 国产精品久久久久久久久免| 少妇被粗大的猛进出69影院| 天天操日日干夜夜撸| 欧美成人午夜免费资源| 日韩熟女老妇一区二区性免费视频| 欧美日韩精品成人综合77777| 中国国产av一级| 精品国产超薄肉色丝袜足j| 九草在线视频观看| 91aial.com中文字幕在线观看| 美女福利国产在线| 男人添女人高潮全过程视频| 久久99精品国语久久久| 国产1区2区3区精品| 丝袜喷水一区| 汤姆久久久久久久影院中文字幕| 在线观看美女被高潮喷水网站| 黑人巨大精品欧美一区二区蜜桃| 大话2 男鬼变身卡| 国产一区二区 视频在线| 黑人巨大精品欧美一区二区蜜桃| 国产免费福利视频在线观看| 久久综合国产亚洲精品| 免费黄频网站在线观看国产| 亚洲精品自拍成人| 免费观看无遮挡的男女| 亚洲国产成人一精品久久久| 精品99又大又爽又粗少妇毛片| 亚洲av日韩在线播放| 高清不卡的av网站| 国产不卡av网站在线观看| 国产精品秋霞免费鲁丝片| 青春草国产在线视频| 成年美女黄网站色视频大全免费| 一二三四中文在线观看免费高清| 亚洲人成网站在线观看播放| 国产精品人妻久久久影院| 久久久久久人人人人人| 国产极品天堂在线| a级毛片黄视频| 国产探花极品一区二区| 国产精品三级大全| 久久久久久久大尺度免费视频| 91午夜精品亚洲一区二区三区| 又黄又粗又硬又大视频| 亚洲第一青青草原| 2018国产大陆天天弄谢| 极品少妇高潮喷水抽搐| 久久99蜜桃精品久久| a 毛片基地| 看免费成人av毛片| 青春草亚洲视频在线观看| 国产免费又黄又爽又色| 女人精品久久久久毛片| 国产无遮挡羞羞视频在线观看| 制服丝袜香蕉在线| 精品少妇内射三级| 午夜福利,免费看| 国产成人精品婷婷| 伊人久久国产一区二区| 亚洲精品久久久久久婷婷小说| 国产精品熟女久久久久浪| 国产探花极品一区二区| 男女高潮啪啪啪动态图| 国产日韩欧美亚洲二区| 亚洲色图 男人天堂 中文字幕| 男人爽女人下面视频在线观看| 大香蕉久久网| 久久影院123| 日韩欧美一区视频在线观看| 亚洲成国产人片在线观看| 晚上一个人看的免费电影| 久久人妻熟女aⅴ| 成人影院久久| 亚洲少妇的诱惑av| 亚洲av欧美aⅴ国产| av卡一久久| 热99久久久久精品小说推荐| 亚洲一级一片aⅴ在线观看| 亚洲精品中文字幕在线视频| 成年美女黄网站色视频大全免费| 91精品国产国语对白视频| 国产午夜精品一二区理论片| 七月丁香在线播放| 三级国产精品片| 1024香蕉在线观看| 亚洲人成77777在线视频| 久久人人爽av亚洲精品天堂| 高清在线视频一区二区三区| 欧美日韩一级在线毛片| 少妇人妻精品综合一区二区| 国产女主播在线喷水免费视频网站| 美国免费a级毛片| 大陆偷拍与自拍| 99九九在线精品视频| 久久精品人人爽人人爽视色| 久久青草综合色| 久久av网站| 欧美精品av麻豆av| 午夜免费男女啪啪视频观看| 熟女少妇亚洲综合色aaa.| 国产成人精品一,二区| 极品人妻少妇av视频| 免费黄色在线免费观看| 中文字幕另类日韩欧美亚洲嫩草| 综合色丁香网| 少妇的逼水好多| 久久久久国产一级毛片高清牌| 伊人久久大香线蕉亚洲五| 国产精品偷伦视频观看了| 国产 精品1| 天堂中文最新版在线下载| 91精品伊人久久大香线蕉| 亚洲男人天堂网一区| 国产亚洲欧美精品永久| 女人高潮潮喷娇喘18禁视频| 欧美日韩一级在线毛片| 激情视频va一区二区三区| 伊人亚洲综合成人网| 韩国精品一区二区三区| 精品国产乱码久久久久久男人| 久久 成人 亚洲| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲三区欧美一区| 亚洲精品自拍成人| 18禁动态无遮挡网站| 色婷婷av一区二区三区视频| 在线观看免费视频网站a站| 国产高清国产精品国产三级| av有码第一页| 免费日韩欧美在线观看| 超色免费av| 18禁观看日本| 国产精品人妻久久久影院| 80岁老熟妇乱子伦牲交| 国产av国产精品国产| 国产精品av久久久久免费| 亚洲国产色片| 欧美日韩视频精品一区| 97在线人人人人妻| 黑人猛操日本美女一级片| 亚洲在久久综合| 王馨瑶露胸无遮挡在线观看| 亚洲av欧美aⅴ国产| 精品国产超薄肉色丝袜足j| 日韩不卡一区二区三区视频在线| 国产色婷婷99| 色视频在线一区二区三区| 久久久久久久久久人人人人人人| 黄色视频在线播放观看不卡| 免费观看a级毛片全部| 久久精品国产鲁丝片午夜精品| 大码成人一级视频| kizo精华| 毛片一级片免费看久久久久| 亚洲一码二码三码区别大吗| 久久久精品区二区三区| 国产成人91sexporn| 午夜福利乱码中文字幕| av在线播放精品| av.在线天堂| 亚洲欧美日韩另类电影网站| 日韩不卡一区二区三区视频在线| 国产淫语在线视频| 爱豆传媒免费全集在线观看| 国产野战对白在线观看| 美女国产视频在线观看| videos熟女内射| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲激情五月婷婷啪啪| 亚洲婷婷狠狠爱综合网| 亚洲人成77777在线视频| av电影中文网址| 亚洲精品美女久久久久99蜜臀 | 高清黄色对白视频在线免费看| 久久久久网色| 电影成人av| 国产成人aa在线观看| 中文字幕人妻丝袜制服| 大片免费播放器 马上看| 久久女婷五月综合色啪小说| 黄色毛片三级朝国网站| 国产精品.久久久| 天堂8中文在线网| 国产av一区二区精品久久| 午夜久久久在线观看| 久久狼人影院| 亚洲内射少妇av| 日本91视频免费播放| 国产国语露脸激情在线看| 999精品在线视频| 欧美日韩成人在线一区二区| 王馨瑶露胸无遮挡在线观看| a级片在线免费高清观看视频| 国产97色在线日韩免费| 如何舔出高潮| 一区在线观看完整版| 人妻人人澡人人爽人人| 精品国产乱码久久久久久男人| 国产成人免费无遮挡视频| 亚洲男人天堂网一区| 美女xxoo啪啪120秒动态图| 国产午夜精品一二区理论片| 日本猛色少妇xxxxx猛交久久| 欧美在线黄色| 一本—道久久a久久精品蜜桃钙片| 老汉色∧v一级毛片| 国产 一区精品| 亚洲国产欧美日韩在线播放| 五月伊人婷婷丁香| 久久久久久久大尺度免费视频| 欧美bdsm另类| 亚洲精品一区蜜桃| 亚洲精品乱久久久久久| 青春草视频在线免费观看| 国产精品 欧美亚洲| 熟女av电影| 91久久精品国产一区二区三区| 老汉色av国产亚洲站长工具| 中文乱码字字幕精品一区二区三区| 国产熟女午夜一区二区三区| 欧美97在线视频| 校园人妻丝袜中文字幕| 国产成人精品无人区| 中文字幕制服av| 日本猛色少妇xxxxx猛交久久| 美女高潮到喷水免费观看| 97人妻天天添夜夜摸| 日韩伦理黄色片| 国产淫语在线视频| 91精品伊人久久大香线蕉| 91午夜精品亚洲一区二区三区| 亚洲伊人色综图| 中国国产av一级| 中文字幕人妻丝袜制服| 亚洲国产欧美日韩在线播放| 亚洲伊人久久精品综合| 女人高潮潮喷娇喘18禁视频| 久久久久国产一级毛片高清牌| 国产av国产精品国产| 超碰97精品在线观看| 久久精品亚洲av国产电影网| 国产精品一二三区在线看| 制服诱惑二区| 狠狠精品人妻久久久久久综合| 亚洲欧美成人综合另类久久久| 亚洲av在线观看美女高潮| av免费在线看不卡| 青春草视频在线免费观看| 中文字幕最新亚洲高清| 精品少妇黑人巨大在线播放| 免费观看无遮挡的男女| 国产高清不卡午夜福利| 在现免费观看毛片| 亚洲精品自拍成人| 国产一级毛片在线| 一区二区av电影网| 久久久久久久亚洲中文字幕| 国产激情久久老熟女| 午夜福利,免费看| 卡戴珊不雅视频在线播放| 欧美日韩综合久久久久久| 色婷婷久久久亚洲欧美| 汤姆久久久久久久影院中文字幕| 国产精品久久久久久久久免| 久久久久久伊人网av| 久久精品熟女亚洲av麻豆精品| 男女国产视频网站| 黄色配什么色好看| 性色avwww在线观看| 男的添女的下面高潮视频| 在线观看www视频免费| 精品一区二区三区四区五区乱码 | 亚洲av国产av综合av卡| 18禁动态无遮挡网站| 一级毛片 在线播放| 精品人妻在线不人妻| 黄色怎么调成土黄色| 狠狠婷婷综合久久久久久88av| 在线免费观看不下载黄p国产| 婷婷色综合大香蕉| 日本欧美视频一区| 9色porny在线观看| 叶爱在线成人免费视频播放| 亚洲情色 制服丝袜| 飞空精品影院首页| 国产麻豆69| 精品人妻在线不人妻| 免费观看性生交大片5| 国产av码专区亚洲av| 亚洲国产最新在线播放| 男女啪啪激烈高潮av片| 亚洲精品中文字幕在线视频| 十分钟在线观看高清视频www| 成年女人在线观看亚洲视频| 啦啦啦中文免费视频观看日本|