• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The 266-nm ultraviolet-beam generation of all-fiberized super-large-mode-area narrow-linewidth nanosecond amplifier with tunable pulse width and repetition rate

    2022-03-12 07:48:10ShunLi李舜PingXueLi李平雪MinYang楊敏KeXinYu于可新YunChenZhu朱云晨XueYanDong董雪巖andChuanFeiYao姚傳飛
    Chinese Physics B 2022年3期
    關鍵詞:楊敏

    Shun Li(李舜), Ping-Xue Li(李平雪), Min Yang(楊敏), Ke-Xin Yu(于可新),Yun-Chen Zhu(朱云晨), Xue-Yan Dong(董雪巖), and Chuan-Fei Yao(姚傳飛)

    Institute of Ultrashort Pulsed Laser and Application,Faculty of Materials and Manufacturing,Beijing University of Technology,Beijing 100124,China

    Keywords: nanosecond,all-fiber amplifier,narrow-linewidth,ultraviolet beam generation,tunable pulse width and repetition rate

    1. Introduction

    Nowadays, there is an increasing need for narrowlinewidth, high average power ultraviolet (UV) laser sources for high-resolution spectroscopy, remote environmental sensing, laser-induced fluorescence, semiconductor inspection,and light detection and ranging (LIDAR) applications.[1,2]Especially, the deep-UV lasers with narrow-linewidth (<10 GHz) can improve the effect significantly for the abovementioned applications.[3,4]So far, using narrow-linewidth solid-state lasers as fundamental frequency sources for frequency conversion,has been the most popular method to produce UV lasers.[5-14]In addition,narrow-linewidth fiber lasers are also potential fundamental frequency sources, which can provide better-quality beams, improved compactness, higher stability and efficiency.[15]Furthermore, narrow-linewidth fiber lasers are easy to achieve tunable repetition frequency and pulse width,compared with solid-state lasers.

    Producing narrow-linewidth deep-UV lasers requires a fundamental frequency source with higher peak power.[16]However,the peak power of narrow-linewidth fiber lasers,related to the pulse duration of the order of ns,is relatively low for efficient frequency quadrupling. In addition, the limitation of the SBS effect is more obvious for narrow-linewidth fiber lasers.[17,18]In order to improve the peak power values of fundamental frequency sources of narrow-linewidth fiber lasers, Brooks and Teodoro used the spatially coupled photonic crystal fiber as a main power amplifier to generate an 8-GHz linewidth deep-UV laser.[3]The pulse duration was about 1 ns at 13.4 kHz, corresponding to the 265.5-nm deep-UV laser with the average power of 1.9 W. D′elenet al.[16]employed Yb:YAG single-crystal fibers reducing the SBS limitation to obtain a 35-MHz linewidth,257-nm-wavelength deep-UV laser, which was operated at 30 kHz with a pulse duration of 15 ns and average power of 3.2 W.Xuanet al.[19]presented a 2-GHz linewidth,258-nm-wavelength deep-UV beam generated by Yb:YAG single-crystal fiber amplifier with average power of 10.5 W at a pulse repetition rate of 10 kHz.Nonetheless, these methods break the all-fiber laser structure and require a large number of space components, which greatly weakens the advantages of all-fiber lasers. Furthermore,Heet al.[15]used an all-fiber amplifier as a fundamental frequency source to achieve a 2-W,274-nm-wavelength deep-UV laser with a pulse width of 1.8 ns and a repetition rate of 200 kHz. Kumaret al.[20]demonstrated a deep-UV laser with 1.8 W in power, 17 ps in pulse width, 266 nm in wavelength at a high repetition rate of 79.5 MHz generated by a mode-locked Yb-fiber laser. However,the spectral width values of the above-mentioned two lasers are 0.16 nm and 1.4 nm respectively,which reduces the spectral resolution of narrowlinewidth laser in practical applications. In the field of solarblind UV communication,the narrow-linewidth laser will further increase the communication speed due to its good time coherence. The application of narrow-linewidth lasers in the field of solar-blind UV communication will become the inevitable trend of the development of coherent communication technology in the future.For the narrow-linewidth fiber lasers,the spectral width of the fiber laser needs to be strictly controlled due to the fiber having wide gain spectrum. Therefore,it is valuable to utilize the inherent advantages of all-fiber laser, especially for its relatively simple and compact configuration to produce a narrow-linewidth (<10 GHz) deep-UV all-fiber laser.

    On the other hand, lasers with tunable pulse width and repetition frequency show excellent application advantages, which is particularly obvious around the wavelength of 1 μm[21-23]while rarely reported in deep-UV wavelength range. For example, characterized by tunable pulse width,deep-UV lasers can affect the geometric accuracy and surface quality of the submicron structures.[24]The deep-UV lasers with suitable repetition frequency will directly improve the cutting quality and processing efficiency.[25]Moreover, the deep-UV lasers with tunable pulse width have the great requirements of applications, especially, in wireless solar-blind UV communication,of which the parameters are significantly affected by pulse width, such as receiver elevation angle, receiver field-of view, and communication distance.[26]However, the pulse width can be easily stretched in the practical application of solar-blind UV communication due to the multiple-scattering interaction.[27]Therefore,the deep-UV lasers with tunable pulse width can improve the quality of communication.

    The aim of the present investigation is to integrate a compact deep-UV laser with tunable pulse width for wireless solarblind UV communication.Compared with the commonly used excimer lasers, the UV light-emitting-diodes (LEDs)[28]and UV lamps, our miniaturized narrow-linewidth deep-UV laser has huge potential applications in reducing bit error rate and improving sensitivity of UV communication. In this paper,we report on a compact,stable,all-fiberized narrow-linewidth pulsed laser source emitting laser beam with a wavelength of 266 nm. The system is based on an all-fiberized nanosecond amplifier architecture and nonlinear frequency conversion stages. The nanosecond amplifier generates 4.15-ns pulses atλ~1064 nm with average output power of 13.8 W, corresponding to the spectral bandwidth of 0.045 nm. The fourthharmonic generation (FHG) is achieved by using an 18-mm lithium triborate (LBO) crystal to generate 532-nm second harmonic (SH) with average power of 1.73 W, followed by a 7-mm beta-barium borate(BBO)crystal to generate 266-nm fourth harmonic(FH)with average power of 66 mW at a repetition rate of 100 kHz with a pulse width of 4 ns. The corresponding conversion efficiency of the SHG and the FHG are 12.5%and 3.8%,respectively.

    2. Experimental setup

    The fundamental frequency s ource, which is an allfiberized narrow-linewidth (0.045 nm) Yb-doped nanosecond laser amplifier system, was composed of a laser diode seed source, Yb-doped fiber preamplifiers and a commercial 50-μm-core Yb-doped-diameter fiber amplifier as shown in Fig. 1. A commercial distributed feedback laser diode was used as a seed source. Using the intracavity optical feedback method, the Bragg grating was distributed in the entire resonant cavity for mode selection to produce narrow-linewidth lasers. By adopting the method of high-doped, short-length and super-large-mode-area gain fibers for power amplifications, the SBS threshold could be increased and the nonlinear effects could be reduced. This is an effective method to generate high-power narrow-linewidth lasers. The basic narrow-linewidth fiber amplifier architecture followed our previous work.[29]When the pulse duration and the repetition frequency of the laser amplifier system were set to be 4 ns and 100 kHz,respectively,the laser amplifier delivered 13.8-W average power corresponding to the pulse energy of 138 μJ centered at 1064.1 nm as shown in Fig. 2. The typical spectrum(0.02-nm resolution) from the fundamental frequency source is shown in Fig. 2(a), which has a 0.045-nm (11.9 GHz) full width at half-maximum(FWHM)centered at 1064.1 nm. The self-phase modulation(SPM)effect in fiber is a nonlinear effect that is most likely to broaden the spectral line width. In addition,the wider gain spectrum in the fiber can easily lead to spectral broadening.In our experiment,we did not detect nonlinear effects, nor obvious spectral broadening due to the application of short length,highly doped and super-large-modearea gain fibers to power amplifications, which was precisely the advantage of this work. The result,show that the spectral line width of the seed source and the amplifier are 0.041 nm and 0.045 nm,respectively. This means that there was no obviously spectral broadening in an average power range from tens of mW to 13 W.Generally,there is a strong soliton effect in the negative dispersion region of the fiber,which is investigated in detail in Refs.[30-32]. However,there was found no soliton effect in our narrow-linewidth laser. This was because the wavelength of our laser is 1064 nm which is located in the positive dispersion region. Figure 2(b) displays the temporal profile of the fundamental frequency laser pulses, measured by a digital oscilloscope (LyCroy, sampling rate: 13 GHz),showing the pulse duration of 4.15 ns. The inset in Fig. 2(b)indicates the pulse sequence. The maximum output power of the fundamental frequency source is 13.8 W (see Fig. 2(c)).Figure 2(d) shows the beam qualityM2values of 2.56 (horizontal)and 3.17(vertical),measured by a laser beam analyzer(M2-200,Ophir-Spiricon). The whole laser system was composed of non-polarization maintaining fibers.

    Fig.1. Schematic diagram of narrow-linewidth nanosecond all-fiber amplifier system.

    Fig.2. (a)Optical spectrum;(b)single pulse shape at output power of 13.8 W,with inset showing pulse sequence;(c)1064-nm average power;and(d)M2 factor of fundamental frequency source.

    Figure 3 shows the optical layout of the SHG module and the FHG module from the narrow-linewidth all-fiber nanosecond laser amplifier system. We used an LBO crystal for SHG because of its excellent properties, such as high damage threshold, small walk-off angle and high nonlinear coefficient. Furthermore, the method of critical phase matching(CPM) of LBO working at room temperature, is conducive to the integration of deep-UV lasers. The crystal wasY-Zcut(θ=20.9°)withφ=90°for type-II phase-matched SHG kept at 24.5°C.The temperature of the LBO crystal was precisely controlled by a thermo electric cooler (TEC) controller with the controlling precision of±0.1°C. The crystal dimensions were 4 mm×4 mm×18 mm and the two crystal ends were both antireflection(AR)coated at wavelengths of 1064 nm and 532 nm. The collimated non-polarization maintaining pump beam passed through a combination of a quarter-wave plate(QWP), half-wave plate (HWP), and polarizing beam splitter(PBS)cube to obtain the linearly polarized laser with relatively high power. Subsequently, the second HWP was used to obtain the required polarization state for phase matching in the frequency conversion crystal. Then the spot diameter of the polarized laser was focused into 0.6 mm through a lens withf=75 mm.After the SHG inside the LBO crystal,the residual pump beam was split from the SH beam by a 1064-nm/532-nm dichroic mirror(DM)which reflected the laser of 532 nm and transmitted the laser of 1064 nm.

    Fig.3. Schematic diagram of Yb-fiber-amplifier-based narrow-linewidth nanosecond deep-UV laser. L:lens; QWP: quarter-wave plate; HWP: half-wave plate;PBS:polarizing beam splitter;and DM:dichroic mirror.

    The FHG from 532 nm to 266 nm was achieved by a BBO crystal(4 mm×4 mm×7 mm,θ=45.7°,φ=0°,type-I phasematching(o+o→e)),which is more commonly available and less hygroscopic than the other UV nonlinear crystals such as CsLiB6O10(CLBO) and KH2PO4(KDP). The crystal coated with ARs of 532 nm and 266 nm on both sides was mounted in a three-dimensional adjustment frame for optimizing the phase matching conditions. The 532-nm pump beam generated by SHG in LBO was coupled into the BBO crystal by a focusing lens withf=60 mm and an HWP for the optimization of the polarization state. After FHG inside the BBO crystal,the residual 532-nm pump beam was split from the FH beam by a DM which reflects the laser of 266 nm and transmits the laser of 532 nm. In the entire experimental device,each of the spherical mirrors caused about 5%of power loss because they were not coated with AR coatings.

    3. Experimental results and discussion

    The maximum fundamental frequency laser of 13.8 W(138 μJ)is achieved from the all-fiberized amplifier at a repetition rate of 100 kHz with a pulse width of 4 ns. Furthermore,the repetition frequency and pulse width can be continuously adjusted in a range of 5 kHz-100 kHz and from 4 ns to 8 ns,respectively. For the SHG setup,we initially perform focusing optimization of SH beam waist radius in the LBO crystal by using several lenses, L2, with radius of curvature of 25 mm,75 mm, 150 mm respectively. The results indicate that the 75-mm focusing lens shows a compromise between the beam waist radius and the frequency doubling distance in the LBO crystal, so it corresponds to a highest frequency conversion efficiency in the three focusing lenses. Figures 4(a) and 4(b)show the dependence of the SH power and the conversion efficiency on pump average power,respectively. By optimizing the angle of the LBO crystal, 1.73-W, 17-μJ SH pulses are obtained, with a corresponding conversion efficiency being 12.5%. The main reasons for the low frequency conversion efficiency are as follows: owing to the elliptical polarization characteristics, about half of the fundamental frequency laser power is lost before reaching the LBO crystal. As shown in Fig. 3, we have measured the polarization states of the fundamental frequency laser behind L1, QWP, HWP, and PBS respectively. It can be observed from the figure that the fundamental frequency laser is initially elliptically polarized light.The laser is then adjusted into a linearly polarized laser as much as possible by using a QWP. After that, the polarization direction of the fundamental frequency laser is adjusted to match the polarization direction of the laser passing through the PBS by using an HWP.It should be noted that the purpose of using a QWP is only to increase the laser power through the PBS as much as possible. If a polarization-maintaining(PM) laser is used as the fundamental frequency source, the conversion efficiency of the SHG will be further improved.In addition, the imperfectM2values of the fundamental frequency laser limit the improvement of frequency conversion efficiency. The spectrum of the SH wave centered at 532 nm is measured with an Ocean HR4000CG-UV-NIR spectrometer(resolution of 0.75 nm at 500 nm),and the results are shown in Fig.4(c). Figure 4(d)shows the pulse duration is 4.12 ns at an output power of 1.73 W.The pump intensity on LBO crystal is 4.7 MW/cm2far below the damage threshold of LBO crystal(15 GW/cm2).

    The maximal FH power generated in our experiments is 66 mW (0.66 μJ), which is achieved by using a collimated pump beam with a beam diameter of 0.9 mm and pump power of 1.73 W. The dependence of the deep-UV average power and conversion efficiency on green average power are shown in Figs.5(a)and 5(b),respectively. The maximum conversion efficiency is about 3.8%and occurs at pump power of 1.73 W.The narrow-linewidth lasers should have a high frequency conversion efficiency. However, after optimizing the parameters of the FHG experiment, including the angle of BBO crystal,focal length of lens at the position of the beam waist in the crystal, the frequency conversion efficiency is not further improved. Heet al.[15]also obtained a low conversion efficiency at the pump power of 1.7 W under the conditions similar to our experimental conditions. The conversion efficiencyηcan be obtained from the following equation:

    wherenωandn2ωare the refractive index of the fundamental frequency laser and the frequency-doubled laser in the crystal,respectively;ε0andcare the dielectric constant and the speed of light in vacuum,respectively;L,d,andSare crystal length,frequency doubling coefficient, and cross-sectional area, respectively;Pω(0)is fundamental frequency laser power. It can be seen from the above formula thatηis proportional toPω(0),d2,andL2,and inversely proportional toS. In our experiment,d2,L2, andSare difficult to further optimize whilePω(0) is the most effective way to further increase the conversion efficiency. In this work,the pump peak-power intensity on BBO crystal is only 518 kW/cm2,which is not sufficient for efficient conversion efficiency. We predict that when we use a PM laser and further increase the fundamental frequency laser power to 30 W,the frequency conversion efficiency can be improved by more than 16%. Figures 5(c)and 5(d)show the spectrum and the single pulse shape of deep-UV pulses with 66-mW average power.The deep-UV spectrum shows the center wavelength of the laser is 266 nm. The inset in Fig.5(d)indicates the pulse sequence. The small pulse peaks in the pulse waveforms in Figs.2(b),4(d),and 5(d)appear in the seed source of narrowlinewidth distributed feedback LD.The grating is made in the active area, it is easy to introduce defects, which leads to the spontaneous emission effect.[33]This is probably the reason for the small pulse peaks in the pulse waveform.

    Fig.4. (a) Green average power and (b)conversion efficiency versus pump average power. (c) Green spectrum and(d) single pulse shape at 1.73 W average power with inset indicating the pulse sequence at output power of 1.73 W.

    Finally, we obtain 25-mW and 5-mW 266-nm deep-UV laser output, corresponding to the 50-kHz repetition frequency, 4-ns pulse width and 100-kHz repetition frequency and 8-ns pulse width respectively. The obtained results are summarized in Table 1. In practical applications, the repetition frequency and pulse width of the laser can be conveniently tuned in a range of 50 kHz-100 kHz and 4 ns-8 ns,which can achieve an optimal application effect. Since there is no saturation of UV power nor conversion efficiency,next step we will use an all-fiber PM fundamental frequency source with higher output power and better beam quality to further optimize the conversion efficiency of the deep-UV laser.

    Fig.5. Plot of(a)deep-UV average power and(b)conversion efficiency versus green average power. Plot of(c)deep-UV spectrum and(d)single pulse shape at 66-mW average power,with the inset showing pulse sequence at output power of 66 mW.

    Table 1. Summary of harmonic generation results.

    4. Conclusions

    In this work,we report on a compact,stable,all-fiberized narrow-linewidth pulsed laser source emitting a laser with a wavelength of 266 nm,tunable pulse width and repetition rate.The system is based on an all-fiberized nanosecond amplifier architecture and nonlinear frequency conversion stages. Using LBO crystal and BBO crystal for the SHG and FHG, respectively,we achieve 17 μJ(1.73 W)and 0.66 μJ(66 mW),respectively,at wavelengths of 532 nm and 266 nm with a repetition rate of 100 kHz and pulse width of 4 ns. The corresponding conversion efficiency of the SHG and the FHG are 12.5%and 3.8%,respectively. We will use a higher power PM all-fiber narrow-linewidth laser amplifier and continue to optimize the conversion efficiency of the deep-UV laser in the future.

    Acknowledgements

    Project supported by the Key Program of Beijing Municipal Natural Science Foundation, China (Grant No. KZ201910005006), the National Nature Science Foundation of China (Grant No. 62005004), the Natural Science Foundation of Beijing Municipality, China (Grant No.4204091),and the National Science Foundation for Postdoctor Scientists of China(Grant No.212423).

    猜你喜歡
    楊敏
    壯鄉(xiāng)謠
    歌海(2023年1期)2023-05-30 02:19:14
    楊敏:學以致用,行以致遠
    華人時刊(2022年9期)2022-09-06 01:01:04
    時光靜淌征程長
    軍嫂(2022年5期)2022-04-29 00:44:03
    騎車記
    美文(2021年24期)2021-12-17 05:54:39
    映像畜牧業(yè)
    無心炫富有意攀比,富姐“拉仇恨”惹來殺身之禍
    伴侶(2015年10期)2015-09-10 07:22:44
    Cultural Background and English Word Teaching
    無心炫富有意攀比富姐“拉仇恨”惹來殺身之禍
    山海經(2015年16期)2015-06-01 12:24:50
    無心炫富有意攀比,富姐“拉仇恨”惹來殺身之禍
    Homogeneous and Heterogeneous Performances of Pyridinium Ionic Liquids in the Allylic Oxidation of Ionone-like Dienes*
    美女cb高潮喷水在线观看| 乱系列少妇在线播放| 在线亚洲精品国产二区图片欧美 | 亚洲自拍偷在线| 大片电影免费在线观看免费| 在线免费十八禁| 久久久久久久久久久丰满| 免费看光身美女| 午夜福利在线在线| 综合色丁香网| 99热6这里只有精品| 中文字幕人妻熟人妻熟丝袜美| www.av在线官网国产| 国产淫片久久久久久久久| 性色av一级| 久久这里有精品视频免费| av.在线天堂| 亚洲国产av新网站| 亚洲国产最新在线播放| 国产亚洲av片在线观看秒播厂| 国产精品.久久久| 97人妻精品一区二区三区麻豆| 成人漫画全彩无遮挡| 水蜜桃什么品种好| 18+在线观看网站| 永久免费av网站大全| 日韩大片免费观看网站| 色婷婷久久久亚洲欧美| 成人综合一区亚洲| 精品熟女少妇av免费看| 九色成人免费人妻av| 99久国产av精品国产电影| videos熟女内射| 亚洲成色77777| 最新中文字幕久久久久| 亚洲国产精品成人综合色| 蜜桃亚洲精品一区二区三区| 在线精品无人区一区二区三 | 欧美性猛交╳xxx乱大交人| 精品人妻熟女av久视频| 日韩成人伦理影院| 久久久午夜欧美精品| 国产一区二区亚洲精品在线观看| 日日摸夜夜添夜夜爱| 欧美成人a在线观看| 亚洲精品一区蜜桃| av在线亚洲专区| 男的添女的下面高潮视频| 精华霜和精华液先用哪个| 亚洲内射少妇av| 国产综合精华液| 亚洲va在线va天堂va国产| 国产精品一二三区在线看| 涩涩av久久男人的天堂| 亚洲色图av天堂| 日本午夜av视频| 日韩强制内射视频| av国产久精品久网站免费入址| 女的被弄到高潮叫床怎么办| 波多野结衣巨乳人妻| 成年女人看的毛片在线观看| 日本午夜av视频| 久久久国产一区二区| 中国国产av一级| 久久国内精品自在自线图片| 免费看av在线观看网站| 精品久久久噜噜| 欧美最新免费一区二区三区| 国产黄频视频在线观看| av又黄又爽大尺度在线免费看| 久久久久久国产a免费观看| 日本爱情动作片www.在线观看| 一级av片app| 内射极品少妇av片p| 亚洲成人精品中文字幕电影| 性插视频无遮挡在线免费观看| 九九爱精品视频在线观看| 亚洲色图av天堂| 菩萨蛮人人尽说江南好唐韦庄| 大片免费播放器 马上看| 直男gayav资源| 人体艺术视频欧美日本| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产在线一区二区三区精| 国产男女超爽视频在线观看| 午夜激情久久久久久久| 午夜激情福利司机影院| 在线播放无遮挡| 国产 一区精品| 久久99热这里只频精品6学生| 中文字幕制服av| 亚洲无线观看免费| 纵有疾风起免费观看全集完整版| 中文欧美无线码| 97超视频在线观看视频| 嫩草影院精品99| 欧美激情在线99| 亚洲精品日本国产第一区| 国产欧美日韩精品一区二区| 哪个播放器可以免费观看大片| 国产av国产精品国产| 成人亚洲精品av一区二区| 搞女人的毛片| 在线播放无遮挡| 免费黄色在线免费观看| 啦啦啦啦在线视频资源| 国产免费又黄又爽又色| 九草在线视频观看| 身体一侧抽搐| 黄片wwwwww| 美女内射精品一级片tv| 精品视频人人做人人爽| 只有这里有精品99| 精品久久久久久久末码| 欧美潮喷喷水| 国产一区二区在线观看日韩| 热99国产精品久久久久久7| 中文字幕久久专区| 欧美日韩在线观看h| 少妇猛男粗大的猛烈进出视频 | 精华霜和精华液先用哪个| 天天躁日日操中文字幕| 精品视频人人做人人爽| 日韩伦理黄色片| 性色avwww在线观看| 联通29元200g的流量卡| 久久国产乱子免费精品| 一本久久精品| 亚洲性久久影院| 搡女人真爽免费视频火全软件| 国产在视频线精品| 熟女av电影| 在线观看一区二区三区| 热99国产精品久久久久久7| 少妇的逼水好多| 亚洲欧美精品专区久久| 欧美xxxx黑人xx丫x性爽| 国产成人精品一,二区| 亚洲av国产av综合av卡| 一区二区三区免费毛片| 国产精品国产av在线观看| 国产精品蜜桃在线观看| 成人国产av品久久久| 中文字幕制服av| 特级一级黄色大片| 日产精品乱码卡一卡2卡三| 男女国产视频网站| 熟女人妻精品中文字幕| 午夜视频国产福利| 熟女电影av网| 菩萨蛮人人尽说江南好唐韦庄| 男男h啪啪无遮挡| 啦啦啦啦在线视频资源| 中国美白少妇内射xxxbb| 午夜福利在线在线| 97超视频在线观看视频| 欧美xxxx黑人xx丫x性爽| 天堂俺去俺来也www色官网| 国产午夜精品一二区理论片| 国内少妇人妻偷人精品xxx网站| 一级片'在线观看视频| 日本欧美国产在线视频| 久久精品国产a三级三级三级| 少妇高潮的动态图| 午夜日本视频在线| 亚洲自偷自拍三级| 2021少妇久久久久久久久久久| av黄色大香蕉| 欧美人与善性xxx| 日本色播在线视频| 听说在线观看完整版免费高清| 成人无遮挡网站| 久热久热在线精品观看| 十八禁网站网址无遮挡 | 极品少妇高潮喷水抽搐| 成年女人看的毛片在线观看| 丰满人妻一区二区三区视频av| 最近手机中文字幕大全| 在线观看人妻少妇| 夫妻性生交免费视频一级片| 日本色播在线视频| 久久97久久精品| 人妻系列 视频| 国产探花在线观看一区二区| 欧美激情久久久久久爽电影| 欧美精品一区二区大全| 久久久久久久久大av| 国产精品精品国产色婷婷| 国语对白做爰xxxⅹ性视频网站| 美女高潮的动态| 人人妻人人看人人澡| 22中文网久久字幕| 亚洲综合色惰| 国产黄片视频在线免费观看| 成人亚洲精品av一区二区| 国产伦在线观看视频一区| 国产熟女欧美一区二区| 男女边吃奶边做爰视频| 国产乱人偷精品视频| 婷婷色麻豆天堂久久| 91精品伊人久久大香线蕉| 国产欧美日韩精品一区二区| 男女下面进入的视频免费午夜| 日韩亚洲欧美综合| av福利片在线观看| 久久人人爽av亚洲精品天堂 | av福利片在线观看| 日本爱情动作片www.在线观看| av在线老鸭窝| 欧美日韩精品成人综合77777| 男人和女人高潮做爰伦理| 麻豆成人av视频| 亚洲av免费在线观看| 欧美3d第一页| 国产高潮美女av| av国产精品久久久久影院| 青春草视频在线免费观看| 日本色播在线视频| 亚洲欧美日韩另类电影网站 | 精品人妻偷拍中文字幕| 成人无遮挡网站| 亚洲国产精品999| 丰满人妻一区二区三区视频av| 美女高潮的动态| 国产免费福利视频在线观看| 美女内射精品一级片tv| 亚洲性久久影院| 日韩三级伦理在线观看| 亚洲精品乱码久久久v下载方式| 久久精品人妻少妇| 最后的刺客免费高清国语| 国产毛片在线视频| 中文精品一卡2卡3卡4更新| 久热久热在线精品观看| 免费高清在线观看视频在线观看| 亚洲国产色片| 国产熟女欧美一区二区| 91久久精品国产一区二区成人| 美女被艹到高潮喷水动态| 99热国产这里只有精品6| 最近2019中文字幕mv第一页| 日本免费在线观看一区| 少妇猛男粗大的猛烈进出视频 | 一个人观看的视频www高清免费观看| 一级毛片aaaaaa免费看小| 免费播放大片免费观看视频在线观看| 欧美丝袜亚洲另类| 久久久久久九九精品二区国产| 六月丁香七月| 精品酒店卫生间| 有码 亚洲区| 熟女人妻精品中文字幕| 一个人看的www免费观看视频| 国产国拍精品亚洲av在线观看| 久久久色成人| 天天一区二区日本电影三级| 亚洲精品国产色婷婷电影| 真实男女啪啪啪动态图| 国产精品av视频在线免费观看| 亚洲欧美日韩另类电影网站 | 欧美亚洲 丝袜 人妻 在线| 亚洲四区av| 黄色一级大片看看| 久久人人爽av亚洲精品天堂 | 久久久亚洲精品成人影院| videossex国产| 麻豆成人av视频| 精品久久国产蜜桃| 中文字幕久久专区| 国产一区亚洲一区在线观看| 伊人久久国产一区二区| 久久久久精品久久久久真实原创| 亚洲va在线va天堂va国产| 亚洲人成网站在线播| 久久久午夜欧美精品| 在现免费观看毛片| 免费观看av网站的网址| 天天躁日日操中文字幕| 亚洲国产日韩一区二区| 免费大片18禁| 久热这里只有精品99| 亚洲一级一片aⅴ在线观看| 久久久久久久大尺度免费视频| 22中文网久久字幕| 男人爽女人下面视频在线观看| 亚洲成色77777| 校园人妻丝袜中文字幕| 亚洲无线观看免费| 听说在线观看完整版免费高清| 国产探花在线观看一区二区| 啦啦啦在线观看免费高清www| 国产乱人偷精品视频| av免费观看日本| 麻豆乱淫一区二区| 2022亚洲国产成人精品| 97精品久久久久久久久久精品| 全区人妻精品视频| 亚洲精品国产成人久久av| 成年av动漫网址| 国产精品久久久久久久电影| 亚洲成人精品中文字幕电影| 亚洲婷婷狠狠爱综合网| av专区在线播放| 欧美高清性xxxxhd video| 人妻制服诱惑在线中文字幕| 2018国产大陆天天弄谢| 国产精品熟女久久久久浪| 国产免费又黄又爽又色| 国产老妇女一区| 少妇的逼好多水| 欧美丝袜亚洲另类| 欧美最新免费一区二区三区| 精品人妻视频免费看| 成年人午夜在线观看视频| 伊人久久精品亚洲午夜| 亚洲av男天堂| 国产美女午夜福利| 18+在线观看网站| 日韩中字成人| 男插女下体视频免费在线播放| 一级片'在线观看视频| 亚洲婷婷狠狠爱综合网| 男女无遮挡免费网站观看| 91aial.com中文字幕在线观看| 黄色怎么调成土黄色| videos熟女内射| 男的添女的下面高潮视频| 女人十人毛片免费观看3o分钟| 别揉我奶头 嗯啊视频| 交换朋友夫妻互换小说| 男女国产视频网站| 尤物成人国产欧美一区二区三区| 男女边摸边吃奶| av国产精品久久久久影院| 青春草视频在线免费观看| 五月伊人婷婷丁香| 97精品久久久久久久久久精品| av天堂中文字幕网| 日韩强制内射视频| 国产大屁股一区二区在线视频| 亚洲av中文av极速乱| 精品久久久精品久久久| 亚洲精华国产精华液的使用体验| 亚洲成人精品中文字幕电影| 在现免费观看毛片| 精品少妇黑人巨大在线播放| 色吧在线观看| 热re99久久精品国产66热6| 亚洲经典国产精华液单| 91久久精品国产一区二区三区| 亚洲av在线观看美女高潮| 日日啪夜夜撸| 日韩欧美精品免费久久| 日韩欧美一区视频在线观看 | 国产精品秋霞免费鲁丝片| 国产一区二区亚洲精品在线观看| 亚洲精品国产av蜜桃| 成人毛片a级毛片在线播放| 色视频在线一区二区三区| 尤物成人国产欧美一区二区三区| 2021天堂中文幕一二区在线观| 欧美zozozo另类| 人妻 亚洲 视频| 中文欧美无线码| 久久6这里有精品| 免费av观看视频| 亚洲美女视频黄频| 亚洲国产精品成人久久小说| 国产在线男女| 国产精品国产三级国产av玫瑰| 久热久热在线精品观看| 大话2 男鬼变身卡| 午夜亚洲福利在线播放| 久久精品熟女亚洲av麻豆精品| 亚洲av成人精品一二三区| 成年免费大片在线观看| 国产老妇女一区| 18禁在线播放成人免费| 日日啪夜夜爽| 神马国产精品三级电影在线观看| 精品久久久久久久末码| 赤兔流量卡办理| 九九久久精品国产亚洲av麻豆| av女优亚洲男人天堂| 久久久久国产网址| 自拍欧美九色日韩亚洲蝌蚪91 | 草草在线视频免费看| 在线免费十八禁| 久久久久久久久久成人| 久久99热这里只有精品18| 在线免费观看不下载黄p国产| 看十八女毛片水多多多| 一级毛片电影观看| 干丝袜人妻中文字幕| 麻豆久久精品国产亚洲av| 嫩草影院新地址| 久久这里有精品视频免费| 中国三级夫妇交换| 亚洲丝袜综合中文字幕| 久久ye,这里只有精品| 91狼人影院| 免费观看性生交大片5| www.av在线官网国产| 国产成人a∨麻豆精品| 亚洲成人av在线免费| 亚洲va在线va天堂va国产| 永久网站在线| 国产中年淑女户外野战色| 国产亚洲5aaaaa淫片| 免费看av在线观看网站| 日韩不卡一区二区三区视频在线| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品色激情综合| 国产色婷婷99| 噜噜噜噜噜久久久久久91| 欧美+日韩+精品| 校园人妻丝袜中文字幕| 成人亚洲欧美一区二区av| 久久国内精品自在自线图片| 久久久亚洲精品成人影院| 国产精品一二三区在线看| 日本午夜av视频| 亚洲精品国产av蜜桃| 久久99热这里只有精品18| 男女那种视频在线观看| 久久久精品94久久精品| 国产成人freesex在线| 欧美成人a在线观看| 夜夜看夜夜爽夜夜摸| 下体分泌物呈黄色| 国产午夜精品久久久久久一区二区三区| 欧美 日韩 精品 国产| 久久99热这里只有精品18| 亚洲人成网站高清观看| 777米奇影视久久| 精品久久国产蜜桃| 亚洲,欧美,日韩| 久久韩国三级中文字幕| 免费观看在线日韩| 午夜激情福利司机影院| 美女主播在线视频| 国产精品久久久久久精品古装| 成年版毛片免费区| 另类亚洲欧美激情| 菩萨蛮人人尽说江南好唐韦庄| a级毛色黄片| 日本黄大片高清| 亚洲国产精品成人综合色| 亚洲性久久影院| 国产精品爽爽va在线观看网站| 国产大屁股一区二区在线视频| 国产精品偷伦视频观看了| 日本欧美国产在线视频| 亚洲av二区三区四区| 欧美少妇被猛烈插入视频| 在线观看一区二区三区激情| 欧美bdsm另类| 在线 av 中文字幕| 黄色日韩在线| 午夜免费鲁丝| 国产精品国产av在线观看| 免费电影在线观看免费观看| 黄片无遮挡物在线观看| 免费在线观看成人毛片| 午夜福利网站1000一区二区三区| 嫩草影院精品99| 一本久久精品| 成人免费观看视频高清| 久久6这里有精品| 欧美激情国产日韩精品一区| 国产综合精华液| 国产精品不卡视频一区二区| 男人狂女人下面高潮的视频| 一级a做视频免费观看| 免费人成在线观看视频色| 国产精品人妻久久久影院| 观看免费一级毛片| 国内揄拍国产精品人妻在线| 又爽又黄a免费视频| 五月玫瑰六月丁香| 伦精品一区二区三区| 好男人视频免费观看在线| 边亲边吃奶的免费视频| 91精品国产九色| 亚洲一级一片aⅴ在线观看| 亚洲人成网站在线观看播放| 久久韩国三级中文字幕| 永久免费av网站大全| 女人被狂操c到高潮| 菩萨蛮人人尽说江南好唐韦庄| 久久精品熟女亚洲av麻豆精品| 少妇裸体淫交视频免费看高清| 一个人看的www免费观看视频| 国产片特级美女逼逼视频| 欧美日韩在线观看h| videos熟女内射| 国产视频首页在线观看| .国产精品久久| 麻豆成人午夜福利视频| 97人妻精品一区二区三区麻豆| 国产色爽女视频免费观看| 中国国产av一级| 亚洲经典国产精华液单| 国产黄色视频一区二区在线观看| 又大又黄又爽视频免费| av专区在线播放| av在线播放精品| 国产免费福利视频在线观看| 一级av片app| 亚洲精品色激情综合| 色5月婷婷丁香| 亚洲国产最新在线播放| 午夜福利在线在线| 97在线人人人人妻| 激情 狠狠 欧美| 在线a可以看的网站| 久久久久国产精品人妻一区二区| 男女下面进入的视频免费午夜| 国产色婷婷99| 一区二区三区四区激情视频| 国产高潮美女av| 女的被弄到高潮叫床怎么办| 高清av免费在线| 九草在线视频观看| 午夜爱爱视频在线播放| 国内揄拍国产精品人妻在线| 成人午夜精彩视频在线观看| 卡戴珊不雅视频在线播放| 成人毛片a级毛片在线播放| 特大巨黑吊av在线直播| 国产黄a三级三级三级人| 免费大片黄手机在线观看| 成年人午夜在线观看视频| 精品久久久久久久久亚洲| 一级爰片在线观看| 校园人妻丝袜中文字幕| 麻豆久久精品国产亚洲av| 如何舔出高潮| 亚洲精品色激情综合| 久久精品国产亚洲av涩爱| 国产精品熟女久久久久浪| 日本午夜av视频| 男女无遮挡免费网站观看| 亚洲,一卡二卡三卡| 交换朋友夫妻互换小说| 亚洲美女搞黄在线观看| 欧美国产精品一级二级三级 | 男女那种视频在线观看| 天美传媒精品一区二区| 大话2 男鬼变身卡| 成人亚洲精品av一区二区| 精品久久国产蜜桃| 欧美最新免费一区二区三区| 三级国产精品片| 各种免费的搞黄视频| 十八禁网站网址无遮挡 | 国语对白做爰xxxⅹ性视频网站| 免费看a级黄色片| 日本一本二区三区精品| 午夜亚洲福利在线播放| 日韩欧美 国产精品| 欧美成人午夜免费资源| 男女国产视频网站| 插逼视频在线观看| 久久精品久久久久久久性| 日韩三级伦理在线观看| 黄色配什么色好看| 国产精品99久久99久久久不卡 | 日韩成人伦理影院| 2021少妇久久久久久久久久久| av国产免费在线观看| 日韩欧美一区视频在线观看 | 免费观看无遮挡的男女| 天天躁夜夜躁狠狠久久av| 久久精品国产a三级三级三级| 激情 狠狠 欧美| 成年女人看的毛片在线观看| 成人亚洲精品av一区二区| 成人特级av手机在线观看| 国产熟女欧美一区二区| 国产精品久久久久久久久免| 九色成人免费人妻av| 亚洲成色77777| a级毛色黄片| 国产亚洲91精品色在线| 成人亚洲精品一区在线观看 | 乱码一卡2卡4卡精品| 久久久久久久精品精品| 精品人妻偷拍中文字幕| av在线app专区| 一级毛片久久久久久久久女| 国产免费一级a男人的天堂| 亚洲精品乱码久久久v下载方式| 国产精品精品国产色婷婷| 身体一侧抽搐| 日本三级黄在线观看| 免费大片18禁| 国产爱豆传媒在线观看| 国产综合懂色| 亚洲欧美日韩卡通动漫| 22中文网久久字幕| 国产亚洲av片在线观看秒播厂| 亚洲色图综合在线观看| 亚洲精品乱码久久久久久按摩| 中文在线观看免费www的网站| av国产精品久久久久影院| 午夜日本视频在线| 亚洲人成网站高清观看| 久久韩国三级中文字幕| 久久99蜜桃精品久久| 欧美潮喷喷水| 亚洲综合精品二区| 精品国产乱码久久久久久小说| 国产精品人妻久久久久久| 老司机影院成人|