王夢(mèng)丹 曾方青
帶錐約束DC復(fù)合優(yōu)化問題的-對(duì)偶間隙性質(zhì)
王夢(mèng)丹 曾方青
(湖南科技學(xué)院 理學(xué)院,湖南 永州 425199)
引入新的約束規(guī)范條件,等價(jià)刻畫帶錐約束的DC復(fù)合優(yōu)化問題與其Lagrange對(duì)偶、Fenchel-Lagrange對(duì)偶問題之間的-對(duì)偶間隙性質(zhì),推廣了前人的部分相關(guān)結(jié)論。
最優(yōu)化理論廣泛用于工程設(shè)計(jì)、交通運(yùn)輸、國(guó)防等重要領(lǐng)域,具有重要的學(xué)術(shù)價(jià)值和應(yīng)用前景。同時(shí),很多優(yōu)化問題都可以看成復(fù)合優(yōu)化問題或者DC優(yōu)化問題的特例,因此,近年來受到了廣大學(xué)者的廣泛關(guān)注。很多學(xué)者研究了復(fù)合優(yōu)化問題和DC優(yōu)化問題的對(duì)偶理論、Farkas引理、KKT條件,以及魯棒分析等[1-9]。2010年,Dinh等[1]利用閉性條件建立了帶錐約束的DC優(yōu)化問題的零對(duì)偶理論。方東輝等[5-6]通過共軛函數(shù)的下卷積以及函數(shù)的近似次微分,給出了復(fù)合優(yōu)化問題的零對(duì)偶理論。2019年,在函數(shù)不一定下半連續(xù),集合不一定是閉集的條件下,Tian等[7]通過引入新的約束規(guī)范條件,建立了DC復(fù)合優(yōu)化問題與其Lagrange對(duì)偶問題之間的弱對(duì)偶、零對(duì)偶、強(qiáng)對(duì)偶理論。
由下端卷積定義可得
從而,
為了簡(jiǎn)便起見,我們記
為了研究對(duì)偶間隙性質(zhì),引入如下約束規(guī)范條件:
式(6)等價(jià)于
因此,
而文獻(xiàn)[11]利用
[1]DINH N, NGHIA T T A, VALLET G. A closedness condition and its applications to DC programs with convex constraints[J]. Optimization, 2010, 59(4):541-560.
[2]FANG D H, LI C, YANG X Q. Stable and total Fenchel duality for DC optimization problems in locally convex spaces[J]. SIAM Journal on Optimization, 2011, 21(3):730-760.
[3]AN L T H, TAO P D. The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems[J]. Annals of Operations Research, 2005, 133:23-46.
[4]DINH N, MORDUKHOVICH B S, NGHIA T T A. Qualification and optimality conditions for DC programs with infinite constraints[J]. Acta Mathematica Vietnamica, 2009, 34(34):125-155.
[5]FANG D H, ANSARI Q H, ZHAO X. Constraint qualifications and zero duality gap properties in conical programming involving composite functions[J]. Journal of Nonlinear and Convex Analysis, 2018, 19(1):53-69.
[6]方東輝,王夢(mèng)丹.錐約束復(fù)合優(yōu)化問題的Lagrange對(duì)偶[J].系統(tǒng)科學(xué)與數(shù)學(xué),2017,37(1):203-211.
[7]TIAN L P, WANG M D, FANG D H. Zero duality gap properties for DC composite optimization problem[J]. Journal of Nonlinear and Convex Analysis, 2019, 20(3):513-525.
[8]BOT R I, GRAD S M, WANKA G. Generalized Moreau-Rockafellar results for composed convex functions[J]. Optimization, 2009, 58(7):917-933.
[9]FANG D H, WANG X Y. Stable and total Fenchel duality for composed convex optimization problems[J]. Acta Mathematicae Applicatae Sinica, English Series, 2018, 34(4):813-827.
[13]LONG X J, SUN X K, PENG Z Y. Approximate optimality conditions for composite convex optimization problems[J]. Journal of the Operations Research Society of China, 2017(5):469-485.
[14]LONG X J, XIAO Y B, HUANG N J. Optimality conditions of approximate solutions for nonsmooth semi-infinite programming problems[J]. Journal of the Operations Research Society of China, 2018(6):289-299.
[15]FANG D H, ZHANG Y. Extended Farka's Lemmas and strong dualities for conic programming involving composite function[J]. Journal of Optimization Theory and Applications, 2018,176(2):351-376.
O224
A
1673-2219(2021)05-0011-05
2021-01-08
湖南科技學(xué)院應(yīng)用特色學(xué)科建設(shè)項(xiàng)目資助(2021);湖南科技學(xué)院科學(xué)研究項(xiàng)目資助(21XKY037);湖南科技學(xué)院科學(xué)研究項(xiàng)目資助(20XKY063)。
王夢(mèng)丹(1991-),女,湖南祁陽人,碩士,助教,研究方向?yàn)樽顑?yōu)化理論研究。曾方青(1993-),女,湖南永州人,碩士,助教。
(責(zé)任編校:宮彥軍)