• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Memory Analysis for Memristors and Memristive Recurrent Neural Networks

    2020-02-29 14:16:46GangBaoYideZhangStudentandZhigangZeng
    IEEE/CAA Journal of Automatica Sinica 2020年1期

    Gang Bao,, Yide Zhang, Student, and Zhigang Zeng,

    Abstract—Traditional recurrent neural networks are composed of capacitors, inductors, resistors, and operational amplifiers.Memristive neural networks are constructed by replacing resistors with memristors. This paper focuses on the memory analysis,i.e. the initial value computation, of memristors. Firstly, we present the memory analysis for a single memristor based on memristors' mathematical models with linear and nonlinear drift.Secondly, we present the memory analysis for two memristors in series and parallel. Thirdly, we point out the difference between traditional neural networks and those that are memristive. Based on the current and voltage relationship of memristors, we use mathematical analysis and SPICE simulations to demonstrate the validity of our methods.

    I. INTRODUCTION

    THE memristor was first defined by Chua [1] and can be described by the following mathematical model [2]

    whereu(t),y(t) are input and output of memristive systems,respectively.x(t) is the state variable,f(x(t),u(t),t) is an-dimensional vector function andg(x(t),u(t),t) is the generalized system response. Williams and his colleagues transform the concept of memristors into the physical devices [3], whose structure diagram is shown in Fig. 1. The memristor is composed of a two-layer TiO2thin film, two platinum contacts, a doped regionRon, and an undoped regionRoff.D,ware the thickness of the film and the width of the doped region, respectively. Later, Chua points out that all two-terminal nonvolatile memory devices based on resistance switching are memristors, regardless of the device material and physical operating mechanisms [4].

    Fig. 1. The schematic diagram of the HP memristor. (a) The diagram of the HP memristor model. (b) The circuit symbol of the memristor, showing the positive and negative polarities.

    The memristor has various applications for its nano-scale size and memory property. For example, it is used to implement chaotic circuits [5], [6], memristor oscillators [7],and neural synapses [8]. Snideret al. adopt memristors in neuromorphic applications to simulate learning, adaptive and spontaneous behaviors and to implement synaptic weights in artificial neural networks [9], [10]. Pershin and Di Ventra give an experimental demonstration for associative memory with memristive neural networks [11]. Then the memristor is employed as a nonvolatile memory storage device [12], [13].Furthermore, it has also been used to simulate the human brain’s hierarchical temporal memory, short-term, long-term memory [14], [15] and memristive recurrent neural networks.Meanwhile, memristors have also been harnessed for image processing, adaptive filters, digital logic, neuromophic engineering, digital and quantum computation [16], [17], etc.

    The dynamic properties of memristors are the foundation for its applications; thus memristors with different materials and configurations are made for dynamic analysis experiments [18],[19]. Williamset al. [3] present the mathematical model for memristors and show its fingerprint characteristic with a pinched hysteresis currenti-voltagevloop. Based on Williams’mathematical model of memristors, Wang [20] derives the formula of the internal statex(t) and obtains the analytical expression of the currenti(t) and the voltagev(t). Considering the doped materials’ nonlinear drift, Bioleket al. [21] introduce window functions and give the SPICE model of memristors.Using Bernoulli dynamics, Drakakiset al. [22]derive the analytic description,Imres=f(Vmres) which defines the relation between the currentImresand the voltageVmresunder the assumption of nonlinear dopant drift. Wanget al. [23]and Zhanget al. [24] propose a piecewise linear (PWL)memristance model for studying dynamic properties of memristors. For single memristors, Bioleket al. [25], [26].demonstrate a methodology to obtain the analytical solution of a memristor’s voltage/current response under the current/voltage excitation. For the properties of multiple memristors,Baoet al. [27] give the voltage-current relationship of parallel memristors. Kimet al. [28], [29] analyze the composite behavior of multiple connected memristors under the assumption that all memristors should reach a stable state. Then they construct a memristor emulator which could be connected in serial, parallel, or hybrid, simplifying the study of multiple memristors.

    The memristive recurrent neural networks (MRNNs) are presented by replacing linear resistors with memristors in classical recurrent neural networks circuits. There are some compound results about the dynamical characteristics of the MRNNs [30]-[33]. Furthermore, we found that the MRNNs are a family of neural networks [34]. The MRNNs can be region stable and convergent to a sub neural network in the family of neural networks. Such a convergent result is dependent on the initial values of memristive synapses and network states. Hence,it is important to locate the initial states of memristive synapses and analyze the memory property of memristors. Although memory analysis has been discussed in the existing literature,determining how to locate the state of a memristor is scarcely discussed. With this motivation, we investigate the memory property of a memristor based on the relation between its voltagev(t) and currenti(t) and give the method to locate the initial states of the memristive synapses. Our analysis comprehensively includes memristors under the assumptions of both linear and nonlinear dopant drift. We also extend the methods to obtain the initial states of two memristors connected in series and parallel, whose initial states can be obtained simultaneously with only a few measurements and one integration. SPICE simulations have been conducted for each presented method. The simulation results convincingly confirm the viability of our approaches. The rest of this paper is organized as follows: in Section II, we analyze the memory property of the memristor with linear and nonlinear dopant drift under a current and a voltage source, respectively. Further discussion on the memory property of two series- or parallelconnected memristors, as well as the algorithm to locate the initial states of memristive synapses, are provided in Section III.Finally, Section IV concludes the paper.

    II. MEMORY ANALYSIS FOR ONE MEMRISTOR

    In this section, we discuss a method to compute the initial value of a single memristor under voltage and current sources by using the memristor models with linear and nonlinear dopant drift.

    A. Linear Dopant Drift With Current Excitation

    In this section, we consider the memory of single memristive synapses based on Williams’s memristor model[3] as follows:

    wherei(t), μVare the current through the device and the average ionic mobility, respectively;v(t) is the applied voltage source. Letx(t)=w(t)/Dbe the state variable of the memristor, as in (1); then, (2) can be rewritten as

    withx(t)∈[0,1]. LetM(t)=Ronx(t)+Roff(1-x(t)). A pinched hysteresis loop figure, the fingerprint characteristic of the memristor, can be obtained by applying a sinusoidal current sourcei(t)=i0sin(ωt) to the memristor. An HSPICE simulation is conducted and the result is shown in Fig. 2. The simulation parameters are set as following:i0= 200 μA,ω=2π rad/s,x(t0)=0.1,t0=0 s,Ron=100Ω,r=Roff/Ron=160,D=10-6cm , μV=10-10cm2/sV.

    Fig. 2. The dynamical characteristics of the linear HP memristor. (a) The linear memristor’s fingerprint characteristic: pinched hysteresis loop figure.(b) The change of the state x(t) , applied current source i(t) and the corresponding voltage v(t) of the memristor.

    Remark 1:From (2) and (3), the memristance is variable in the interval [Ron,Roff]. The memristance will be changed when the voltage or the current source is applied to the device. The initial value of the memristor is the memristancebefore the voltage or the current source is applied. The initial value can be memorized by the memristor and it affects memristance variation. This point, however, has not been discussed in the literature. The simulation parameters are chosen by using those in [3]. We compute the initial state of the memristor with the voltmeterammeter method and consider two cases, i.e., current excitation and voltage excitation, as shown in Fig. 3. The developed methods are for linear and nonlinear dopant drift.

    Fig. 3. Circuits for measuring the initial state of a memristor, under the excitation of (a) a current source and (b) a voltage source. V and I are voltmeter and ammeter, respectively.

    Let

    and

    We apply a current source at timet=t0and let

    and

    Substituting (7) into (3),

    and then

    Next we verify this method with an HSPICE simulation.Predeterminingx(t0) to be 0.28, we run the circuit in Fig. 3(a)for 2.73 s, while other parameters are the same with those in Fig. 2. The simulation process is presented in Fig. 4. After 2.73 s, the currenti(2.73) and voltagev(2.73) across the memristor are -198.4229 μA and -1.16128 V, respectively.Since the current source is sinusoidal, we getq(2.73)=3.582×10-5C by integratingi(t) fromt=0 tot= 2.73 s. Therefore we can apply the mathematical method and getx(t0)=0.28 which matches the value we predetermined. The result verifies that our method of applying current excitation to determine the initial state of a linear memristor is feasible.

    Fig. 4. Simulation process of a linear memristor under the current source for 2.73 s.

    B. Linear Dopant Drift With Voltage Excitationthe formula forx(t0) . In (3), let β =D2/μV, and then

    In this section, we consider the voltage excitation and drive

    where

    It is easy to find that the constantcof the integration is dependent on initial value ofx(t) att=t0. Therefore the memory effect of memristors is attributed to the integration constantc. Next we deduce the analytic expression ofi(t) andv(t). Sincex(t)∈[0,1], from (11), we get

    Differentiating (13) with respect to timet, then we obtain

    in which constantcis not removed. Based on (3), we have

    From (15), we can obtaincby solving (15) withas

    Then by (12), the initial statex(t0) can be obtained

    Fig. 5. Simulation process of a linear memristor under the voltage source for 4.21 s.

    The result can be easily examined with a simulation. We simulate the circuit Fig. 3(b) on HSPICE. The initial state of the linear memristor is predetermined as 0.37. The applied voltage is a simple sinusoidal voltage sourcev(t)=v0sin(ωt),wherev0=1V, ω =2π rad/s. The other simulation parameters are set as following:t0=0 s,Ron=100Ω,r=160,D=10-6cm, μV=10-10cm2/sV. We run the simulation for 4.21 s. At the end of the simulation, we getv(4.21)=968.5832 mV andi(4.21)=120.7629 μA. Because the applied voltage source is sinusoidal, φ(t) can be calculated from the integration fromt=0 tot=4.21 s: φ(4.21)=0.1196 Wb.Thus we can apply the mathematical method in (17) and obtain

    which is the same with what we predetermined forx(t0). From the result, the viability of our method has been examined by the simulation.

    C. Nonlinear Dopant Drift With Current Excitation

    In this section, we will show the methods to determine the initial statex(t0) of the memristor under the assumption of nonlinear dopant drift. For the nonlinear memristor, the descriptive model should be adjusted from (3) to

    wheref(x(t)) is a window function such thatf(0)=f(1)=0 ensures no drift at boundaries. The window function in model(18) is

    in whichpis a positive integer.f(x) is shown in Fig. 6 forp=1,2,5, respectively. Aspincreases, the curve get flatter in the middle and becomes steeper at the boundaries. If not specified, all nonlinear memristors are configured asp=1 in the rest of this paper.

    Fig. 6. Illustration for window function f(x)=1-(2x-1)2p with p=1,2,5.

    Takingp=1 in (19) and combing with (18), we get

    The fingerprint characteristic of the memristor with nonlinear dopant drift, a bow-tie shapei-vfigure, can be generated by applying a sinusoidal current sourcei(t)=i0sin(ωt)to the memristor. Based on (20), an HSPICE simulation is performed and the result is shown in Fig 7. The simulation parameters are set as following:i0=800 μA,ω=2π rad/s,r=160,D=10-6cm, μV=10-10cm2/sV.

    Let ξ =μVRon/D2and simplify (20) as

    then

    Fig. 7. The dynamical characteristics of the nonlinear HP memristor (a)The nonlinear memristor’s fingerprint characteristic: bow-tie shape figure. (b)The change of the state x(t) , applied current source i(t) and corresponding voltage v(t) of a nonlinear memristor.

    For the initial timet0,q(t0)=0, we integrate both sides of(22) for ?t>t0

    Let

    and solve (23) forx(t), we have

    From (24), we can find the determinant relation between the constantcandx(t0). In other words,cincludes the history information ofx(t). Now substitute (25) into (20), and we get

    from whichccan be calculated by

    Therefore the initial statex(t0) of the nonlinear memristor is obtained by solving (24),

    The result of the HSPICE simulation agrees with the method. We presetx(t0)=0.53, and then run the circuit in Fig. 3(a) for 3.67 s. The parameters of the circuit are kept the same with those in Fig. 7. The simulation result is shown in Fig. 8. At the end of the simulation, the currenti(3.67) and voltagev(3.67) of the memristor are - 701.0453 μA and-75.32032 mV, respectively. Because the current source is sinusoidal, we can calculateq(3.67)=1.8866×10-4C by integratingi(t) fromt=0 tot=3.67 s. Therefore

    Fig. 8. Simulation process of a nonlinear memristor under the current source for 3.67 s.

    The simulation result matches the value we predetermined forx(t0). That means the method is applicable for the calculation of initial states of memristors under the nonlinear dopant drift assumption.

    D. Nonlinear Dopant Drift With Voltage Excitation

    For nonlinear memristors, the initial statex(t0) can also be acquired through voltage excitation. From (20), we have

    where β =D2/μV. Substitutei(t) with (29) into (20), and we get

    Let

    then (31) can be simplified to

    The relation betweencandx(t0) in (32) claims that the initial state of a nonlinear memristor can be calculated from the integration constantc. That is to say, the memory effect of nonlinear memristors can be represented by an integration constant. Next we deduce how to calculatec. Change (33) to

    Combining (34) and (35),cis obtained by

    Then from (32),x(t0) can be acquired by solving an equation

    Since (37) isr-order, whereris undetermined, the analytical solution ofx(t0) is not easy to get. So a numerical solution is recommended.

    In order to get the numerical solution ofx(t0), an algorithm is presented as follows. First, construct a functionz(x)according to (37)

    Forx(t0)∈(0,1) , iteratex(t0) from 0 to 1, with a small increment δ (e.g., δ =0.0001) in each iteration. Notice that the precision of the numerical solution is dependent on δ: the smaller δ, the better the accuracy. During the iteration,x(t0) is regarded as the independent variablexto calculatez(x) in(38). Since the derivative ofz(x)

    z(x) is monotonically increasing with the increment ofxin every step. Continue the iteration until obtaining asuch thatthen compare the absolute value ofandto select the smaller one. As a result, the correspondingxto this smallerz(x) is the numerical solution ofx(t0) we are looking for.

    An HSPICE simulation is conducted to verify this approach.The simulation circuit is the same with Fig. 3(b).Predetermining the initial state of the nonlinear memristor as 0.41, we apply a simple sinusoidal voltage sourcev(t)=v0sin(ωt) , wherev0=1.2 V, ω=2π rad/s. The other simulation parameters are set as following:t0=0 s,Ron=100 Ω,r=160,D=10-6cm, μV=10-10cm2/sV. The simulation lasted for 3.73 s and we getv(3.73)=-1.190538 V andi(3.73)=-243.4537 μA. Since the applied voltage source is sinusoidal, φ(t) can be calculated from the integration fromt=0 tot=3.73 s: φ(3.73)=0.2149 Wb. Thus we can apply our mathematical method in (36)-(38) and obtain

    The calculation result ofx(t0) is the same with what we predetermined. The feasibility of our method has been examined from the simulation.Remark 2:From the analysis above, the integration constantcincludes the information of the initial valuex(t0). The memory is attributed to the integration constantc, which means that the initial valuex(t0) can be computed by the integration constantc. For different models of the memristors,the formulas of the integration constantcare different. The accuracy of the initial value computation is dependent on the model of the device.

    E. Memory Analysis for MRNNs

    The model of the MRNNs is obtained by replacing linear resistors with memristors and can be described by the following differential systems

    Fig. 9. Simulation process of a nonlinear memristor under the voltage source for 3.73 s.

    whereui(t),i=1,2,...,n, are the states of the network,Ri,Mij(t),i,j=1,2,...,n, are linear resistances and memristances, respectively;fj(s) andIi,i,j=1,2,...,n,s∈R are activation functions and bias currents, respectively.

    According to the property of memristor, MRNNs are a cluster of neural networks. When the power is off, MRNNs can store their historic state. In order to analyze their memory property, i.e., computing initial values of every memristors,we use Algorithm 1 for the memory analysis for MRNNs.

    Algorithm 1 Memory analysis for MRNNS

    Remark 3:From (39), coefficients of MRNN are variable in the interval [ 1/Roff,1/Ron]. If the MRNN can be convergent to one sub-network, the convergent result is dependent on the initial valueui(t0) of the network state and the initial valueMji(t0)of memristive synapses. It is necessary for us to locate the initial state of memristive synapses, i.e., analyzing the memory property of the memristor. It is difficult to obtain an accurate value of the voltage between two terminals of memristors. In future works, we will design suitable observers to obtain the voltage value of memristors. Memristors are nano-scale nonlinear resistors with stationaryRonandRoff. In practical applications, we need to connect two or more memristors in series or parallel to obtain different memristors with different memristances. Therefore, it is necessary to analyze the memory of two or more memristors in series or parallel.

    III. MEMORY PROPERTIES OF TWO MEMRISTORS INTERCONNECTION

    In this section, we will discuss memory properties of two series and parallel memristors. As discussed in Section II, one measurement value (i(t) orv(t)) and one integration value (q(t)or φ(t)) is needed to determine the initial state of the memristor. However, we do not need to conduct two measurements and two integrations for two memristors when they are connected in series or parallel, because the memristors connected in series share the same current, and the ones in parallel share the same voltage. Our approach is valid forn(n>1) memristors connected in series and parallel: for the series connection case,nmeasurements fornindividual voltages and an integration for the common charge are required; for the parallel connection case, we neednmeasurements fornindividual currents and an integration for the shared magnetic flux. For the purpose of simplicity and without loss of generality, we only discuss two series and parallel memristors.

    A. Two Memristors in Series

    Firstly we discuss the memory property of two memristorsM1andM2in series and discuss the method in finding initial states ofM1andM2. Denotex1(t0),x2(t0) as initial states ofM1andM2. Then one can attach a given current sourcei(t) to them and measure the corresponding voltagev1(t),v2(t)ofM1,M2. When two memristors are connected in series, we should consider the memristors’ polarities as shown in Fig. 10. In the situation of Fig. 10(a),M1andM2connected in series share the same polarity with the current source and voltmeters. We can directly apply (28) in Section II to each memristor. In Fig. 10(b), whileM1shares the same polarity with the excitation,M2is opposite to the current source. Hence calculation methods for the initial state ofM2should be adjusted. A negative sign should be added toi(t),v(t) andq(t)to offset the polarity difference ofM2. Since the existence of opposite polarity is more universal for series connected memristors, in this subsection, we only discuss the situation in Fig. 10(b).

    Fig. 10. Two memristors in series with (a) the same polarity and (b) the opposite polarity.

    If the discussed memristors are under the assumption of linear dopant drift, we calculate the integration constantc1and the initial statex1(t0) ofM1. ForM2, the memristor opposite to the one connected,

    An HSPICE simulation is conducted to examine this method for linear memristors in series. We predetermine the initial statesx1(t0),x2(t0) to be 0.15 and 0.75, respectively.The simulation circuit is Fig. 10(b), where the current sourcei(t)=i0sin(ωt),i0=200 μA , and ω=2π rad/s. The other simulation parameters are the same as the ones in Section II:t0=0 s,Ron=100 Ω,r=160,D=10-6cm, μV=10-10cm2/sV.We then run the circuit for 3.13 s.i(3.13)=145.7937 μA,v1(3.13) andv2(3.13) are measured as 1.752215 V and 826.8759 mV, respectively. Since the current source is sinusoidal, we getq(3.13)=1.0041×10-5Cby integratingi(t)fromt=0 tot=3.13 s. With the presence ofi(3.13),vk(3.13)andq(3.13),k=1,2, the initial states ofM1,M2are obtained according to (40),

    The results are coincident with the values we preset forx1(t0),x2(t0), representing the validity of the methods (40).

    For series connected memristors under the assumption of nonlinear dopant drift, the integration constantc1and the initial statex1(t0) ofM1can be calculated from (28). As for the opposite connectedM2, (28) should be adjusted to

    Hencec2andx2(t0)ofM2can be obtained from (41).

    This approach for series connected memristors with the nonlinear dopant drift can also be verified with an HSPICE simulation. We preset the initial statesx1(t0),x2(t0) to be 0.21 and 0.47, respectively. The simulation circuit and parameters are identical to the ones above for linear memristors, except the magnitude of the current source isi0=800 μA. Run the circuit for 4.11 s. At the end of the simulation,i(4.11)=509.9392 μA,v1(4.11) andv2(4.11) are measured as 4.420901 V and 6.407382 V, respectively. Since the current source is sinusoidal, we can getq(4.11)=2.9219×10-5C by integratingi(t) fromt=0 tot=4.11 s. Now we havei(4.11),vk(4.11) andq(4.11),k=1,2, the initial states ofM1,M2can be calculated according to (28) and (41)

    The predetermined values forx1(t0),x2(t0) are obtained from the simulation, showing the feasibility of methods (28)and (41).

    B. Two Memristors in Parallel

    In this subsection, we study the property of two memristors in parallel and give the formulas to calculate the initial states ofM1,M2. A common voltage sourcev(t) is applied to them and the corresponding currentsi1(t),i2(t) ofM1,M2can be measured. When two memristors are connected in parallel, we should consider the memristors’ polarities as shown in Fig. 11.In Fig. 11(a),M1andM2connected in parallel share the same polarity with the voltage source and the ammeters. Equations(17) or (36), and (37) in Section II can be applied to each memristor. In Fig. 11(b) , however,M2is opposite to the voltage excitation, contrary to the regular connection ofM1.Therefore the calculation methods for the initial state ofM2should be adjusted accordingly. A negative sign is added tov(t),i(t) and φ(t) to compensate for the polarity difference ofM2. We only discuss the situation in Fig. 11(b) in this subsection, because the existence of opposite polarity is more general for parallel connected memristors.

    First we discuss the memristors in parallel under the linear dopant drift assumption; the integration constantc1and the initial statex1(t0)ofM1can be calculated from (17). Whilec2andx2(t0) of the opposite connected memristorM2can be obtained

    Fig. 11. Two memristors in parallel with (a) the same polarity and (b) the opposite polarity.

    A parallel memristors circuit simulation is conducted to examine this method. We preset the initial statesx1(t0),x2(t0)to be 0.33 and 0.67, respectively. The simulation circuit is in Fig. 11(b), where the applied voltage is a simple sinusoidal voltage sourcev(t)=v0sin(ωt),v0=1 V, ω=2π rad/s. The other simulation parameters are the same with those in series connection. Run the simulation for 5.21 s. Thenv(5.21)=968.5831 mV,i1(5.21) andi2(5.21) are measured as 109.9511 μA and 118.6726 μA, respectively. We can also get φ(5.21)=0.1196 Wb by integratingv(t) fromt=0 tot=5.21s since the voltage source is sinusoidal. With the existence ofv(5.21),ik(5.21) and φ(5.21),k=1,2, the initial states ofM1,M2are obtained according to (17) and (42),c1=-44.1424,x1(t0)=0.33,c2=-71.5125,x2(t0)=0.67.

    The correctness of our approach is examined from the consistency of the result and preset values.

    Then we should consider the situation when two memristors under the assumption of nonlinear dopant drift are connected in parallel. The integration constantc1ofM1can be calculated from (36), and the initial statex1(t0) can be obtained from solving (37). The numerical algorithm to determine the solution of (37) has been described in Section II-D. As for the opposite connectedM2, (36) should be adjusted to

    to get the integration constantc2ofM2. Andx2(t0), the initial state ofM2, can also be obtained from solving the equation

    We simulate the nonlinear memristors in parallel to test this algorithm. Predetermining the initial statesx1(t0),x2(t0) to be 0.45 and 0.54, respectively. The circuit and parameters are the same with the previous ones, except the magnitude of the voltage sourcev0=1.2 V. The simulation is lasted for 5.77 s.At the end of the simulation,v(5.77)=-1.190538 V,i1(5.77)andi2(5.77) are measured as - 230.0400 μA and-115.2139 μA, respectively. Since the voltage source is sinusoidal, we can calculate φ(5.77)=0.1670 Wb by integratingv(t) fromt=0 tot=5.77 s. Now we getv(5.77),ik(5.77) and φ(5.77),k=1,2, the initial states ofM1,M2can be obtained following the calculation of (36), (43) and the solution of (37), (44),

    The results are in accordance with the predetermined values.

    Remark 4:For two memristors connected in series or parallel, the total initial memristance can be computed if the initial valuesx1(t0),x2(t0) are obtained, respectively. We focus on the memory analysis for two memristors in series or parallel, i.e., the total initial memristance computation. This is difference from the property analysis of two series or paprallel memristors in the existing papers.

    IV. CONCLUDING REMARKS

    In this paper, we discuss the memory property of memristors by deriving the formula for the initial value formula and the voltmeter-ammeter method. Then we analyze two series and parallel memristors' memory. According to the developed memory analysis method, we give the algorithm for locating the initial values of all memristive synapses of the MRNN (39). Our analysis shows that the integration constantcin the expression plays an important role in the memory of the electronic device. The accuracy may be improved for the computation of the initial values if the state observer can be designed for the MRNN. This will be our future work.

    18禁观看日本| 色哟哟哟哟哟哟| 国产亚洲精品综合一区在线观看 | 最新在线观看一区二区三区| 真人一进一出gif抽搐免费| 99在线视频只有这里精品首页| 非洲黑人性xxxx精品又粗又长| 亚洲欧洲精品一区二区精品久久久| 国产亚洲精品av在线| 亚洲成人久久性| 婷婷六月久久综合丁香| 久久亚洲真实| 国产视频内射| 一级毛片高清免费大全| 老熟妇仑乱视频hdxx| 日韩欧美三级三区| 禁无遮挡网站| 色尼玛亚洲综合影院| 亚洲午夜理论影院| 国产三级在线视频| 免费观看人在逋| bbb黄色大片| 久久青草综合色| 亚洲中文字幕日韩| 国产精品免费一区二区三区在线| 一区二区三区精品91| 亚洲国产精品久久男人天堂| 亚洲五月色婷婷综合| 巨乳人妻的诱惑在线观看| 成在线人永久免费视频| 中文字幕精品亚洲无线码一区 | 午夜a级毛片| 亚洲成av人片免费观看| 日本在线视频免费播放| 国产黄片美女视频| 精品国产美女av久久久久小说| 国内毛片毛片毛片毛片毛片| 哪里可以看免费的av片| 午夜精品久久久久久毛片777| 亚洲成人久久爱视频| 欧美乱妇无乱码| 欧美成狂野欧美在线观看| 国产熟女午夜一区二区三区| 久久这里只有精品19| 18禁黄网站禁片午夜丰满| 国产亚洲欧美98| 精品午夜福利视频在线观看一区| 国产激情久久老熟女| 精品第一国产精品| 国产1区2区3区精品| www日本在线高清视频| 人人妻,人人澡人人爽秒播| 成人免费观看视频高清| 国产日本99.免费观看| 9191精品国产免费久久| 美女免费视频网站| 日韩欧美免费精品| 午夜久久久在线观看| www日本在线高清视频| 啦啦啦免费观看视频1| 日日干狠狠操夜夜爽| 免费看日本二区| 搞女人的毛片| 97人妻精品一区二区三区麻豆 | 国产单亲对白刺激| 欧美精品亚洲一区二区| 美女高潮喷水抽搐中文字幕| 18禁黄网站禁片午夜丰满| 真人做人爱边吃奶动态| 亚洲美女黄片视频| 精品免费久久久久久久清纯| 亚洲国产精品久久男人天堂| 色哟哟哟哟哟哟| 天堂√8在线中文| 视频区欧美日本亚洲| 久久久久九九精品影院| 看片在线看免费视频| 午夜福利高清视频| 亚洲狠狠婷婷综合久久图片| 国产v大片淫在线免费观看| 欧美 亚洲 国产 日韩一| 91成人精品电影| 亚洲性夜色夜夜综合| 日韩一卡2卡3卡4卡2021年| 波多野结衣巨乳人妻| 自线自在国产av| 日韩三级视频一区二区三区| 一个人观看的视频www高清免费观看 | av中文乱码字幕在线| 国产av一区二区精品久久| 国产一区二区三区在线臀色熟女| 好男人在线观看高清免费视频 | 欧美黑人精品巨大| 久久九九热精品免费| 国产在线精品亚洲第一网站| 身体一侧抽搐| 欧美激情极品国产一区二区三区| 免费看日本二区| 色老头精品视频在线观看| 日韩 欧美 亚洲 中文字幕| 国产成人精品无人区| 欧美另类亚洲清纯唯美| 激情在线观看视频在线高清| 国产免费av片在线观看野外av| 国产成人精品久久二区二区91| 99国产精品一区二区蜜桃av| av在线播放免费不卡| 午夜福利一区二区在线看| 久久精品国产亚洲av香蕉五月| 亚洲国产欧洲综合997久久, | 精品国产乱子伦一区二区三区| 99久久99久久久精品蜜桃| 婷婷精品国产亚洲av| 国产男靠女视频免费网站| 亚洲,欧美精品.| 国产伦人伦偷精品视频| 后天国语完整版免费观看| 法律面前人人平等表现在哪些方面| 一级毛片女人18水好多| 亚洲av五月六月丁香网| 自线自在国产av| 99国产综合亚洲精品| 可以免费在线观看a视频的电影网站| 91在线观看av| 丝袜在线中文字幕| 久久久水蜜桃国产精品网| 日本一区二区免费在线视频| 免费无遮挡裸体视频| 精品国产美女av久久久久小说| 两性夫妻黄色片| 精品国内亚洲2022精品成人| 亚洲国产精品sss在线观看| 亚洲国产精品成人综合色| 久久久久国产一级毛片高清牌| 伦理电影免费视频| 成人永久免费在线观看视频| 色综合亚洲欧美另类图片| a在线观看视频网站| 亚洲欧美日韩高清在线视频| 午夜免费成人在线视频| 欧美黑人巨大hd| 丰满人妻熟妇乱又伦精品不卡| 又黄又粗又硬又大视频| 国产精品野战在线观看| 中文字幕精品亚洲无线码一区 | 午夜成年电影在线免费观看| 亚洲精品av麻豆狂野| 在线观看66精品国产| 亚洲国产精品sss在线观看| 亚洲av日韩精品久久久久久密| 丝袜人妻中文字幕| 亚洲欧美精品综合久久99| 真人做人爱边吃奶动态| 国产午夜福利久久久久久| 久久亚洲精品不卡| 国产极品粉嫩免费观看在线| 成人国产综合亚洲| 99在线人妻在线中文字幕| 国产成人一区二区三区免费视频网站| 久热爱精品视频在线9| 亚洲成av片中文字幕在线观看| 午夜老司机福利片| 精品不卡国产一区二区三区| 亚洲av电影在线进入| 成人亚洲精品av一区二区| 日韩中文字幕欧美一区二区| 90打野战视频偷拍视频| 高清在线国产一区| 精品人妻1区二区| 欧美zozozo另类| 观看免费一级毛片| 日韩成人在线观看一区二区三区| 这个男人来自地球电影免费观看| 欧美乱码精品一区二区三区| 美女高潮喷水抽搐中文字幕| 欧美一级毛片孕妇| 国内少妇人妻偷人精品xxx网站 | 日韩视频一区二区在线观看| 精品午夜福利视频在线观看一区| 久久婷婷成人综合色麻豆| 免费高清在线观看日韩| www.精华液| 动漫黄色视频在线观看| 日本a在线网址| 国产又黄又爽又无遮挡在线| 久久人人精品亚洲av| 麻豆av在线久日| 免费一级毛片在线播放高清视频| 一a级毛片在线观看| 亚洲成av人片免费观看| 国产精品国产高清国产av| 黄片小视频在线播放| 午夜激情福利司机影院| 成人特级黄色片久久久久久久| 久久久久久大精品| 两个人看的免费小视频| 国产又色又爽无遮挡免费看| 国产成人av教育| 又黄又粗又硬又大视频| 在线免费观看的www视频| av中文乱码字幕在线| 18禁国产床啪视频网站| 黄频高清免费视频| a在线观看视频网站| 一卡2卡三卡四卡精品乱码亚洲| 性欧美人与动物交配| 免费观看精品视频网站| 熟女电影av网| 少妇被粗大的猛进出69影院| 久久精品国产亚洲av高清一级| 桃色一区二区三区在线观看| 国产亚洲精品综合一区在线观看 | 亚洲成人免费电影在线观看| 欧美av亚洲av综合av国产av| 久久中文字幕人妻熟女| 亚洲人成伊人成综合网2020| 午夜两性在线视频| 91av网站免费观看| 黄色a级毛片大全视频| av中文乱码字幕在线| 99riav亚洲国产免费| 9191精品国产免费久久| 亚洲av成人av| www.精华液| 97碰自拍视频| 桃红色精品国产亚洲av| 白带黄色成豆腐渣| 国内毛片毛片毛片毛片毛片| 国产精品野战在线观看| 国产精品,欧美在线| 国产视频内射| 久久久久久免费高清国产稀缺| 日本免费a在线| 国产在线精品亚洲第一网站| 欧美在线黄色| 久久亚洲真实| 嫁个100分男人电影在线观看| 90打野战视频偷拍视频| 91国产中文字幕| 最近最新中文字幕大全电影3 | 人人妻人人澡欧美一区二区| 亚洲性夜色夜夜综合| 欧美黄色淫秽网站| 99国产精品一区二区三区| 国产精品久久久av美女十八| 黄频高清免费视频| 精品日产1卡2卡| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲国产日韩欧美精品在线观看 | 91老司机精品| 一a级毛片在线观看| 无人区码免费观看不卡| 麻豆久久精品国产亚洲av| 国产成人精品无人区| 麻豆一二三区av精品| 色综合亚洲欧美另类图片| 亚洲免费av在线视频| 国产一级毛片七仙女欲春2 | 97碰自拍视频| 给我免费播放毛片高清在线观看| 欧美国产精品va在线观看不卡| 女生性感内裤真人,穿戴方法视频| 成人18禁在线播放| 中文字幕人成人乱码亚洲影| 两人在一起打扑克的视频| 中文亚洲av片在线观看爽| 欧美成人性av电影在线观看| 9191精品国产免费久久| 色综合站精品国产| 啦啦啦韩国在线观看视频| 草草在线视频免费看| 亚洲欧美激情综合另类| 老熟妇仑乱视频hdxx| 亚洲精品久久国产高清桃花| 欧美精品啪啪一区二区三区| 少妇裸体淫交视频免费看高清 | 国产高清videossex| 国产成人精品久久二区二区免费| 真人一进一出gif抽搐免费| 久久热在线av| 欧美激情久久久久久爽电影| 亚洲国产毛片av蜜桃av| 亚洲av熟女| 级片在线观看| 免费在线观看影片大全网站| 久久久久久国产a免费观看| 日本撒尿小便嘘嘘汇集6| 欧美国产精品va在线观看不卡| 婷婷六月久久综合丁香| 久久性视频一级片| 丁香六月欧美| 美女大奶头视频| 午夜福利在线观看吧| 黄色a级毛片大全视频| 日韩欧美国产一区二区入口| 日本免费a在线| 国产1区2区3区精品| 99热只有精品国产| 亚洲天堂国产精品一区在线| 国产真人三级小视频在线观看| 久久这里只有精品19| 不卡一级毛片| 18禁裸乳无遮挡免费网站照片 | 国产一区在线观看成人免费| 99久久精品国产亚洲精品| 久久久久久人人人人人| 制服诱惑二区| 一区二区三区激情视频| 午夜福利视频1000在线观看| 欧美不卡视频在线免费观看 | 成人国语在线视频| 2021天堂中文幕一二区在线观 | 啦啦啦免费观看视频1| xxxwww97欧美| 久久久久亚洲av毛片大全| 好男人在线观看高清免费视频 | 久久这里只有精品19| 丝袜在线中文字幕| 久久久国产成人免费| 日韩中文字幕欧美一区二区| 桃红色精品国产亚洲av| 一区二区三区激情视频| 国产色视频综合| 在线观看免费视频日本深夜| 亚洲五月天丁香| 岛国在线观看网站| 亚洲av熟女| 亚洲自偷自拍图片 自拍| 亚洲av电影在线进入| 一级毛片精品| 99在线人妻在线中文字幕| 久久国产精品人妻蜜桃| 亚洲第一青青草原| 欧美久久黑人一区二区| 亚洲久久久国产精品| 欧美大码av| 国产蜜桃级精品一区二区三区| 人妻久久中文字幕网| 波多野结衣av一区二区av| 免费在线观看成人毛片| 久久欧美精品欧美久久欧美| aaaaa片日本免费| 亚洲午夜精品一区,二区,三区| 国产黄色小视频在线观看| 精品国产国语对白av| 欧美性猛交黑人性爽| 日日爽夜夜爽网站| 久久久久久久午夜电影| 色综合婷婷激情| 成人免费观看视频高清| 欧美最黄视频在线播放免费| 国产av不卡久久| 精品久久久久久久久久免费视频| 男女床上黄色一级片免费看| 免费观看精品视频网站| 亚洲中文av在线| 99精品在免费线老司机午夜| 在线免费观看的www视频| 免费在线观看成人毛片| 久久九九热精品免费| 人妻久久中文字幕网| 又紧又爽又黄一区二区| 亚洲第一青青草原| 日韩一卡2卡3卡4卡2021年| 国产熟女xx| 成人国产一区最新在线观看| 国产精品精品国产色婷婷| www.熟女人妻精品国产| 欧美午夜高清在线| 精品第一国产精品| АⅤ资源中文在线天堂| 国产激情偷乱视频一区二区| АⅤ资源中文在线天堂| 国产区一区二久久| 午夜两性在线视频| 国产精品精品国产色婷婷| 欧美久久黑人一区二区| 长腿黑丝高跟| 久久青草综合色| 哪里可以看免费的av片| 精品高清国产在线一区| 一个人免费在线观看的高清视频| 亚洲午夜理论影院| 一夜夜www| 天天一区二区日本电影三级| 久久亚洲真实| 亚洲人成网站在线播放欧美日韩| www.www免费av| 国产精品免费视频内射| 成人手机av| 老司机靠b影院| 亚洲国产精品成人综合色| 亚洲欧美激情综合另类| 精品无人区乱码1区二区| 亚洲一区二区三区不卡视频| 亚洲激情在线av| 欧美色欧美亚洲另类二区| 亚洲熟女毛片儿| 91av网站免费观看| 99精品在免费线老司机午夜| 一区福利在线观看| 免费在线观看成人毛片| 亚洲中文字幕一区二区三区有码在线看 | www国产在线视频色| 亚洲精品国产区一区二| 亚洲一码二码三码区别大吗| 国产精品一区二区免费欧美| 窝窝影院91人妻| 日本五十路高清| 麻豆国产av国片精品| 欧美精品亚洲一区二区| 99在线人妻在线中文字幕| 国产片内射在线| 午夜a级毛片| 性欧美人与动物交配| 午夜免费成人在线视频| 在线观看午夜福利视频| 久久精品国产综合久久久| 国产精品久久久人人做人人爽| 国产成人一区二区三区免费视频网站| 久久国产精品影院| 亚洲精品中文字幕一二三四区| 国产精品野战在线观看| 久久天堂一区二区三区四区| 桃色一区二区三区在线观看| 国产成人欧美| 色精品久久人妻99蜜桃| 欧美日本视频| 日韩三级视频一区二区三区| 级片在线观看| 国产精品一区二区精品视频观看| 亚洲精品美女久久久久99蜜臀| 成人三级做爰电影| 丝袜在线中文字幕| 一边摸一边抽搐一进一小说| 不卡av一区二区三区| 免费高清在线观看日韩| 看片在线看免费视频| 深夜精品福利| 国产精品 欧美亚洲| 最好的美女福利视频网| 别揉我奶头~嗯~啊~动态视频| 在线观看免费视频日本深夜| 日韩av在线大香蕉| netflix在线观看网站| 男女下面进入的视频免费午夜 | 自线自在国产av| 视频区欧美日本亚洲| www.精华液| 国产主播在线观看一区二区| 精品久久久久久久久久免费视频| a级毛片a级免费在线| 老司机深夜福利视频在线观看| 琪琪午夜伦伦电影理论片6080| 国产精品一区二区免费欧美| 美女高潮到喷水免费观看| 国产精品香港三级国产av潘金莲| 日本三级黄在线观看| 亚洲精品色激情综合| 波多野结衣巨乳人妻| 国产伦人伦偷精品视频| 在线观看免费视频日本深夜| 亚洲成人久久爱视频| 久久久国产欧美日韩av| 高清在线国产一区| 国产一区二区在线av高清观看| 香蕉久久夜色| 亚洲五月天丁香| 欧美亚洲日本最大视频资源| av片东京热男人的天堂| 久久婷婷人人爽人人干人人爱| 黄色a级毛片大全视频| 精品久久久久久久毛片微露脸| 两性午夜刺激爽爽歪歪视频在线观看 | 男女视频在线观看网站免费 | 亚洲精品美女久久久久99蜜臀| 色综合婷婷激情| 满18在线观看网站| 在线观看www视频免费| 国产国语露脸激情在线看| 久久国产乱子伦精品免费另类| 国产激情久久老熟女| 深夜精品福利| 美国免费a级毛片| 最近最新免费中文字幕在线| 日韩欧美 国产精品| 欧美黄色淫秽网站| 宅男免费午夜| 99久久99久久久精品蜜桃| 99国产精品一区二区蜜桃av| 999精品在线视频| 日本撒尿小便嘘嘘汇集6| 久久精品夜夜夜夜夜久久蜜豆 | 韩国av一区二区三区四区| 99久久无色码亚洲精品果冻| 免费在线观看影片大全网站| 久久草成人影院| 久久中文看片网| 国产成人精品久久二区二区免费| 啪啪无遮挡十八禁网站| 午夜视频精品福利| 精品日产1卡2卡| 亚洲黑人精品在线| 亚洲精品国产区一区二| 女人被狂操c到高潮| 91麻豆精品激情在线观看国产| 99精品在免费线老司机午夜| 狠狠狠狠99中文字幕| 亚洲精品在线美女| 国产区一区二久久| 久久中文看片网| 黑人操中国人逼视频| 亚洲五月天丁香| 身体一侧抽搐| 女人被狂操c到高潮| 国产私拍福利视频在线观看| 精品国产国语对白av| 最近最新免费中文字幕在线| 成人国产一区最新在线观看| 日韩欧美在线二视频| 在线天堂中文资源库| 欧美精品啪啪一区二区三区| 精品欧美国产一区二区三| 久久国产乱子伦精品免费另类| 亚洲国产精品久久男人天堂| 久久久久久久午夜电影| 亚洲精品一卡2卡三卡4卡5卡| 国产真实乱freesex| 一级a爱片免费观看的视频| 人人澡人人妻人| 免费观看人在逋| 亚洲 欧美 日韩 在线 免费| 两人在一起打扑克的视频| 一进一出好大好爽视频| netflix在线观看网站| 久久精品成人免费网站| 国产精品影院久久| 午夜久久久久精精品| 成在线人永久免费视频| 欧美成人午夜精品| 欧美丝袜亚洲另类 | 日本成人三级电影网站| 99国产综合亚洲精品| 国产1区2区3区精品| 久久中文字幕人妻熟女| 欧美 亚洲 国产 日韩一| 亚洲av熟女| 国产精品99久久99久久久不卡| 午夜福利在线观看吧| 亚洲国产高清在线一区二区三 | 亚洲人成网站高清观看| 美女高潮喷水抽搐中文字幕| 看免费av毛片| 久久久久久国产a免费观看| 午夜日韩欧美国产| 国产午夜精品久久久久久| 久久人妻av系列| 亚洲av美国av| 国产激情欧美一区二区| 色播亚洲综合网| 好男人电影高清在线观看| 国产极品粉嫩免费观看在线| 色尼玛亚洲综合影院| 我的亚洲天堂| 黄片小视频在线播放| 两个人看的免费小视频| 国产成年人精品一区二区| 国内久久婷婷六月综合欲色啪| av中文乱码字幕在线| 久久久精品国产亚洲av高清涩受| 亚洲精品一区av在线观看| 男人操女人黄网站| 精品福利观看| 免费看十八禁软件| 亚洲专区中文字幕在线| 黄色丝袜av网址大全| 久久中文字幕人妻熟女| 欧美亚洲日本最大视频资源| 99热这里只有精品一区 | 高清毛片免费观看视频网站| 人人妻人人澡人人看| 在线观看www视频免费| 精品欧美国产一区二区三| 亚洲成人久久性| bbb黄色大片| 欧美日本亚洲视频在线播放| 人妻久久中文字幕网| www日本黄色视频网| 女人被狂操c到高潮| 亚洲国产精品999在线| 色综合欧美亚洲国产小说| 日韩精品免费视频一区二区三区| 色av中文字幕| 久久99热这里只有精品18| 亚洲在线自拍视频| 欧美性猛交黑人性爽| 又黄又粗又硬又大视频| 日本 欧美在线| 妹子高潮喷水视频| 国产国语露脸激情在线看| 亚洲国产精品999在线| 成人一区二区视频在线观看| 国产精品久久视频播放| 精品久久久久久,| 成人一区二区视频在线观看| 午夜福利在线观看吧| 亚洲自拍偷在线| 人人澡人人妻人| 黄色视频,在线免费观看| 亚洲色图av天堂| 无人区码免费观看不卡| 免费在线观看完整版高清| www日本在线高清视频| x7x7x7水蜜桃| 亚洲熟妇中文字幕五十中出|