• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High adsorption and separation performance of CO2 over N2 in azo-based(N=N)pillar[6]arene supramolecular organic frameworks*

    2021-11-23 07:32:26YongChaoJiang姜永超GuiXiaLi李桂霞GuiFengYu于桂鳳JuanWang王娟ShuLaiHuang黃樹來andGuoLiangXu徐國亮
    Chinese Physics B 2021年11期
    關(guān)鍵詞:王娟徐國

    Yong-Chao Jiang(姜永超) Gui-Xia Li(李桂霞) Gui-Feng Yu(于桂鳳) Juan Wang(王娟)Shu-Lai Huang(黃樹來) and Guo-Liang Xu(徐國亮)

    1College of Science and Information,Qingdao Agricultural University,Qingdao 266109,China

    2School of Physics,Henan Normal University,Xinxiang 453007,China

    Keywords: supramolecular organic framework, functionalization, modelling and simulation, carbon capture and storage

    1. Introduction

    The rapid climate change caused by global warming has been a serious issue due to the extensive CO2emission into the atmosphere by anthropogenic activities such as industrial production, power plants emission, and vehicle emissions.[1]The development of efficient strategies is more challenging,and becomes an urgent task to mitigate the global warming and to continue to use fossil fuels. Under such a background,carbon capture and storage(CCS)technologies play a critical process to tackle this urgent globally environmental problem by capture and separation of CO2.[2]In order to obtain high efficiency of CCS,it is highly desirable that the suitable materials serving as effective adsorbent is utilized for CO2capture and separation.[3]Supramolecular organic frameworks with intrinsic porosity, based on the assembly of calixarenes,[4]bisurea,[5]cucurbiturils,[6]and more recently pillarenes,[7,8]have emerged as a excellent solid adsorbent materials for CO2adsorption and separation. Among them, pillar[n]arene has been exploited as an excellent candidate for CO2capture and separation because of high thermal stability, favourable pore characteristics and good gas sorption properties.

    As a desired gas adsorption material, pillar[n]arene has been experiencing comprehensive and substantial studies on its structures,properties,and syntheses. Ogoshiet al.adopted per-hydroxylated pillar[6]arene to capture gas and vapour,and found 1D channels of the per-hydroxylated pillar[6]arene can adsorb various gases and organic vapours due to their pillarshaped structures with suitable pore volume of 0.098 cm3/g.[9]Tanet al.investigated pillar[6]arene for selective sorption of hydrocarbons,and found that P5-SOF has good selectively of C2H2over H2(~2969/1), C2H6(~295/1), N2(~60/1),CH4(~41/1), and C2H4(~20/1) and exhibits high selectivity for other gas mixtures under the equimolar gas mixture condition at 1.0 bar.[10]Tanet al.employed pillar[5]arene and pillar[6]arene to realize high selective CO2adsorption capacity for CO2/H2mixtures, reaching up to 3733/1 for 30/70 mixture of CO2/H2at 298 K via strong O-H···O,C-H···O, C-H···π,π···πinteractions.[11]Therefore, pillar[n]arene might be deemed to possess outstanding gas capture performance with strong gas-framework interaction. So far as we know, the effects of functionalization, the improvement mechanism on the CO2adsorption and selectivity over CO2of N2mixture gas in functionalized pillar[6]arenes materials have not been distinctly explained.

    In this work,we adopt azo group(N=N)to decorate pillar[6]arene for investigating the adsorption and separation performance of CO2/N2mixture by density functional theory(DFT) and grand canonical Monte-Carlo (GCMC). Firstly,we optimize the geometry structure of functionalized pillar[6]arenes and calculate their atomic partial charge as the basic input parameters in GCMC simulation by DFT;secondly,the functionalized pillar[6]arenes pore characteristics of the azo-based pillar[6]arenes are showed; thirdly, adsorption capacity and separation of CO2/N2mixture is calculated;finally,the isosteric heats, interaction energy, and adsorption energy are analyzed to determine the effects of azo-functionalization on the adsorption strength and characteristics. Our results highlight the potential use of the azo-based pillar[6]arenes in CCS for high adsorption capacity and high selectivity of CO2over N2.

    2. Model and methodology

    Pillar[6]arene was adopted as the initial unit to form the adsorbing material for separating CO2from CO2/N2mixture. Firstly, we assumed that the incorporation of azo group into the macrocyclic backbone of pillar[6]arene: pillar[6]arene N2, which have two decorated macrocyclic backbones; pillar[6]arene N4, which have four decorated macrocyclic backbones, as shown in Fig. 1. After building these three structures, optimizing structure and analyzing atomic charge were carried out by means of DFT. The B3LYP/6-31+g(d,p) basis was set in Gaussian 09 package with the highly computational effciiency and suffciient accuracy.[12]The self-consistent feild (SCF) was computed with a convergence threshold of 10?6a.u. on total energy. Next,their functionalized pillar[6]arene frameworks were composed by four well-ordered optimized units. Atomic partial charges(ChelpG) of functionalized pillar[6]arenes were used as important information parameters in GCMC simulations to describe the electrostatic interaction by Coulomb law.

    CO2and N2molecules were regarded as rigid linear molecules, and the three-site molecule was used for CO2and N2molecules.The LJ potential parameters for both CO2and N2molecules were obtained from the TraPPE model,which were reported by Potoff and Siepmann.[13]Dreiding force field[14]was applied to acquire atomic Lennard-Jones 12-6 potential (ULJ) parameters. This force field has been successfully appropriated for a wealth of adsorbed materials,such as CNnsheets,[15]metal organic frameworks(MOFs),[16]and boron nitride nanotube.[17]GCMC simulations were employed to calculate the uptake of single-component CO2and N2,and the selectivity of CO2over N2in their binary mixture with different ratio in functionalized pillar[6]arene. Lennard-Jones 12-6 potential was used to describe the van der Waals interaction,which is calculated as follows:

    where the charge on particlesiandjareqiandqj, respectively,in units ofe. The dielectric constant at vacuum condition is represented byε0with the value of 8.85×10?12F/m.For the GCMC simulations,100000 cycles were used in which the first 50000 cycles were used for initialization,and the last 50000 cycles were performed for taking ensemble averages.All these GCMC simulations were implemented in the RASPA simulation code.[18]

    Fig.1. Initial configurations of the azo-based pillar[6]arenes.

    3. Results and discussion

    3.1. Pore topology and morphology

    Pore structure of frameworks is a decisive factor for gas adsorption and separation. We use Poreblazer v3.0[19]to evaluate the available pore volume (VP), pore limiting diameter(DL), maximum pore diameter(DM), and accessible surface area. The porosity (Φ) is estimated byVP/VTotal, whereVTotalis the total volume of the frameworks. Table 1 lists the pore structure of the three functionalized pillar[6]arene evaluated,which were reported by Sarkisov[20]and Duren[21]methods. After decorating, the density increase to 1.184 g·cm?3from the original 0.979 g·cm?3, and moreNatoms are introduced into frameworks leading to the greater density. TheVpof the azo-based pillar[6]arene fluctuate from 0.32 cm3/g to 0.43 cm3/g, which are lower than those of the unmodified pillar[6]arene. The accessible surface areas of the azo-based pillar[6]arene decrease from 1073.36 m2·g?1to 880.54 m2·g?1with the increasing of the azo group number,and these values are larger than those of traditional adsorbent zeolite 13X (591 m2·g?1),[22]a part of metal?organic materials (200-300 m2·g?1),[23]similar to some 2D covalent organic frameworks (688-1197 m2·g?1),[24]but lower than those of metal organic frameworks with high porosity(~6000 m2·g?1).[25]The porosity of three azo-based pillar[6]arenes is kept about 30%.In contrast with pillar[6]arene,azo-functionalization has little effect onDLandDM.

    Table 1. Physical characteristics of the azo-based pillar[6]arenes(gas probe molecule=He with diameter of 2.58 ?A).

    Fig.2. The pore size distributions of the azo-based pillar[6]arenes.

    To gain a deeper insight into the pore morphological structures, the pore size distributions (PSDs) are showed in Fig. 2. All PSDs present similar continuous distribution, and all pore sizes are smaller than 7 ?A, which are the typical ultramicropore structures(<7.00 ?A)in accordance with the IUPAC classification.[26]The main pore distributions concentrate on 5-6 ?A.The PSDs findings demonstrate the unmodified pillar[6]arene exist some pore,which is smaller than 2 ?A.Based on the previous work, pores with sizes of 5-7 ?A or even below (also referred to as ultramicropores) should be presented because they have a larger adsorption potential for CO2as compared to larger supermicropores (7-20 ?A) or mesopores(>2 nm)[1]at the low-pressure. Therefore, three azo-based pillar[6]arenes provide favorable environment for CO2adsorption and separation.

    3.2. Single-component adsorption of CO2/N2

    Single-component adsorption capacity is the primary standard to evaluate the adsorbent performance. The absolute adsorption isotherms of the single-component CO2adsorption in three azo-based pillar[6]arenes at 298 K are presented in Fig. 3(a). The absolute CO2adsorption capacities in the azo-based pillar[6]arenes are signifciantly higher than that of the unmodifeid pillar[6]arenes. At 1 bar, the adsorption capacity of three azo-based pillar[6]arenes is 0.66 mmol/g for pillar[6]arene, 0.75 mmol/g for pillar[6]arene N2, and 1.36 mmol/g for pillar[6]arene N4, respectively. The results show that azo-functionalization can improve the adsorption capacity of pillar[6]arene. In particular, pillar[6]arene N4 presents larger adsorption capacity, which is larger than those of typical supramolecular organic framework T-SOF-1 (~1.07 mmol/g),[27]TPP (0.94 mmol/g),[4]DMP5-SOF(0.05 mmol/g),[28]SMOF-SIFSIX-1a (1.05 mmol/g)[29]and B2 (~0.67 mmol/g),[4]and MgAl(Cl) (~0.136),[28]but smaller than nanoporous carbons(2.14-9.62 mmol/g),[30]and similar to azo based COF-TpAzo (1.59 mmol/g) at the same conditions. The increased CO2uptake performances are attributed to the introduction of azo groups, which add strong adsorption sites, change pore topology, and strengthen interactions with CO2and N2molecules. Introducing azo groups leads to the increasing of the number of N atoms in the frameworks.That is,an azo group(N=N)with large electronegativity increases interactions with CO2molecules of strong electric quadrupole moment.

    Figure 3(b) shows the absolute adsorption isotherms of N2in the azo-based pillar[6]arenes at 298 K. Pillar[6]arene N2 with two decorated macrocyclic backbones has a slight impact on adsorption capacity of N2. The adsorption capacity of N2has improvement in pillar[6]arene N4 frameworks. At 1 bar,the pillar[6]arene N4 presents the highest adsorption capacity(0.053 mmol/g),which is far less than most of traditional adsorbent materials, such as, 13X zeolites,[31]similar to azo based COF-TpAzo (~0.051 mmol/g), and larger than a family of azo-bridged covalent organic polymers(azo-COPs)(0.03-0.05 mmol/g)at the same conditions.For the temperature effect, the gas adsorption capacity decreases along with the increase of temperature as a result of the exothermic nature of the adsorption process. For instance, at the pressures above 1 bar,the total CO2uptakes in azo-based pillar[6]arenes are within the range of 0.66-1.36 and 1.12-1.66 mmol/g at 298 and 273 K, respectively (see Figs. 3(a)and 3(c)).

    Overall, the adsorption of CO2/N2in the azo-based pillar[6]arenes exhibits type-I Langmuir adsorption behavior,which is a typical characteristic of microporous adsorption.[32]The azo groups signifciantly enhance the adsorption capacities of CO2. In particular, the results show that the pillar[6]arene N4 processes the better adsorption capacity of CO2and weaker adsorption capacity of N2, which compare with congeneric supramolecular frameworks.

    Fig.3. (a)Absolute adsorption isotherms of CO2 at 298 K.(b)N2 in the azobased pillar[6]arenes at 298 K.(c)Absolute adsorption isotherms of CO2 at 273 K.

    3.3. Selectivity of CO2 over N2 with equal molar fraction

    The selectivity of CO2over N2is the important criterion to screen superior adsorbent materials to separate CO2from the CO2/N2mixtures. The selectivity of CO2over N2is defined as

    whereSis the selectivity of CO2over N2,xCO2andxN2are the molar fractions of CO2and N2in their adsorbed phase, andyCO2andyN2are the corresponding molar fractions of CO2and N2in their bulk gas phases. The selectivity of CO2over N2with equal molar fraction in the azo-based pillar[6]arenes at 298 K are showed in Fig.4(a).

    The selectivity of CO2over N2declines initially,and then flattens out to a constant value with the increase in pressure.At 298 K and 1 bar, the selectivity of CO2over N2decreases in the sequence of pillar[6]arene N4(~116)>pillar[6]arene N2(~32)> pillar[6]arene (~27). Pillar[6]arene N4 exhibits the best selectivity, which is better than that of azo-UiO-66(~100),[33]azo-COP-X(X=1-3)(~65-130),[34]and traditional Zr-BFDC (~60),[35]and ZIF-8 (~4).[36]The results show that pillar[6]arene N4 have a distinct advantage over other adsorption materials. This is ascribed that the introducing azo groups (N=N) can provide the stronger attractive interactions between CO2and theframework thanthatof N2.CO2has stronger quadrupole moment (4.30×1026esu·cm2)and polarizability (2.91×1025cm3), while N2have weaker q ua d rupole mo m e nt (1.52×1026e su·c m2)an d p o l a rizab ili t y(1.74×1025cm3).[37]So, CO2has the stronger electrostatic interaction with frameworks than that of N2. In addition, the pore sizes focus on ultramicropores(<7 A?),which is the optimum size for separate CO2/N2mixtures.CO2has preferential adsorption behavior to flil the optimal adsorption sites,whereafter, N2has no void space to adsorb into frameworks due to smaller pore sizes.

    The separation of CO2from N2is an essential step in power plant (“post-combustion”) flue-gas purifciation. Flue gases typicallycontain 3%-15%CO2and morethan70%N2.[38]In ordertobe closertothe practicalproductionand life,CO2/N2mixture gases with 15:85 ratio are taken into account. Figure 4(b) shows the selectivities of CO2over N2in non-equimolar CO2/N2mixtures with ratios of 15:85. Overall,the selectivities of CO2over N2in non-equimolar CO2/N2mixtures show a similar trend to that in equimolar CO2/N2mixtures. And the sequence of selectivity in the azo-based pillar[6]arenes is pillar[6]arene N4(~132)>pillar[6]arene N2(~36)>pillar[6]arene (~28), which shows its sequence is not affected by molar fraction of CO2/N2mixture. Compared with azo decorated structures, pillar[6]arene N4 has superior selectivity of CO2than that of nanoporous azo-linked polymers(~25-38)[39]and some azo-COPs(~95-130)[40]at the same conditions. Moreover, the selectivity of CO2over N2in pillar[6]arene N4 is higher than that of traditional materials, such as, JLU-Liu46-47 (~50),[41]edge-functionalized nanoporous carbons(~3-130)at 298 K,[30]and ordered carbon nanotube arrays(3-65)at 303 K.[42]As a whole,the azobased pillar[6]arenes can provide a high single-component adsorption capacity and selectivity of CO2/N2,and thus exhibit a promising potential for CCS technology.

    Fig.4. Selectivity of CO2 over N2 in the azo-based pillar[6]arenes at 298 K with the different mixture ratios of CO2/N2,(a)50:50,(b)15:85.

    3.4. Mechanism of CO2/N2 adsorption and separation

    To deepen our understanding of intrinsic mechanisms of CO2/N2adsorption and separation in the azo-based pillar[6]arenes, isosteric heats (Qst), interaction analyses, the most stable adsorption confgiuration and the corresponding maximum adsorption energy are presented.

    TheQstis the critical parameter to illustrate the interaction strength between CO2/N2and frameworks.Qstis calculated by the Clausius-Clapeyron formula

    Fig.5. Isosteric heat of CO2 and N2 on the azo-based pillar[6]arenes at 298 K.

    To estimate intrinsic of the interaction between CO2/N2and frameworks in detail, Coulomb and van der Waals interactions of gas-framework in azo-based pillar[6]arenes are calculated in Fig. 6. The van der Waals interactions of CO2/N2-framework are relatively larger than the corresponding Coulomb interactions. The pillar[6]arene N4 shows the maximal van der Waals and Coulomb interactions, which is larger than pillar[6]arene N2 and pillar[6]arene for CO2/N2.For the CO2,the van der Waals interaction of CO2-framework in the pillar[6]arene is maximum (~16.11 kJ·mol?1), which accounts for 74.79% contributions of the total interactions.The results show that the van der Waals interaction plays a leading role forthe CO2adsorption capacity. The vander Waals interaction of CO2increase to~17.70kJ·mol?1for pillar[6]arene N2 andfor~18.55 kJ·mol?1pillar[6]areneN4 due to the N=N groups. The van der Waals and Coulomb interactions of N2are less than these of CO2. The Coulomb interaction between N2and framework is very small (~0.89-0.38 kJ·mol?1), which is attributed to the weak electric quadrupole moment of N2. The results reveal the nature mechanism of the difference between CO2and N2adsorption capacities.

    Fig. 6. Coulomb and van der Waals interactions of gas-framework in the azo-based pillar[6]arenes at 298 K. (a) and (c) Van der Waals interactions,(b)and(d)Coulomb interactions.

    Fig. 7. Stable adsorption configurations CO2 (a)-(c), and N2 (d)-(f) at different sites.

    To understand the interaction between CO2/N2and each part in the azo-based pillar[6]arene surface,the adsorption energy(Eads)is explored by DFT simulation.Eadsis obtained by the following equation:[44]Eads=Egas+surf?Egas?Esurf,(7)

    whereEgasis the energy of the gas molecule,Esurfis the energy of fragment in the azo-based pillar[6]arenes,andEgas+surfis the total energy of the gas molecule adsorbed on the fragment of azo-based pillar[6]arens. Based on the definition, a larger negative value represents the more stable adsorption.The macrocyclic backbone are cut off from the initial and azobased pillar[6]arenes to illustrate the effect of O and N atom on CO2/N2molecules. The most stable adsorption configuration of CO2in the fragment of initial pillar[6]arene is shown in Fig. 7(a), CO2is adsorbed on the top of O atom, and the corresponding adsorption energy is?0.166 eV. For the azobased pillar[6]arene,the most stable adsorption configuration of CO2in the fragment of azo-based pillar[6]arene is that CO2is adsorbed on the top of N atom in the N=N group, and the corresponding adsorption energy is?0.306 eV in Fig. 7(c).In addition, the CO2adsorbed on the top of O atom in the azo-based pillar[6]arene is calculated, and the adsorption energy is?0.265 eV in Fig.7(b). Comparing with initial framework, azo-functionalization increase the interaction between CO2and O atom in the frameworks,and the N atoms in N=N group provide most stable adsorption configuration of CO2.For N2molecule, the most stable adsorption configuration of N2in the fragment of initial pillar[6]arene is that CO2is adsorbed on the top of O atom, and the corresponding adsorption energy is?0.153 eV in Fig. 7(d). This value is smaller than that of the azo-based pillar[6]arene (?0.225 eV). CO2is adsorbed on the top of N atom in the N=N group, that is,the most stable adsorption configuration of N2in the fragment of azo-based pillar[6]arene,and the corresponding adsorption energy is?0.253 eV in Fig. 7(e). In short, the introduction of N=N groups has a more positive influence on CO2/N2for surface adsorption enhancement by inductive effect/direct interaction,especially for CO2.

    4. Conclusion

    The effects of azo-functionalization on the adsorption and separation of CO2/N2in pillar[6]arenes have been investigated by DFT and GCMC simulations. Azo-based pillar[6]arene provide a favorable environment for the separation of CO2/N2by suitable pore sizes. The azo-based pillar[6]arene enhance the adsorption and separation capacity of CO2/N2. Adsorption capacity of CO2/N2is more significantly enhanced by azo-functionalization,and the more N=N group leads to the more adsorption capacity. The isosteric heat and adsorption energy show that azo-functionalization can effectively increase the interaction between CO2/N2and pillar[6]arene. The interaction analysis shows that azofunctionalization enhance the van der Waals and Coulomb interaction, and van der Waals interaction of gas is higher than the Coulomb interaction. This work highlights the effects of azo-functionalization on the adsorption and separation of CO2/N2in pillar[6]arenes, and provides an effective strategy for designing and screening adsorbent materials for carbon capture and separation.

    猜你喜歡
    王娟徐國
    Electric field and force characteristic of dust aerosol particles on the surface of high-voltage transmission line
    The formation of adolescent performing culture in the chorus
    First principles study on geometric and electronic properties of two-dimensional Nb2CTx MXenes
    Fast-sweeping Langmuir probes:what happens to the I-V trace when sweeping frequency is higher than the ion plasma frequency?
    Electrostatic force of dust deposition originating from contact between particles and photovoltaic glass?
    貧血鑒別診斷中血液檢驗(yàn)的效果及作用分析
    健康之家(2021年19期)2021-05-23 09:10:44
    Automated electron temperature fitting of Langmuir probe I-V trace in plasmas with multiple Maxwellian EEDFs
    追本溯源提升素養(yǎng)
    Study on parameters optimization in resistance spot welding of stainless steel with rectangular electrodes*
    China Welding(2015年3期)2015-10-31 10:57:38
    讀《牡丹亭》
    亚洲美女搞黄在线观看| 国产免费又黄又爽又色| 亚洲精华国产精华液的使用体验| 久久人妻熟女aⅴ| 免费播放大片免费观看视频在线观看| 国产日韩一区二区三区精品不卡| 国产1区2区3区精品| 麻豆精品久久久久久蜜桃| 国产乱人偷精品视频| tube8黄色片| 国产在线一区二区三区精| 国产欧美日韩一区二区三区在线| 国产精品久久久久久久久免| 国产深夜福利视频在线观看| 免费少妇av软件| 不卡视频在线观看欧美| h视频一区二区三区| 80岁老熟妇乱子伦牲交| 热99久久久久精品小说推荐| 深夜精品福利| 黄色配什么色好看| 亚洲成av片中文字幕在线观看 | 超碰成人久久| 久久久久网色| 少妇人妻精品综合一区二区| 97精品久久久久久久久久精品| 久久韩国三级中文字幕| 一边摸一边做爽爽视频免费| 久热这里只有精品99| 黄色一级大片看看| 成人亚洲欧美一区二区av| 亚洲人成电影观看| 香蕉国产在线看| 亚洲精品国产色婷婷电影| 国产 精品1| 免费少妇av软件| 亚洲第一区二区三区不卡| 精品一区二区免费观看| 少妇猛男粗大的猛烈进出视频| 国产成人欧美| 99re6热这里在线精品视频| 亚洲精品,欧美精品| 精品一区在线观看国产| 一级a爱视频在线免费观看| 欧美97在线视频| 亚洲人成77777在线视频| 日韩不卡一区二区三区视频在线| 国产成人免费无遮挡视频| 中文字幕亚洲精品专区| 久久久久国产网址| 国产熟女午夜一区二区三区| 午夜免费鲁丝| 亚洲三区欧美一区| 熟女av电影| 亚洲av中文av极速乱| 亚洲欧洲日产国产| 国产黄色视频一区二区在线观看| 日韩欧美一区视频在线观看| 中文天堂在线官网| 一边亲一边摸免费视频| 婷婷色综合www| 精品亚洲成a人片在线观看| 欧美最新免费一区二区三区| 日本vs欧美在线观看视频| 精品国产国语对白av| 欧美成人午夜免费资源| 黑丝袜美女国产一区| 国产精品秋霞免费鲁丝片| 久久国产亚洲av麻豆专区| 天天躁夜夜躁狠狠躁躁| 性高湖久久久久久久久免费观看| 国产欧美日韩综合在线一区二区| 国产1区2区3区精品| 免费黄网站久久成人精品| 日韩熟女老妇一区二区性免费视频| 美女主播在线视频| av在线播放精品| 18禁动态无遮挡网站| 精品人妻熟女毛片av久久网站| 大香蕉久久成人网| 久久久久久久精品精品| 蜜桃国产av成人99| 看免费成人av毛片| 日韩精品有码人妻一区| 好男人视频免费观看在线| 亚洲国产精品国产精品| 最近中文字幕2019免费版| 美女国产视频在线观看| 婷婷色综合www| 日本欧美视频一区| 天天躁夜夜躁狠狠久久av| 啦啦啦在线观看免费高清www| 欧美国产精品va在线观看不卡| 国产免费又黄又爽又色| 久久99一区二区三区| 2018国产大陆天天弄谢| 国产精品99久久99久久久不卡 | 久久久亚洲精品成人影院| 久久久精品94久久精品| 日韩一区二区三区影片| 亚洲在久久综合| 欧美日韩视频精品一区| 国产成人免费无遮挡视频| 亚洲av在线观看美女高潮| 亚洲成人av在线免费| 99热网站在线观看| 热99国产精品久久久久久7| 精品国产一区二区三区四区第35| 中文天堂在线官网| 亚洲av电影在线观看一区二区三区| 一边摸一边做爽爽视频免费| 精品人妻熟女毛片av久久网站| 99热国产这里只有精品6| av卡一久久| 老女人水多毛片| 精品国产乱码久久久久久男人| 欧美精品国产亚洲| 国产 精品1| kizo精华| 五月伊人婷婷丁香| 99久久综合免费| 一个人免费看片子| 亚洲av欧美aⅴ国产| 国产片内射在线| 久久久久久免费高清国产稀缺| 久久久久精品人妻al黑| 菩萨蛮人人尽说江南好唐韦庄| 美国免费a级毛片| 久久国产精品男人的天堂亚洲| 日韩av不卡免费在线播放| 制服人妻中文乱码| 亚洲精品国产av蜜桃| 国产免费现黄频在线看| 成人国语在线视频| 亚洲国产色片| 少妇被粗大的猛进出69影院| 如日韩欧美国产精品一区二区三区| 黄色毛片三级朝国网站| 精品亚洲成国产av| 亚洲av欧美aⅴ国产| 中国国产av一级| 纯流量卡能插随身wifi吗| 成人亚洲欧美一区二区av| 欧美精品国产亚洲| 青春草国产在线视频| 国产精品二区激情视频| 亚洲伊人久久精品综合| 国产av国产精品国产| 韩国av在线不卡| 日韩 亚洲 欧美在线| 国产精品99久久99久久久不卡 | 免费黄频网站在线观看国产| www.av在线官网国产| 91国产中文字幕| 日本猛色少妇xxxxx猛交久久| 国产免费一区二区三区四区乱码| 成人二区视频| 成年女人在线观看亚洲视频| videosex国产| 午夜av观看不卡| 亚洲精品国产一区二区精华液| 一区二区三区四区激情视频| av线在线观看网站| 日本免费在线观看一区| 国产片内射在线| 亚洲国产成人一精品久久久| 制服丝袜香蕉在线| 亚洲精品国产色婷婷电影| 在线亚洲精品国产二区图片欧美| 亚洲第一区二区三区不卡| 伦理电影免费视频| 伊人久久大香线蕉亚洲五| 制服丝袜香蕉在线| 黄片播放在线免费| 女人高潮潮喷娇喘18禁视频| 国产精品av久久久久免费| a级毛片在线看网站| 熟妇人妻不卡中文字幕| 777久久人妻少妇嫩草av网站| 99久久精品国产国产毛片| 青春草国产在线视频| 日韩一区二区视频免费看| 欧美日韩综合久久久久久| 精品久久久久久电影网| 免费观看无遮挡的男女| 亚洲五月色婷婷综合| 亚洲伊人色综图| 国产欧美亚洲国产| 国产精品 国内视频| 亚洲欧美成人综合另类久久久| 国精品久久久久久国模美| 国产1区2区3区精品| 久久精品夜色国产| 在线观看免费视频网站a站| 精品人妻熟女毛片av久久网站| 国产高清不卡午夜福利| 大香蕉久久成人网| av网站在线播放免费| 久久青草综合色| 韩国高清视频一区二区三区| 欧美变态另类bdsm刘玥| 美女大奶头黄色视频| 午夜激情久久久久久久| 亚洲四区av| 欧美在线黄色| 欧美激情高清一区二区三区 | 两性夫妻黄色片| 精品一区在线观看国产| 国产黄色视频一区二区在线观看| 成年动漫av网址| 波野结衣二区三区在线| 97在线视频观看| 在线亚洲精品国产二区图片欧美| 国产成人精品无人区| 午夜免费鲁丝| 日韩视频在线欧美| 观看av在线不卡| 五月天丁香电影| 亚洲精品美女久久av网站| 女人久久www免费人成看片| 欧美人与性动交α欧美精品济南到 | 精品少妇久久久久久888优播| 国产一区有黄有色的免费视频| 一区二区三区精品91| 一本大道久久a久久精品| 日韩在线高清观看一区二区三区| 精品国产一区二区久久| 亚洲欧美一区二区三区国产| 久久女婷五月综合色啪小说| 国产日韩一区二区三区精品不卡| 亚洲国产毛片av蜜桃av| 波多野结衣一区麻豆| 免费日韩欧美在线观看| 看免费成人av毛片| 欧美另类一区| 亚洲精品一区蜜桃| 男女啪啪激烈高潮av片| 性色avwww在线观看| 熟女av电影| 爱豆传媒免费全集在线观看| 亚洲国产欧美日韩在线播放| av网站免费在线观看视频| 卡戴珊不雅视频在线播放| 欧美变态另类bdsm刘玥| 日韩大片免费观看网站| 热re99久久精品国产66热6| 你懂的网址亚洲精品在线观看| 亚洲情色 制服丝袜| 一级爰片在线观看| 亚洲欧洲国产日韩| a 毛片基地| 久久久欧美国产精品| 亚洲国产精品999| 一级a爱视频在线免费观看| av女优亚洲男人天堂| 欧美成人午夜免费资源| 亚洲国产日韩一区二区| 日韩不卡一区二区三区视频在线| 午夜91福利影院| 国产成人精品一,二区| 日韩av不卡免费在线播放| 最近中文字幕高清免费大全6| 如何舔出高潮| 飞空精品影院首页| 亚洲男人天堂网一区| 男的添女的下面高潮视频| 久久影院123| 97精品久久久久久久久久精品| 国产精品不卡视频一区二区| 母亲3免费完整高清在线观看 | 久久 成人 亚洲| 亚洲精品第二区| 中文字幕人妻丝袜一区二区 | 成人国产麻豆网| 久久99热这里只频精品6学生| 黄色 视频免费看| 免费在线观看完整版高清| 亚洲一区二区三区欧美精品| 男女高潮啪啪啪动态图| 婷婷色av中文字幕| 国产伦理片在线播放av一区| 1024视频免费在线观看| 2018国产大陆天天弄谢| 欧美 亚洲 国产 日韩一| 亚洲国产精品国产精品| 亚洲国产精品999| 国产精品 国内视频| 亚洲国产av影院在线观看| 亚洲国产欧美网| 精品一区二区三卡| 日韩av在线免费看完整版不卡| 自拍欧美九色日韩亚洲蝌蚪91| 一级黄片播放器| 国产精品不卡视频一区二区| 久久精品国产自在天天线| 男女国产视频网站| 精品卡一卡二卡四卡免费| 纯流量卡能插随身wifi吗| 国产成人精品在线电影| 精品国产乱码久久久久久小说| 精品少妇久久久久久888优播| 国产精品国产三级国产专区5o| 男人添女人高潮全过程视频| 母亲3免费完整高清在线观看 | 亚洲国产欧美网| 国产精品麻豆人妻色哟哟久久| 最近中文字幕2019免费版| 久久久久国产一级毛片高清牌| 五月天丁香电影| 国产成人午夜福利电影在线观看| 1024视频免费在线观看| 男女高潮啪啪啪动态图| 丝袜脚勾引网站| 日韩一区二区视频免费看| 国产成人精品久久久久久| 国产亚洲最大av| 国产日韩欧美视频二区| 久久婷婷青草| 2022亚洲国产成人精品| av卡一久久| 国产在线一区二区三区精| 在线看a的网站| 男女国产视频网站| 国产精品久久久久久精品古装| 美女高潮到喷水免费观看| av又黄又爽大尺度在线免费看| 最近手机中文字幕大全| 男女午夜视频在线观看| 精品国产乱码久久久久久男人| 亚洲精品乱久久久久久| 在线免费观看不下载黄p国产| 老汉色av国产亚洲站长工具| 国产成人免费观看mmmm| 久久久久网色| 亚洲男人天堂网一区| 五月伊人婷婷丁香| 99九九在线精品视频| 久久狼人影院| 在线精品无人区一区二区三| 免费少妇av软件| 纵有疾风起免费观看全集完整版| 久久影院123| www.自偷自拍.com| 成人毛片a级毛片在线播放| 青青草视频在线视频观看| 新久久久久国产一级毛片| 视频在线观看一区二区三区| 日日爽夜夜爽网站| kizo精华| 自拍欧美九色日韩亚洲蝌蚪91| 超碰97精品在线观看| 免费女性裸体啪啪无遮挡网站| 制服人妻中文乱码| 亚洲少妇的诱惑av| 日韩人妻精品一区2区三区| 欧美另类一区| 久久精品国产亚洲av天美| 成人毛片60女人毛片免费| 久久久久久久精品精品| 久久精品国产亚洲av涩爱| 久久人人爽av亚洲精品天堂| 国产成人一区二区在线| 黄色怎么调成土黄色| 国产伦理片在线播放av一区| 人人澡人人妻人| 久久亚洲国产成人精品v| 国产人伦9x9x在线观看 | 日韩中文字幕视频在线看片| 国产一区有黄有色的免费视频| 成人国产av品久久久| 一区二区日韩欧美中文字幕| 多毛熟女@视频| 久久狼人影院| 亚洲精品国产一区二区精华液| 青春草视频在线免费观看| 又粗又硬又长又爽又黄的视频| 久久国产精品男人的天堂亚洲| 大码成人一级视频| 男人添女人高潮全过程视频| 有码 亚洲区| 久热这里只有精品99| 夫妻午夜视频| 赤兔流量卡办理| 91久久精品国产一区二区三区| 免费看不卡的av| 成人18禁高潮啪啪吃奶动态图| 赤兔流量卡办理| 91久久精品国产一区二区三区| 18+在线观看网站| 国产高清国产精品国产三级| 亚洲,欧美,日韩| 天堂8中文在线网| 亚洲久久久国产精品| 人人澡人人妻人| 亚洲精品美女久久久久99蜜臀 | 久久久精品94久久精品| 国产不卡av网站在线观看| 中文字幕最新亚洲高清| 欧美人与善性xxx| 免费观看性生交大片5| 不卡视频在线观看欧美| 国产精品久久久久久av不卡| 香蕉丝袜av| 欧美 亚洲 国产 日韩一| 亚洲av日韩在线播放| 在线 av 中文字幕| 日韩av不卡免费在线播放| 亚洲精品成人av观看孕妇| 超色免费av| 啦啦啦啦在线视频资源| 香蕉国产在线看| 18禁动态无遮挡网站| 亚洲欧洲国产日韩| 免费黄频网站在线观看国产| 国产激情久久老熟女| 久久毛片免费看一区二区三区| 国产精品一区二区在线不卡| 精品少妇黑人巨大在线播放| 亚洲成人手机| 免费观看av网站的网址| 国产精品99久久99久久久不卡 | 丰满迷人的少妇在线观看| 国产成人一区二区在线| 美女福利国产在线| 欧美激情高清一区二区三区 | 一区福利在线观看| 在线观看三级黄色| 韩国精品一区二区三区| 美女大奶头黄色视频| 看免费av毛片| 秋霞伦理黄片| 色婷婷av一区二区三区视频| 建设人人有责人人尽责人人享有的| 午夜福利在线观看免费完整高清在| av在线播放精品| 欧美激情 高清一区二区三区| 欧美精品国产亚洲| 精品亚洲成a人片在线观看| 最新中文字幕久久久久| 国产精品久久久久久精品古装| a级毛片在线看网站| 不卡av一区二区三区| 久久久久久久久久人人人人人人| 久久人人爽av亚洲精品天堂| 日本91视频免费播放| 国产福利在线免费观看视频| 免费观看无遮挡的男女| 久久久欧美国产精品| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久久人妻| 天堂中文最新版在线下载| 校园人妻丝袜中文字幕| 大陆偷拍与自拍| 性色avwww在线观看| 成人免费观看视频高清| 国产av国产精品国产| 叶爱在线成人免费视频播放| 曰老女人黄片| 在线观看免费日韩欧美大片| 亚洲图色成人| 精品国产乱码久久久久久小说| 国产精品99久久99久久久不卡 | 精品少妇内射三级| av在线观看视频网站免费| 国产视频首页在线观看| 国产淫语在线视频| 成人国语在线视频| www.自偷自拍.com| 99香蕉大伊视频| 激情视频va一区二区三区| 电影成人av| 国产片特级美女逼逼视频| 欧美激情高清一区二区三区 | 在线亚洲精品国产二区图片欧美| 日日撸夜夜添| 少妇被粗大的猛进出69影院| 啦啦啦视频在线资源免费观看| 精品国产露脸久久av麻豆| 曰老女人黄片| 免费观看a级毛片全部| 女人高潮潮喷娇喘18禁视频| 欧美少妇被猛烈插入视频| 欧美人与善性xxx| 精品国产国语对白av| 高清黄色对白视频在线免费看| 麻豆精品久久久久久蜜桃| 日韩不卡一区二区三区视频在线| 亚洲国产看品久久| 久久ye,这里只有精品| 五月开心婷婷网| 老司机亚洲免费影院| 日产精品乱码卡一卡2卡三| 久久人人97超碰香蕉20202| 少妇的丰满在线观看| 1024香蕉在线观看| 热re99久久国产66热| 国产女主播在线喷水免费视频网站| 韩国高清视频一区二区三区| 极品人妻少妇av视频| 日韩欧美一区视频在线观看| 校园人妻丝袜中文字幕| 亚洲第一区二区三区不卡| 国产日韩欧美视频二区| 亚洲伊人久久精品综合| 国产av一区二区精品久久| 国产av国产精品国产| 亚洲欧美一区二区三区黑人 | 国产成人91sexporn| 午夜福利乱码中文字幕| 中文字幕av电影在线播放| 大话2 男鬼变身卡| 超碰97精品在线观看| 99久久中文字幕三级久久日本| 日韩一区二区视频免费看| 亚洲色图综合在线观看| 成人毛片60女人毛片免费| 国产精品久久久久久精品古装| av免费在线看不卡| 国产伦理片在线播放av一区| 精品久久久精品久久久| 人体艺术视频欧美日本| 美国免费a级毛片| 亚洲第一区二区三区不卡| 午夜久久久在线观看| 亚洲av日韩在线播放| 热99国产精品久久久久久7| 精品人妻偷拍中文字幕| 欧美成人午夜精品| 免费观看a级毛片全部| 午夜精品国产一区二区电影| 亚洲av成人精品一二三区| av在线老鸭窝| 欧美精品国产亚洲| 考比视频在线观看| 亚洲精品国产色婷婷电影| 熟女av电影| 中文字幕av电影在线播放| 性高湖久久久久久久久免费观看| 久久韩国三级中文字幕| 成人亚洲欧美一区二区av| 在现免费观看毛片| 18在线观看网站| 国产一级毛片在线| 亚洲av.av天堂| 欧美97在线视频| 亚洲国产精品一区三区| 欧美激情极品国产一区二区三区| 亚洲国产欧美网| 亚洲欧美精品自产自拍| 亚洲欧美一区二区三区国产| 香蕉国产在线看| 久久久久久人人人人人| 日韩制服骚丝袜av| 亚洲第一av免费看| 欧美国产精品一级二级三级| 伦精品一区二区三区| 精品卡一卡二卡四卡免费| 日本免费在线观看一区| 下体分泌物呈黄色| 欧美日韩成人在线一区二区| 中文字幕亚洲精品专区| 精品一区二区三区四区五区乱码 | 国产免费现黄频在线看| 美国免费a级毛片| 男的添女的下面高潮视频| 侵犯人妻中文字幕一二三四区| 2022亚洲国产成人精品| 国产一级毛片在线| 国产欧美日韩综合在线一区二区| 久久精品国产亚洲av天美| 国产精品亚洲av一区麻豆 | 精品国产露脸久久av麻豆| 性色av一级| 一级毛片 在线播放| 尾随美女入室| 春色校园在线视频观看| 欧美日韩精品成人综合77777| 日韩一区二区视频免费看| 精品卡一卡二卡四卡免费| 大香蕉久久成人网| 巨乳人妻的诱惑在线观看| 久久 成人 亚洲| 亚洲av中文av极速乱| 一个人免费看片子| 91在线精品国自产拍蜜月| 母亲3免费完整高清在线观看 | 观看av在线不卡| 日韩欧美一区视频在线观看| 亚洲欧美一区二区三区久久| 香蕉国产在线看| 成年动漫av网址| 国产免费一区二区三区四区乱码| 国产精品成人在线| 久久狼人影院| 好男人视频免费观看在线| 亚洲人成电影观看| 免费少妇av软件| 午夜福利视频精品| 超色免费av| 精品一区二区三卡| 午夜日韩欧美国产| 久久精品亚洲av国产电影网| 免费少妇av软件| 男男h啪啪无遮挡| 91国产中文字幕| 成年动漫av网址| 咕卡用的链子| 69精品国产乱码久久久| 少妇的逼水好多| 欧美 亚洲 国产 日韩一| 久久久久精品久久久久真实原创| 宅男免费午夜| 国产片特级美女逼逼视频| 少妇人妻久久综合中文| 人人妻人人爽人人添夜夜欢视频|