• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electrostatic force of dust deposition originating from contact between particles and photovoltaic glass?

    2021-10-28 07:09:36XingCaiLi李興財(cái)JuanWang王娟andGuoQingSu蘇國慶
    Chinese Physics B 2021年10期
    關(guān)鍵詞:王娟

    Xing-Cai Li(李興財(cái)) Juan Wang(王娟) and Guo-Qing Su(蘇國慶)

    1School of Physics and Electronic-Electrical Engineering,Ningxia University,Yinchuan 750021,China

    2Ningxia Key Laboratory of Intelligent Sensing&Desert Information,Ningxia University,Yinchuan 750021,China

    3Xinhua College of Ningxia University,Yinchuan 750021,China

    Keywords: particle electrification,electrostatic force,photovoltaic glass,dust deposition

    1. Introduction

    Dust particle deposition is an essential factor affecting the efficiency of the photovoltaic (PV) power generation system.[1,2]Studies have shown that a mass density of 0.4 mg/cm2of the dust on the PV panel can reduce the generation efficiency of the panel by about 30%, and even a small amount of deposited dust (0.06 mg/cm2) can lead the generation efficiency to decrease by about 2.5%.[3]According to some researches, the electrical efficiency of not-cleaned PV cells decreases from 16%to 8%over 45 days,but in Baghdad–Iraq, it dropped to less than 6.24% in one day, 11.8% in one week, and 18.74% in one month.[4–6]The influence of deposited dust particles on the power generation performance of PV panel is related to the mass and physical properties of the particles.[7]Long-term accumulation of dust particles will cause the hot spot effect of PV panel, and even damage the panel in severe cases.[8]An effective dust removing technology can wipe out the deposited dust and frequently using it can reduce the loss dramatically. The widespread existence of atmospheric aerosols is beneficial to the cleaning of the PV panel surface.[9]To clarify the deposition mechanism of dust on the PV panel surface may be helpful in designing a more cost-effective dust removing method or PV panel installation process.[9]

    Numerical simulation research has been carried out on the sand & dust deposition on the surface of PV panel based on the fluid dynamics method in recent years. For example,Luet al. studied the flow field and the dust deposition process around the solar panel installed on the ground by adopting a technique coupling computational fluid dynamics(CFD)with the discrete particle model(DPM).[10]Another study discussed the deposition process and behavior of dust on groundmounted solar PV arrays based on the shear stress transportk-turbulence model and the discrete particle model.[11]Chitikaet al. investigated the parametric installation optimization for mitigating the non-tracking solar PV module fouling based on the CFD prediction of dust deposition.[12]Unfortunately, the above-mentioned studies only take the effects of the fluid force and gravity into account. However,the electric phenomenon caused by the contact between different materials has long been concerned.[13–17]The movement of particles in the air is bound to be accompanied by collisions with each other, which will lead to electrification and thus generate an electric field of a certain intensity in the air.[18,19]Few studies on the particle deposition considered the electrification in the atmosphere,except for the research of Cooperet al.,[20]who,however,explored the deposition of charged aerosol particles in the air rather than on the surface of PV panels.

    There are also a lot of studies on the adhesion force between particles and plates. For example,Rimaiet al.[21]studied the mechanism of deformations induced by adhesion between micrometer-sized particles and various substrates, and then discussed the effective application ranges of several adhesion theories.In the analysis of the effect of various fundamental forces on the adhesion of fine dust particles,Walton[22]suggested the dominant role that van der Waals adhesion forces played in small-sized particles. In particular,they gave special regard to the electrostatic image force between a particle and a conductor plane.The study of Moutinhoet al.[23]revealed that the van der Waals forces and capillary forces play the leading role in attaching dust particles to PV modules. Jianget al.[24]used an atomic force microscope to measure the adhesion force between dust particles and PV modules under the action of an electrostatic field,and found that the electrostatic force is five times and one order of magnitude larger than the van der Waals force when applied voltage is 100 V and 100 V to 500 V, respectively. Another paper reported that the electrostatic force is 1 or 2 orders of magnitude stronger than the van der Waals force and the capillary hydraulic force,[25]indicating that the electrostatic force induced by the electric field generated by PV modules cannot be ignored. Obviously,such a kind of electrostatic force differs from that generated in the process of dynamic contact between the deposited particles and the PV glass.

    According to the dynamic contact electrification mechanism, the PV glass will carry a great deal of static charges when contacted with a large number of moving particles,[26]and the resulting electrostatic field will increase the charges,[16,27]thus it also enhances the electrostatic force of moving particles.[28]Under certain conditions, more sand particles will be deposited on the PV panels.[29]However,the contact electrification between deposited dust and PV glass panels is rarely studied, and there is a lack of reports on the influence of such an electrostatic force on the dust deposition process. In view of these situations, in this work, the contact electrification between the deposited sand&dust and the PV panel is studied, and the electrostatic force of the electrified sand particles is analyzed. Furthermore,a new PV glass material is proposed based on the analysis.

    2. Contact electrification model

    The modeling of contact electrification mechanism is a classical problem,and a large number of physical models have been developed up to this time.[16,17,30–36]This paper adopts the physical model given by Xieet al.,[35]which can well describe the influence of the particle size ratio on its net charge.The basic equation of the model is

    whereρis the surface charge density andPDis the probability of ion exchange,which is set to be 0.5.[35]The contact areaAi(i=1,2)of two colliding particles can be calculated from[35]

    wherem1andm2are the masses of the two colliding particles, whose radii areR1andr1respectively,Eiandviare respectively the elastic modulus and Poisson’s ratio of the two particles,andvris the impact velocity.

    The particle electrification mechanism model under the impact of an electrostatic field can be expressed as[38]

    whereEis the environmental electric field,riis the radius of thei-th particle,θis the angle between the line of the particle center and the electric filed,QiandQjare the initial charge of thei-th andj-th particles,respectively,ωis the ratio between the charge of one particle transferred to other particles and this particle’s original charge,andγ1is the radius ratio of the two colliding particles.

    Therefore, the charge of the particle after collision in an electric field is given as

    In this paper,the collision occurs between the particle and the PV plate,so we assume that the radius of the massive particle is 1000 times larger than that of the smaller particle,similar to the treatment adopted in Ref.[19].

    3. Electrostatic force acting on charged deposition particles

    As shown in Figs.1 and 2,assuming the length of the PV panel to be 2aand the width to be 2b, a rectangular coordinate system is established by taking the center of the panel as the origin. The number concentration of particles in the atmosphere is represented byN, and the charge of particles is expressed by the charge–mass ratioqm. The coordinate of the center of the element is assumed to be (x,y,z) and the electric field intensity generated by it must have componentsEx,Ey, andEz. Owing to symmetry, there must be no horizontal electric field component and only a vertical component exists in the center of the plate. The three-dimensional(3D)electric field distribution can be found at other positions.

    Fig.1. Scheme of electric field generated by airborne particles.

    Fig.2. Scheme of electric field generated by plate.

    Assuming the diameter of particles suspended in the air to beD,the particle mass density to beρ,the particle number concentration to beN(z),and the particle charge-mass ratio to beqm, the electric field at the position (x1,y1,z1) above the PV panel can be expressed as[39]

    Considering the infinite nature of the space, the electric field generated by the sand particles suspended in the air has only a vertical component. Athough a single particle has a extremely small charge, the electrostatic field generated by the sand particles with a high concentration in the air should not be ignored. This extreme case is not considered in this paper.

    When a large number of falling particles collide with or slide on the PV glass panel,both the particles and the PV panel carry some electrostatic charges, thus generating an electric field around the PV panel.[39–41]Smaller particles are negatively charged while the larger ones are positively charged,[42]so we assume that the charge-mass ratio of the deposition particle is?qm. According to the law of charge conservation,the PV glass plate carries the same number of charges as the number of deposition particles.If we assume the mass concentration of deposited particles in the atmosphere under specified conditions to bemq,the falling velocity to bev,and the horizontal projection area of the PV panel to beA, there is aboutmqvAtparticles colliding with the PV glass panel at timet.The relative movement between deposition particles and the PV panel charges the PV glass plate, whose surface charge density should be

    When the distance between particles and the plate is a minimum value,the plate can be regarded as infinite,and then the electric field can be solvedE=σ/(2ε0).

    Then,the electrostatic force applied to the charged particles can be calculated from

    In order to highlight the effect of electrostatic force from the contact electrification process between the dust particles and the PV glass plate on the deposition and removal process of the particles, we compare the forces on the particles deposited on the tilted photovoltaic panels.

    4. Results and analysis

    Firstly,we measure the charge of polydisperse deposition particles when they fall from different heights and collide with tilted PV panels. We describe the particle charge by using the ratio of the charge to the mass of particle (i.e.charge–mass ratio)in this paper since it is widely used in the present research.[44]The schematic diagram of the experiment device and the particle size distribution function are shown in Fig.3.The dust particles used in the experiment are collected from the southeastern edge of the Tengger desert. When the particles fall free from a certain height, they will collide with and slide over the photovoltaic glass panel. Some of the particles remain on the glass panel, the other slides down the inclined plane and falls into the Faraday cup, from which we can obtain the total chargeQon the particles. Then we weigh the particles in the Faraday cup and record their massmsand. Now we can obtain the charge–mass ratioqm=Q/msand. In the experiment,the EST111 Static Charge Meter is used to measure the charge of the particles,the BSA224S electronic analytical balance is used to measure the mass of particles.

    Fig. 3. (a) Schematic diagram of experimental construction and (b) size distribution of experimental particles.

    Fig. 4. Particle charge–mass ratios varying with impact velocity on an inclined PV glass panel at tilt angle(a)30° and(b)60° for different L values.

    Figure 5 shows the variations of the charge–mass ratio of deposited dust particle with the sliding distance of particle on the PV glass plate. It is obvious that with the increase of the sliding distance and the drop height,the charge–mass ratio of particle increases nonlinearly. Besides,by comparing the four figures in Fig.5, it is easy to find that as the plate inclination angle increases,the charge–mass ratio of particle increases to different degrees. For this reason,the influence of the plate tilt angle on the particle charge–mass ratio is discussed in Fig.6,where the experiments on selected particles are conducted at a free-falling height of 30 cm and 70 cm,respectively. According to the figure,the charge–mass ratio of particle increases as the plate inclination angle enlarges, and a larger drop height results in a higher particle charge. As is well known,the particle’s charge increases more easily when it slides with a plate.The different experimental conditions make the motion states of particles and the contact mode between the particles and the glass plate changed. For example, when the plate inclination angle is small,the particles mainly roll,and with the increase of the angle, the sliding process of the particles is dominant,so the charge on particles increases.

    Fig.5. Particle charge–mass ratios versus sliding distance on an inclined PV glass panel at tilt angle(a)30° and(b)60° for different h values.

    Fig.6. Charge–mass ratios versus tilt angle on particle charge for different heights.

    At the same time, we also measure the distribution of electrostatic field on the photovoltaic glass plate in the abovementioned experiment process. The result is shown in Fig.7.From it we can find that the electrostatic field shows a bellshaped distribution. This is determined by the cooperation of the electric field forces around the location.

    In the above study, we involve with the charged rules of deposition particles after colliding with photovoltaic glass through some experimental measurements. Next, we will investigate the distribution law of electrostatic force received by particles through numerical simulation. These researches will be based on Eq. (11). The results are shown in Fig. 8.Here, we will set the particle distance to bez1=10 cm, the charge–mass ratio to be 2 nC/g, and the particle radius to be 35μm. The results show that the electrostatic forces are distributed in a bell shape,reaching a maximum value in the center of the plate and a minimum value around the edge of the plate. This law is consistent with the electric field distribution of PV glass plate obtained from the above-mentioned experiment. Although the electric quantity on the particle is small,the electrostatic force is still slightly higher than the gravity(4.66 nN),so it will change the deposition process of particles on the surface of photovoltaic panels. Therefore, it is necessary to consider the contact electrification process between deposited particles and the photovoltaic panels,especially the derived electrostatic force in the simulation of the dust deposition on the photovoltaic panels.

    Fig.7. The E-field profile on charged PV plate.

    Fig.8. Electrostatic force acting on charged particles.

    As indicated in Fig.9,the rule of electrostatic force varies with the distance between charged particles and the PV glass plate is discussed. All the parameters are equal to those in Fig. 8, except for the distancez1between particles and the PV plate. We can see that the electrostatic forces fluctuate violently, which can be explained by the mutual attraction between two charged particles with the same charge and the tablet with the opposite charge, as reported in Ref. [7]. It should be pointed out that the numerical results also show that the electric field at the central position diverges with the decrease of the distance between the particles and the plate surface.

    In order to analyze the magnitude relation among the electrostatic forces applied to particles of different sizes, we calculate the electrostatic force acting on particles with sizes of 15 μm, 25 μm, and 35 μm, located atz1=0.1 μm, and compare the results with those of particles each with a size of 5 μm. The simulation results shown in Fig. 10 indicate that the electrostatic force of particles increases significantly with the particle size increasing,which is attributed to the increasing of charge–mass ratio during the collision between particles and the plate surface. Besides, it can be seen from the figure that with the increase of the particle size,the electrostatic force applied to the particles does not always increase,but decreases tremendously in some regions.

    Fig.9. Distribution of electrostatic forces acting on charged particles at different places above PV panel.

    Fig.10. Electrostatic force ratios versus plate width and plate length of particles on flat surface.

    Finally, we calculate the electrostatic force acting on the particle located atz1=1 nm and with a radius of 20μm and a charge of 2.464×10?16C from Eq.(11),and compare it with the results achieved by other studies. The results shown in Fig.11 reveal that the electrostatic force ranges from 10?4μN(yùn) to 103μN(yùn), with an average value of 7 μN(yùn). This is basically consistent with the results of other literature. The electrostatic force is much higher than the gravity (0.87 nN) and the van der Waals force (1.8 nN),[25]indicating that the electrostatic force will promote more moving particles to deposit on the PV panel,thus resulting in a non-uniform distribution of dust particles deposited on the PV panel.

    Fig.11. Distribution of electrostatic force versus width and length under the same parameters as in other studies.

    5. Conclusions

    We report the electrification phenomenon between deposition particles and PV panels, and analyze the charge–mass ratios of polydisperse dust particles that fall from different heights and collide with tilted PV glass panels. In addition,the corresponding physical model is established to discuss the electrostatic force of dust on the surface of electrified PV panels. The results show that the dust particles colliding with the PV glass plate will carry a large number of static charges,and the number of charges increases to different degrees with the increasing of the impact velocity and the inclination angle of the PV panel. Besides, a larger particle size and a higher impact velocity can significantly increase the electrostatic force exerted on particles,which is even higher than the gravity and the van der Waals force. In addition,the electrostatic force is relatively large in the plate center,and distributed in an oscillatory manner at different positions. On the whole, the electrostatic force caused by the collision of PV glass plates and deposited particles may enhance the deposition of moving particles on the surface of the PV panel and show a non-uniform distribution, which possibly has more complex implications for PV cells.[45,46]Therefore, an anti-static transparent material should be considered for the PV panel that serves in the severe wind-sand environment,for example,the solar powered devices of the Mars explorer. The results of this paper facilitate the understanding of the deposition mechanism of dust particles on the PV panels in dusty weather,and provide some theoretical support for the removing of dust particles deposited on the PV panel in the desert environment.

    猜你喜歡
    王娟
    Electric field and force characteristic of dust aerosol particles on the surface of high-voltage transmission line
    巧用“倍數(shù)的和”
    晚期腫瘤患者的姑息照護(hù)和臨床關(guān)懷
    The formation of adolescent performing culture in the chorus
    High adsorption and separation performance of CO2 over N2 in azo-based(N=N)pillar[6]arene supramolecular organic frameworks*
    貧血鑒別診斷中血液檢驗(yàn)的效果及作用分析
    健康之家(2021年19期)2021-05-23 09:10:44
    哪里哪里?
    A Literature Review of Critical Discourse Analysis
    家族最大的失敗 是教育子女的失敗 智新超越王娟:一個(gè)高級女經(jīng)濟(jì)師的“百萬賭局”
    狂飆美少女
    精品免费久久久久久久清纯| 麻豆一二三区av精品| 国产色爽女视频免费观看| 免费人成在线观看视频色| 麻豆一二三区av精品| 亚洲成av人片在线播放无| 内射极品少妇av片p| 欧美日韩黄片免| 国产不卡一卡二| 国产国拍精品亚洲av在线观看| 欧美成人a在线观看| 极品教师在线视频| 黄色配什么色好看| 搡老岳熟女国产| 久久这里只有精品中国| 国产不卡一卡二| 在线国产一区二区在线| 午夜日韩欧美国产| 日韩精品中文字幕看吧| 色综合色国产| 国产精品1区2区在线观看.| 99热这里只有精品一区| 嫁个100分男人电影在线观看| 成人av在线播放网站| 国产单亲对白刺激| av黄色大香蕉| 亚洲中文日韩欧美视频| 亚洲精华国产精华液的使用体验 | 国产黄a三级三级三级人| 校园人妻丝袜中文字幕| www.www免费av| 亚洲人与动物交配视频| 精品午夜福利视频在线观看一区| 乱码一卡2卡4卡精品| 亚洲中文日韩欧美视频| 中文字幕av在线有码专区| 国产精品不卡视频一区二区| 亚洲,欧美,日韩| 国产老妇女一区| 在线观看av片永久免费下载| 亚洲精品成人久久久久久| 丰满人妻一区二区三区视频av| 91久久精品国产一区二区三区| 日本爱情动作片www.在线观看 | 国产精华一区二区三区| 一进一出抽搐动态| 老司机福利观看| 国产精品一区二区免费欧美| 人人妻人人看人人澡| 国产精品一区二区三区四区免费观看 | av视频在线观看入口| 国产精品久久视频播放| 欧美色视频一区免费| 日本撒尿小便嘘嘘汇集6| 蜜桃久久精品国产亚洲av| 又黄又爽又刺激的免费视频.| 窝窝影院91人妻| 欧美绝顶高潮抽搐喷水| 免费av不卡在线播放| 99视频精品全部免费 在线| 我的老师免费观看完整版| 成人毛片a级毛片在线播放| 此物有八面人人有两片| 精品人妻视频免费看| 高清日韩中文字幕在线| 床上黄色一级片| or卡值多少钱| 亚州av有码| 亚洲av日韩精品久久久久久密| 国产高清有码在线观看视频| 日韩 亚洲 欧美在线| 久久久久性生活片| 99久国产av精品| 色尼玛亚洲综合影院| 国产一区二区激情短视频| 久久亚洲精品不卡| 亚洲狠狠婷婷综合久久图片| 亚洲最大成人av| 最近中文字幕高清免费大全6 | 欧洲精品卡2卡3卡4卡5卡区| 真实男女啪啪啪动态图| 国产精品野战在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 国产视频一区二区在线看| 1000部很黄的大片| 亚洲美女黄片视频| 香蕉av资源在线| 久久久久久伊人网av| 琪琪午夜伦伦电影理论片6080| 久久久久久久精品吃奶| 18禁裸乳无遮挡免费网站照片| 亚洲国产色片| 欧美丝袜亚洲另类 | 色噜噜av男人的天堂激情| 国产精品一区二区三区四区久久| a级毛片免费高清观看在线播放| 丝袜美腿在线中文| 午夜精品在线福利| 啦啦啦啦在线视频资源| 国产大屁股一区二区在线视频| 亚洲午夜理论影院| 在线观看66精品国产| 成人毛片a级毛片在线播放| 搡女人真爽免费视频火全软件 | 久久精品国产亚洲av涩爱 | 亚洲中文字幕一区二区三区有码在线看| 看十八女毛片水多多多| 精品不卡国产一区二区三区| 亚洲成人免费电影在线观看| 一进一出抽搐gif免费好疼| 亚洲 国产 在线| 男人舔女人下体高潮全视频| 88av欧美| 亚洲av一区综合| 亚洲精品影视一区二区三区av| 一本一本综合久久| bbb黄色大片| 亚洲成a人片在线一区二区| 成年女人毛片免费观看观看9| 精品人妻一区二区三区麻豆 | av视频在线观看入口| 日韩亚洲欧美综合| 又爽又黄无遮挡网站| 久久久久精品国产欧美久久久| 亚洲国产精品久久男人天堂| 免费在线观看日本一区| 亚洲,欧美,日韩| 成年女人看的毛片在线观看| 国产三级在线视频| 久久精品国产亚洲av香蕉五月| 亚洲av日韩精品久久久久久密| 免费搜索国产男女视频| 久久精品影院6| 天堂√8在线中文| 午夜亚洲福利在线播放| 亚洲精华国产精华精| 18禁黄网站禁片午夜丰满| 中文字幕免费在线视频6| 成人欧美大片| 亚洲成人精品中文字幕电影| 99精品久久久久人妻精品| 欧美成人免费av一区二区三区| 在线播放国产精品三级| 日韩在线高清观看一区二区三区 | 亚洲成人精品中文字幕电影| 99热只有精品国产| 亚洲七黄色美女视频| 国产麻豆成人av免费视频| xxxwww97欧美| av黄色大香蕉| 久久久久久久久久成人| 在线天堂最新版资源| 搡老岳熟女国产| 亚洲精品一区av在线观看| 久久久成人免费电影| a级毛片免费高清观看在线播放| 国产成人影院久久av| 女人被狂操c到高潮| 免费一级毛片在线播放高清视频| 欧美激情久久久久久爽电影| 亚洲专区国产一区二区| 日韩人妻高清精品专区| 大型黄色视频在线免费观看| 久久人人爽人人爽人人片va| 噜噜噜噜噜久久久久久91| 校园人妻丝袜中文字幕| 国产美女午夜福利| 别揉我奶头 嗯啊视频| 欧美高清成人免费视频www| 欧美激情久久久久久爽电影| 日本五十路高清| 亚洲综合色惰| 天美传媒精品一区二区| 国产精品自产拍在线观看55亚洲| 桃红色精品国产亚洲av| 欧美成人免费av一区二区三区| 人人妻人人看人人澡| 日本-黄色视频高清免费观看| 国产精品久久久久久亚洲av鲁大| 美女黄网站色视频| 欧美激情在线99| 51国产日韩欧美| 乱人视频在线观看| 国产亚洲av嫩草精品影院| 日本在线视频免费播放| 伦精品一区二区三区| 波野结衣二区三区在线| 色噜噜av男人的天堂激情| 免费看美女性在线毛片视频| 好男人在线观看高清免费视频| 成年女人毛片免费观看观看9| 国产欧美日韩精品一区二区| 在线观看66精品国产| 深夜a级毛片| 日韩欧美一区二区三区在线观看| 日日撸夜夜添| 九九热线精品视视频播放| 亚洲性夜色夜夜综合| 午夜老司机福利剧场| 99热这里只有是精品在线观看| 国产精品一区二区免费欧美| 国产熟女欧美一区二区| 3wmmmm亚洲av在线观看| 国产精品自产拍在线观看55亚洲| 一进一出抽搐动态| 可以在线观看毛片的网站| av在线蜜桃| 久久精品国产清高在天天线| 91久久精品国产一区二区成人| 1024手机看黄色片| 精品人妻一区二区三区麻豆 | 国产久久久一区二区三区| 黄色配什么色好看| 亚洲国产精品sss在线观看| av在线天堂中文字幕| 精品一区二区三区视频在线| 欧美日韩亚洲国产一区二区在线观看| 少妇的逼水好多| 三级国产精品欧美在线观看| 国产精品免费一区二区三区在线| 观看美女的网站| 成年免费大片在线观看| 啦啦啦韩国在线观看视频| 国产午夜福利久久久久久| 黄色女人牲交| 男女之事视频高清在线观看| 亚洲欧美激情综合另类| 亚洲中文日韩欧美视频| 国产精品久久久久久久电影| 黄色女人牲交| 色播亚洲综合网| 内地一区二区视频在线| 天天一区二区日本电影三级| 午夜免费成人在线视频| 九九热线精品视视频播放| 国产亚洲av嫩草精品影院| 国产aⅴ精品一区二区三区波| 国产白丝娇喘喷水9色精品| 美女大奶头视频| 搡老妇女老女人老熟妇| 欧美色欧美亚洲另类二区| 人人妻人人看人人澡| 99国产极品粉嫩在线观看| 丰满乱子伦码专区| 中文字幕精品亚洲无线码一区| 免费在线观看日本一区| 一区二区三区高清视频在线| 久久精品国产亚洲av香蕉五月| 中国美女看黄片| 真实男女啪啪啪动态图| 欧美最新免费一区二区三区| 一区福利在线观看| 精品免费久久久久久久清纯| 国产精品伦人一区二区| 尾随美女入室| 久久久午夜欧美精品| 国产精品自产拍在线观看55亚洲| 久久99热6这里只有精品| 91狼人影院| 2021天堂中文幕一二区在线观| 国产精品爽爽va在线观看网站| 99热6这里只有精品| 成人永久免费在线观看视频| 精华霜和精华液先用哪个| 校园人妻丝袜中文字幕| 精品久久久久久成人av| 亚洲美女搞黄在线观看 | 全区人妻精品视频| 久久精品国产清高在天天线| 给我免费播放毛片高清在线观看| 国内久久婷婷六月综合欲色啪| 国产黄片美女视频| 国产精品一及| 日韩亚洲欧美综合| 国产欧美日韩精品一区二区| 男女啪啪激烈高潮av片| 观看美女的网站| 蜜桃亚洲精品一区二区三区| 国产精品国产高清国产av| 欧美日韩精品成人综合77777| 天天躁日日操中文字幕| 亚洲天堂国产精品一区在线| 国产亚洲精品久久久久久毛片| 国产蜜桃级精品一区二区三区| 俺也久久电影网| 久久久久精品国产欧美久久久| 在线天堂最新版资源| 丰满人妻一区二区三区视频av| 在现免费观看毛片| 亚洲欧美日韩高清在线视频| 1000部很黄的大片| 变态另类丝袜制服| 午夜精品久久久久久毛片777| 成人精品一区二区免费| 欧美+亚洲+日韩+国产| 极品教师在线免费播放| 国产亚洲欧美98| 又黄又爽又免费观看的视频| 国产精品av视频在线免费观看| 性插视频无遮挡在线免费观看| 国产精品永久免费网站| 久久精品91蜜桃| 少妇的逼好多水| 无人区码免费观看不卡| netflix在线观看网站| 午夜影院日韩av| 一夜夜www| 别揉我奶头 嗯啊视频| av在线蜜桃| 美女xxoo啪啪120秒动态图| 女的被弄到高潮叫床怎么办 | 国产黄a三级三级三级人| 免费在线观看成人毛片| 国内精品一区二区在线观看| 久久精品国产亚洲av香蕉五月| 亚洲av免费高清在线观看| 波多野结衣巨乳人妻| 美女免费视频网站| 国产精品久久视频播放| 免费在线观看日本一区| 亚洲真实伦在线观看| 免费人成视频x8x8入口观看| 99热这里只有精品一区| 欧美三级亚洲精品| 国产一区二区亚洲精品在线观看| 成年免费大片在线观看| 免费av不卡在线播放| 天堂√8在线中文| 女人被狂操c到高潮| 亚洲色图av天堂| 日韩欧美一区二区三区在线观看| 熟女人妻精品中文字幕| 亚洲,欧美,日韩| 国产主播在线观看一区二区| 日本欧美国产在线视频| 人人妻人人看人人澡| 久久精品久久久久久噜噜老黄 | 老司机福利观看| 我的老师免费观看完整版| 一级毛片久久久久久久久女| 一本精品99久久精品77| 在线观看av片永久免费下载| 一夜夜www| 国产色爽女视频免费观看| 成人国产一区最新在线观看| 日韩强制内射视频| 亚洲人成网站在线播| 三级国产精品欧美在线观看| 俄罗斯特黄特色一大片| 高清在线国产一区| 91午夜精品亚洲一区二区三区 | 看十八女毛片水多多多| 88av欧美| 男人狂女人下面高潮的视频| 亚洲人成网站在线播放欧美日韩| 国产精品三级大全| 女的被弄到高潮叫床怎么办 | 免费观看的影片在线观看| 麻豆一二三区av精品| 精品久久久久久久久亚洲 | 女同久久另类99精品国产91| 男女边吃奶边做爰视频| 一级av片app| 中文亚洲av片在线观看爽| 免费看美女性在线毛片视频| 中文字幕免费在线视频6| 国产女主播在线喷水免费视频网站 | 干丝袜人妻中文字幕| 国产精品一区二区三区四区免费观看 | 又紧又爽又黄一区二区| 久久人人爽人人爽人人片va| 如何舔出高潮| 国产精品一区二区性色av| 国产精品自产拍在线观看55亚洲| 在线播放国产精品三级| 久久精品人妻少妇| 亚洲国产精品成人综合色| 啦啦啦观看免费观看视频高清| 亚洲精品日韩av片在线观看| 亚洲av免费高清在线观看| 特级一级黄色大片| 亚洲18禁久久av| 久久久久性生活片| 国产高清不卡午夜福利| 欧美一区二区国产精品久久精品| 欧美高清性xxxxhd video| 亚洲av中文av极速乱 | 国产亚洲精品av在线| 他把我摸到了高潮在线观看| 国产成人av教育| 波野结衣二区三区在线| 我要看日韩黄色一级片| 亚洲av成人精品一区久久| 色在线成人网| 亚洲欧美清纯卡通| netflix在线观看网站| 99久久中文字幕三级久久日本| 非洲黑人性xxxx精品又粗又长| 日本成人三级电影网站| 99九九线精品视频在线观看视频| 国产精品亚洲美女久久久| av中文乱码字幕在线| 性色avwww在线观看| 尾随美女入室| 国产精品一及| 麻豆av噜噜一区二区三区| av在线蜜桃| 欧美性感艳星| 尤物成人国产欧美一区二区三区| 人人妻,人人澡人人爽秒播| 午夜福利在线观看吧| 看黄色毛片网站| 久久久久久久久久黄片| 亚洲精品456在线播放app | 春色校园在线视频观看| 国产成人一区二区在线| 国产欧美日韩精品亚洲av| 午夜福利成人在线免费观看| 男女啪啪激烈高潮av片| 亚洲精品久久国产高清桃花| 在线播放无遮挡| 在线免费观看的www视频| 亚洲av不卡在线观看| 久久欧美精品欧美久久欧美| 国产亚洲av嫩草精品影院| 网址你懂的国产日韩在线| 日韩强制内射视频| 午夜久久久久精精品| 深夜a级毛片| 可以在线观看的亚洲视频| 国产精品亚洲一级av第二区| 乱人视频在线观看| 国产高清三级在线| 亚洲成人中文字幕在线播放| 熟女人妻精品中文字幕| 女同久久另类99精品国产91| 亚洲七黄色美女视频| 午夜日韩欧美国产| 亚州av有码| 老师上课跳d突然被开到最大视频| 国产高清视频在线播放一区| 成人无遮挡网站| 欧美高清成人免费视频www| 国产成人福利小说| 男人狂女人下面高潮的视频| a在线观看视频网站| 国产色爽女视频免费观看| 日本色播在线视频| 午夜精品久久久久久毛片777| 国产精品1区2区在线观看.| 亚洲av第一区精品v没综合| 99久久精品一区二区三区| 久久久久久久久大av| 嫁个100分男人电影在线观看| 18+在线观看网站| 久久精品国产亚洲av香蕉五月| 午夜老司机福利剧场| 欧美高清性xxxxhd video| 欧美一区二区精品小视频在线| 免费人成视频x8x8入口观看| 91狼人影院| 欧美日韩中文字幕国产精品一区二区三区| 十八禁国产超污无遮挡网站| 久久精品久久久久久噜噜老黄 | 亚洲欧美日韩高清在线视频| 少妇被粗大猛烈的视频| 在线免费观看不下载黄p国产 | 给我免费播放毛片高清在线观看| 免费无遮挡裸体视频| 日本爱情动作片www.在线观看 | 乱码一卡2卡4卡精品| 成人国产麻豆网| 桃色一区二区三区在线观看| 国产精品综合久久久久久久免费| 性插视频无遮挡在线免费观看| 欧美日韩国产亚洲二区| 欧美日韩中文字幕国产精品一区二区三区| 观看免费一级毛片| 自拍偷自拍亚洲精品老妇| 国产精品一区www在线观看 | 男人和女人高潮做爰伦理| 欧美不卡视频在线免费观看| 日韩强制内射视频| 成人精品一区二区免费| 在线免费观看的www视频| 天堂影院成人在线观看| 最新中文字幕久久久久| 国产单亲对白刺激| 亚洲真实伦在线观看| 在线免费十八禁| 麻豆久久精品国产亚洲av| 99久久精品国产国产毛片| 国产视频一区二区在线看| av视频在线观看入口| 国产精品乱码一区二三区的特点| 91久久精品国产一区二区三区| 成人精品一区二区免费| 欧美精品国产亚洲| 夜夜夜夜夜久久久久| 日韩人妻高清精品专区| 麻豆成人午夜福利视频| 亚洲中文字幕一区二区三区有码在线看| 免费观看的影片在线观看| 三级男女做爰猛烈吃奶摸视频| 搡老妇女老女人老熟妇| 亚洲国产日韩欧美精品在线观看| 精品午夜福利在线看| 亚洲图色成人| 日本 av在线| 99久国产av精品| 日本五十路高清| 99热这里只有是精品在线观看| 成人国产一区最新在线观看| 在线免费十八禁| 日韩欧美 国产精品| 1024手机看黄色片| 国产熟女欧美一区二区| 精品久久久久久久末码| 欧美日韩瑟瑟在线播放| 欧美在线一区亚洲| 在线观看舔阴道视频| av在线天堂中文字幕| 久久久久免费精品人妻一区二区| 狂野欧美激情性xxxx在线观看| 成人精品一区二区免费| 少妇的逼好多水| 日韩一区二区视频免费看| 精品午夜福利在线看| 免费观看精品视频网站| 国产高清视频在线观看网站| 国产在线精品亚洲第一网站| 国产91精品成人一区二区三区| 久久国产精品人妻蜜桃| 亚洲精品色激情综合| 99热这里只有精品一区| 无遮挡黄片免费观看| 99热这里只有是精品在线观看| 自拍偷自拍亚洲精品老妇| 国产亚洲欧美98| av天堂在线播放| 亚洲欧美激情综合另类| 亚洲真实伦在线观看| 99热6这里只有精品| 日本五十路高清| 国产69精品久久久久777片| 亚洲美女黄片视频| 亚洲一区高清亚洲精品| 亚洲国产欧洲综合997久久,| 老女人水多毛片| 亚洲18禁久久av| 亚洲三级黄色毛片| 床上黄色一级片| 国产精品人妻久久久久久| 国产精品自产拍在线观看55亚洲| 久久久久久久久久成人| 亚洲av第一区精品v没综合| 久久久久国产精品人妻aⅴ院| 99国产精品一区二区蜜桃av| 国产白丝娇喘喷水9色精品| 18禁裸乳无遮挡免费网站照片| 亚洲中文字幕日韩| 在现免费观看毛片| 国产爱豆传媒在线观看| 国产中年淑女户外野战色| 日韩欧美国产一区二区入口| 中文字幕精品亚洲无线码一区| 日本五十路高清| 欧美中文日本在线观看视频| 精华霜和精华液先用哪个| 精品日产1卡2卡| 久久久成人免费电影| 九色国产91popny在线| 在线免费观看的www视频| 国产探花在线观看一区二区| 国产一区二区三区在线臀色熟女| 91狼人影院| 嫩草影院新地址| 99久久九九国产精品国产免费| 久久亚洲真实| 亚洲电影在线观看av| 能在线免费观看的黄片| 国产av在哪里看| 免费看日本二区| 国产免费av片在线观看野外av| 国产色爽女视频免费观看| 国产一区二区亚洲精品在线观看| 国产亚洲精品综合一区在线观看| 我要看日韩黄色一级片| 国产精品乱码一区二三区的特点| 国产精品久久视频播放| 1000部很黄的大片| 午夜激情福利司机影院| 午夜福利在线观看免费完整高清在 | 中国美白少妇内射xxxbb| 少妇裸体淫交视频免费看高清| 国产精品一区二区三区四区免费观看 | 五月玫瑰六月丁香| 少妇的逼水好多| 日韩欧美免费精品| 婷婷精品国产亚洲av| 1024手机看黄色片| 日本五十路高清| 99热这里只有精品一区| 国产私拍福利视频在线观看| 看片在线看免费视频| 国产黄色小视频在线观看| 黄色日韩在线| 高清毛片免费观看视频网站| 成人毛片a级毛片在线播放| 久久久国产成人精品二区| 国产高清激情床上av| 免费在线观看日本一区| 99九九线精品视频在线观看视频| 白带黄色成豆腐渣| 久久午夜亚洲精品久久|