周春寶 劉林雨 胡廷延 倪黎綱 徐盼
摘要: 本研究旨在探討MC4R基因多態(tài)性對(duì)蘇姜豬生產(chǎn)性狀的影響,以期能夠篩選出可用于提高蘇姜豬生產(chǎn)性狀的分子標(biāo)記。利用DNA混合池和Sanger測序法對(duì)MC4R基因外顯子進(jìn)行單核苷酸多態(tài)性(SNP)檢測,分析SNP的遺傳多態(tài)性及其與生產(chǎn)性狀的關(guān)聯(lián)性。結(jié)果顯示,蘇姜豬MC4R基因外顯子中共檢測到6個(gè)SNP位點(diǎn),其中1個(gè)錯(cuò)義突變[rs81219178 G>A(Asp298Asn)],5個(gè)3′UTR突變(rs325999553 G>A、rs344775772 T>A、rs334536177 A>C、rs335628164 C>T和rs81221063 A>T),均包含3種基因型,且符合Hardy-Weinberg平衡,2個(gè)SNP位點(diǎn)為低度多態(tài),4個(gè)SNP位點(diǎn)為中度多態(tài)。關(guān)聯(lián)分析結(jié)果顯示,rs81219178 G>A(Asp298Asn)位點(diǎn)對(duì)胸圍和胸寬有顯著影響,5個(gè)3′UTR突變位點(diǎn)對(duì)體質(zhì)量、體高和胸圍有顯著影響。rs325999553 G>A和rs344775772 T>A呈現(xiàn)高度連鎖,rs334536177 A>C、rs335628164 C>T和rs81221063 A>T呈現(xiàn)高度連鎖。結(jié)果提示,MC4R基因?qū)μK姜豬的部分生產(chǎn)性狀有顯著影響,可作為蘇姜豬早期選育的分子標(biāo)記。
關(guān)鍵詞: 蘇姜豬;MC4R;單核苷酸多態(tài)性;生產(chǎn)性狀
中圖分類號(hào): S858.28?? 文獻(xiàn)標(biāo)識(shí)碼: A?? 文章編號(hào): 1000-4440(2021)04-0929-07
Analysis on MC4R gene polymorphism and its association with production traits in Sujiang pigs
ZHOU Chun-bao1, LIU Lin-yu1, HU Ting-yan1,2, NI Li-gang1, XU Pan1
(1.School of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China;2.College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China)
Abstract: This study was aimed to explore the effect of MC4R gene polymorphism on the production traits of Sujiang pigs, as so to screen molecular markers that can be used to improve the production traits of Sujiang pigs. Single nucleotide polymorphism (SNP) in the exons of MC4R gene was detected by DNA pooling and Sanger sequencing to analyze the genetic polymorphism of SNP and its association with production traits. The results showed that six SNP loci were detected in the exons of MC4R gene of Sujiang pigs, including one missense mutation [rs81219178 G>A(Asp298Asn)], five 3′UTR mutations (rs325999553 G>A, rs344775772 T>A, rs334536177 A>C, rs335628164 C>T and rs81221063 A>T), which all contained three genotypes and conformed to Hardy-Weinberg equilibrium. Two SNP loci were low polymorphic and four SNP loci were moderate polymorphic. Association analysis results indicated that rs81219178 G>A(Asp298Asn) locus had significant effects on chest circumference and chest width, and five 3′UTR mutational loci had significant effects on body weight, body height and chest circumference. There showed high linkages between rs325999553 G>A and rs344775772 T>A, among rs334536177 A>C, rs335628164 C>T and rs81221063 A>T. The results suggest that MC4R gene has a significant effect on some production traits of Sujiang pigs and can be used as a molecular marker in early breeding of Sujiang pigs.
Key words: Sujiang pig;MC4R;single nucleotide polymorphism (SNP);production traits
黑素皮質(zhì)素受體-4(Melanocortortion-4 receptor, MC4R)是黑素皮質(zhì)素受體家族的5種亞型之一,是下丘腦分泌的一種肽類物質(zhì),為跨膜神經(jīng)受體[1]。MC4R蛋白是Leptin蛋白調(diào)節(jié)采食量和刺激下丘腦神經(jīng)原活性調(diào)控通路的下游物質(zhì),具有介導(dǎo)Leptin蛋白的功能,在人和動(dòng)物體內(nèi)主要參與調(diào)控食欲、體質(zhì)量和能量代謝等生物學(xué)過程。
Vaisse等[2]、Geller等[3]和Young等[4]發(fā)現(xiàn)MC4R基因的移碼突變和錯(cuò)義突變與人的顯性遺傳學(xué)肥胖顯著相關(guān)。靶向缺失MC4R基因的小鼠表現(xiàn)出食欲亢進(jìn)、高胰島素血癥和高血糖癥等肥胖相關(guān)的癥狀[5]。Qiu等[6]發(fā)現(xiàn)雞MC4R基因5′UTR和編碼區(qū)的突變與體質(zhì)量、生長性狀和胴體性狀顯著相關(guān)。Kim等[7-8]報(bào)道,MC4R基因中的錯(cuò)義突變Asp298Asn與豬的背膘厚、生長速度和采食量顯著相關(guān)。因此,MC4R基因是影響人和動(dòng)物生長發(fā)育的重要候選基因之一。
蘇姜豬是以姜曲海豬、楓涇豬、杜洛克為親本,采用繼代選育方法,經(jīng)過6個(gè)世代繼代選育而成的新品種豬[9]。由于豬的遺傳改良已經(jīng)從表型選擇發(fā)展到分子標(biāo)記輔助選擇(Marker-assisted selection, MAS)和全基因組選擇等方法,因此在蘇姜豬持續(xù)選育的過程中,建立蘇姜豬分子育種的分子標(biāo)記重要且必要。基于MC4R基因的功能,本研究對(duì)MC4R基因外顯子的單核苷酸多態(tài)性(Single nucleotide polymorphisms, SNP)進(jìn)行檢測,并對(duì)MC4R基因SNP與7個(gè)生產(chǎn)性狀進(jìn)行關(guān)聯(lián)分析,以期為在蘇姜豬群體中應(yīng)用分子標(biāo)記進(jìn)行輔助選擇奠定基礎(chǔ)。
1 材料與方法
1.1 試驗(yàn)動(dòng)物
試驗(yàn)動(dòng)物為來自江蘇蘇姜種豬有限公司的365頭蘇姜豬,記錄日齡(180±5) d時(shí)的體質(zhì)量(BW)、體長(BL)、體高(BH)、胸圍(CC)、胸寬(CW)、臀寬(HW)和背膘厚(BF)7個(gè)生產(chǎn)性狀的數(shù)據(jù)[9] 。采集豬耳組織,保存于-20 ℃冰箱內(nèi)待用。
1.2 主要試劑及儀器
基因組DNA提取試劑盒(DP304)、2×Taq PCR Mastermix(KT201)和D2000 DNA Marker(MD114)購自天根生化科技(北京)有限公司,溴化乙錠(E808961)購自上海麥克林生化科技有限公司,Biowest西班牙瓊脂糖(111860)購自南京邁克沃德生物科技有限公司,50×TAE 緩沖液(T1060)購自北京索萊寶科技有限公司。
Biodropsis超微量核酸蛋白分析儀(BD-1000,北京五洲東方科技發(fā)展有限公司產(chǎn)品),Veriti 96孔熱循環(huán)儀(4375786,美國賽默飛世爾科技公司產(chǎn)品),電泳儀(DYY-7C,北京六一生物科技有限公司產(chǎn)品),凝膠成像系統(tǒng)(GelDocIt 310,美國UVP公司產(chǎn)品)。
1.3 基因組DNA提取及DNA混合池構(gòu)建
采用血液/組織/細(xì)胞基因組DNA提取試劑盒提取豬耳組織DNA,DNA經(jīng)Biodropsis超微量核酸蛋白分析儀和瓊脂糖凝膠電泳檢驗(yàn)合格后稀釋至50 ng/μl,-20 ℃冰箱保存?zhèn)溆?。每頭豬取1 μl DNA構(gòu)建DNA混合池,共構(gòu)建10個(gè)DNA混合池。
1.4 引物設(shè)計(jì)及合成
根據(jù)EnsemblASIA(http://asia.ensembl.org/index.html)中豬MC4R基因序列(登錄號(hào):ENSSSCG00000051798),利用Primer Premier 5.0軟件設(shè)計(jì)3對(duì)引物擴(kuò)增MC4R基因外顯子,引物序列見表1。引物由生工生物工程(上海)股份有限公司合成。
1.5 PCR擴(kuò)增
25.0 μl PCR反應(yīng)體系包括2×Taq PCR Mastermix 12.5 μl,上游引物(F)1.0 μl,下游引物(R)1.0 μl,模板DNA 1.5 μl,ddH2O水9.0 μl。PCR反應(yīng)程序:95 ℃預(yù)變性5 min;95 ℃變性30 s,退火30 s(退火溫度見表1),72 ℃延伸1 min,35個(gè)循環(huán),72 ℃延伸10 min,4 ℃保存。
1.6 MC4R基因多態(tài)性檢測
將PCR產(chǎn)物送至生工生物工程(上海)股份有限公司進(jìn)行Sanger測序,測序結(jié)果用DNASTAR.Lasergene.v7.1軟件和Chromas.v2.22軟件進(jìn)行分析。
1.7 統(tǒng)計(jì)分析
根據(jù)測序結(jié)果,使用Microsoft Excel計(jì)算蘇姜豬MC4R基因的基因型頻率及等位基因頻率。使用χ2檢驗(yàn)進(jìn)行哈迪-溫伯格平衡(Hardy-Weinberg equilibrium, HWE)檢驗(yàn)。使用PopGene 32分析蘇姜豬群體MC4R基因純合度、雜合度、有效等位基因數(shù)和多態(tài)信息含量等遺傳多樣性參數(shù)[10]。使用SPSS 19.0的單因素方差分析(One-Way ANOVA)統(tǒng)計(jì)蘇姜豬群體中MC4R基因不同基因型與生產(chǎn)性狀的關(guān)聯(lián)性[11-12],結(jié)果用平均值±標(biāo)準(zhǔn)差表示,使用鄧肯氏新復(fù)極差法(Duncans)進(jìn)行各組平均值之間的差異顯著性分析,當(dāng)P<0.05時(shí)表示差異顯著。利用Haploview軟件(https://www.broadinstitute.org/haploview/haploview)對(duì)MC4R基因SNP位點(diǎn)進(jìn)行連鎖不平衡性分析。
2 結(jié)果與分析
2.1 MC4R基因的PCR擴(kuò)增結(jié)果
PCR擴(kuò)增產(chǎn)物經(jīng)1.5%瓊脂糖凝膠電泳檢測,電泳結(jié)果見圖1,PCR擴(kuò)增產(chǎn)物條帶單一,產(chǎn)物大小與目的片段大小相符。
2.2 MC4R基因的多態(tài)性SNP位點(diǎn)
MC4R基因外顯子區(qū)域檢測到6個(gè)SNP位點(diǎn),分別為rs81219178 G>A(Asp298Asn)、rs325999553 G>A、rs344775772 T>A、rs334536177 A>C、rs335628164 C>T和rs81221063 A>T,其中rs81219178 G>A(Asp298Asn) 是錯(cuò)義突變,其余5個(gè)SNP是3′UTR突變(表2)。
2.3 MC4R基因SNP的遺傳多態(tài)性分析
由表3可知,SNP位點(diǎn)rs81219178 G>A(Asp298Asn)有3種基因型,分別為GG、GA和AA,其中GG為優(yōu)勢基因型,有2種等位基因,分別為G和A,其中G為優(yōu)勢等位基因;rs325999553 G>A有3種基因型,分別為GG、GA和AA,其中GG為優(yōu)勢基因型,有2種等位基因,分別為G和A,其中G為優(yōu)勢等位基因;rs344775772 T>A位點(diǎn)有3種基因型,分別為TT、TA和AA,其中TT為優(yōu)勢基因型,有2種等位基因,分別為T和A ,其中T為優(yōu)勢等位基因;rs334536177 A>C位點(diǎn)有3種基因型,分別為AA、AC和CC,其中AA為優(yōu)勢基因型,有2種等位基因,分別為A和C, 其中A為優(yōu)勢等位基因;rs335628164 C>T位點(diǎn)有3種基因型,分別為CC、CT和TT,其中CC為優(yōu)勢基因型,有2種等位基因,分別為C和T,其中C為優(yōu)勢等位基因;rs81221063 A>T位點(diǎn)有3種基因型,分別為AA、AT和TT,其中AA為優(yōu)勢基因型,有2種等位基因,分別為A和T,其中A為優(yōu)勢等位基因。經(jīng)χ2檢驗(yàn),6個(gè)SNP在蘇姜豬群體中符合Hardy-Weinberg平衡(P>0.05)。
由表4可知,rs81219178 G>A在6個(gè)SNP中純合度最低,雜合度最高,有效等位基因數(shù)最多,多態(tài)性信息含量(PIC)最高;rs325999553 G>A和rs344775772 T>A屬于低度多態(tài)(PIC<0.250),其余4個(gè)位點(diǎn)屬于中度多態(tài)(0.250≤PIC≤0.500)。
2.4 MC4R基因6個(gè)SNP連鎖不平衡分析
圖2的連鎖不平衡分析結(jié)果顯示,rs325999553 G>A和rs344775772 T>A呈現(xiàn)高度連鎖,rs334536177 A>C、rs335628164 C>T和rs81221063 A>T呈現(xiàn)高度連鎖。
2.5 蘇姜豬MC4R基因6個(gè)SNP與生產(chǎn)性狀的關(guān)聯(lián)分析
由表5可知,SNP位點(diǎn)rs81219178 G>A (Asp298Asn)AA和GA基因型個(gè)體胸圍、胸寬顯著高于GG基因型(P<0.05),其余性狀不同基因型之間差異均不顯著(P>0.05);rs325999553 G>A位點(diǎn)GG基因型個(gè)體體質(zhì)量、體高、胸圍顯著高于AA基因型(P<0.05),GG基因型體高顯著高于GA基因型(P<0.05),其余性狀不同基因型之間差異均不顯著(P>0.05);rs344775772 T>A位點(diǎn)TT基因型個(gè)體體質(zhì)量、體高、胸圍顯著高于AA基因型(P<0.05),TT基因型個(gè)體體高顯著高于TA基因型(P<0.05),其余性狀不同基因型之間差異均不顯著(P>0.05);rs334536177 A>C位點(diǎn)AA基因型和個(gè)體體質(zhì)量、體高、胸圍顯著高于CC基因型(P<0.05),AC基因型個(gè)體體高、胸圍顯著高于CC基因型(P<0.05),其余性狀不同基因型之間差異均不顯著(P>0.05);rs335628164 C>T位點(diǎn)CC基因型個(gè)體體質(zhì)量、體高、胸圍顯著高于TT基因型(P<0.05),CT基因型個(gè)體體高、胸圍顯著高于TT基因型(P<0.05),其余性狀不同基因型之間差異均不顯著(P>0.05);rs81221063 A>T位點(diǎn)AA基因型個(gè)體體質(zhì)量、體高、胸圍顯著高于TT基因型(P<0.05),AT基因型個(gè)體體高、胸圍顯著高于TT基因型(P<0.05),其余性狀不同基因型之間差異均不顯著(P>0.05)。
3 討論
豬MC4R基因位于1號(hào)染色體,含1個(gè)外顯子和2個(gè)內(nèi)含子,編碼332個(gè)氨基酸,被認(rèn)為是影響豬生長發(fā)育的候選基因,具有較高的生產(chǎn)應(yīng)用價(jià)值[8,13-15]。相同基因或分子標(biāo)記在不同品種(品系)的豬群體中對(duì)表型的影響不一致。本研究以蘇姜豬為研究對(duì)象,驗(yàn)證豬MC4R基因?qū)ζ渖a(chǎn)性狀的影響。作為繼限制性片段長度多態(tài)性(Restriction fragment length polymorphism, RFLP)和微衛(wèi)星標(biāo)記后的新一代分子標(biāo)記,單核苷酸多態(tài)性已廣泛應(yīng)用于豬的育種領(lǐng)域,但在篩選開發(fā)SNP時(shí)樣本量大會(huì)導(dǎo)致工作量大、成本高。作為隨基因診斷技術(shù)的發(fā)展而建立起來的一種快速高效的檢測技術(shù),DNA混合池適用于基因型分型、突變檢測、連鎖分析、基因定位等[16-17]。研究結(jié)果表明,大部分功能變異都潛藏在外顯子中[18-20]。因此,本研究采用DNA混合池和Sanger測序法對(duì)蘇姜豬MC4R基因外顯子區(qū)域SNP進(jìn)行檢測,共發(fā)現(xiàn)6個(gè)SNP,包括1個(gè)錯(cuò)義突變和5個(gè)3′UTR突變。MC4R基因的6個(gè)SNP均符合Hardy-Weinberg平衡(P>0.05),表明蘇姜豬群體未發(fā)生MC4R基因的遺傳漂變,群體未經(jīng)過MC4R基因輔助選擇。6個(gè)SNP的純合度高于雜合度,表明蘇姜豬群體MC4R基因的6個(gè)SNP遺傳均勻性較高。6個(gè)SNP中有4個(gè)SNP(rs81219178 G>A、rs334536177 A>C、rs335628164 C>T、rs81221063 A>T)屬于中度多態(tài)(0.250≤PIC≤0.500),表明該4個(gè)位點(diǎn)具有較大的選育潛力。
錯(cuò)義突變位點(diǎn)rs81219178 G>A(Asp298Asn) 已在多項(xiàng)研究中被報(bào)道與豬的生長發(fā)育相關(guān)。Kim等[8]研究發(fā)現(xiàn)西方品種豬中MC4R基因Asp298Asn位點(diǎn)AA基因型個(gè)體與GG基因型個(gè)體相比有更厚的背膘和更快的生長速度。楊曉慧等[21]在333頭商品豬群體中發(fā)現(xiàn)AA基因型個(gè)體的背膘厚顯著高于AG和GG基因型個(gè)體。閆德超[22]的研究結(jié)果表明,在美系大白豬和法系大白豬群體中,AA基因型個(gè)體的背膘厚顯著高于AG和GG型個(gè)體。熊琪等[23]在大白豬×清平豬F2黑色群體中發(fā)現(xiàn),AA基因型個(gè)體的背膘厚顯著高于AG和GG基因型個(gè)體。趙聰哲等[12]在分析MC4R基因多態(tài)性與生長性狀的關(guān)聯(lián)性時(shí)發(fā)現(xiàn),AA型大白豬6月齡的體質(zhì)量顯著高于GG型。本研究中,rs81219178 G>A(Asp298Asn) 突變位點(diǎn)對(duì)蘇姜豬生產(chǎn)性狀的影響與上述研究結(jié)果相符,蘇姜豬群體中AA基因型個(gè)體與AG和GG基因型個(gè)體相比背膘更厚、體質(zhì)量更大,但差異未達(dá)到顯著水平,其原因可能是試驗(yàn)群體中AA基因型個(gè)體的數(shù)量較少,下一步試驗(yàn)應(yīng)擴(kuò)大樣本量進(jìn)行驗(yàn)證分析。另有多項(xiàng)報(bào)道顯示,G等位基因和背膘厚顯著相關(guān)[8, 24],也有多項(xiàng)研究結(jié)果表明,MC4R基因rs81219178 G>A (Asp298Asn) 突變位點(diǎn)對(duì)豬的背膘厚和生長速度無顯著影響[25-26]。因此,MC4R基因rs81219178 G>A (Asp298Asn)突變位點(diǎn)對(duì)不同品種豬的生長發(fā)育影響不同,該突變不是影響豬生產(chǎn)性狀的因果突變,但可能與因果突變連鎖。
本研究中的6個(gè)SNP中有5個(gè)3′UTR突變。3′UTR參與轉(zhuǎn)錄后基因的表達(dá)調(diào)控,影響mRNA穩(wěn)定性、亞細(xì)胞定位和蛋白翻譯效率等生物學(xué)過程[27-29]。大量研究結(jié)果表明,3′UTR與畜禽生產(chǎn)性能密切相關(guān)。Cui等[30]在雞HMGR基因3′UTR發(fā)現(xiàn)的SNP對(duì)血清和肌肉中膽固醇含量有顯著影響。Hou等[31]發(fā)現(xiàn)山羊MTHFR基因3′UTR的2個(gè)miR-SNP突變與產(chǎn)奶性狀相關(guān)。Li等[32]在牛HMGB1基因3′UTR鑒定到與奶牛乳房炎相關(guān)的分子標(biāo)記。Zang等[33]在豬DGAT2基因3′UTR發(fā)現(xiàn)的多態(tài)位點(diǎn)與豬背膘厚和瘦肉率顯著相關(guān)。Zhang等[34]的研究結(jié)果表明,miRNA-29c通過靶向YY1基因參與豬肌肉發(fā)育。本研究中5個(gè)3′UTR突變對(duì)體質(zhì)量、體高和胸圍有顯著影響。3′UTR是miRNA的結(jié)合區(qū)域,miRNA是內(nèi)源性的具有調(diào)控功能的非編碼RNA,介導(dǎo)mRNA的降解和阻遏翻譯[35],下一步試驗(yàn)應(yīng)進(jìn)行5個(gè)3′UTR突變的靶向miRNA研究。
SNP參考文獻(xiàn):
[1] YEO G S, FAROOQI I S, CHALLIS B G, et al. The role of melanocortin signalling in the control of body weight: evidence from human and murine genetic models [J]. QJM: Monthly Journal of the Association of Physicians, 2000, 93(1): 7-14.
[2] VAISSE C, CLEMENT K, DURAND E, et al. Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity [J]. The Journal of Clinical Investigation, 2000, 106(2): 253-262.
[3] GELLER F, REICHWALD K, DEMPFLE A, et al. Melanocortin-4 receptor gene variant I103 is negatively associated with obesity [J]. The American Journal of Human Genetics, 2004, 74(3): 572-581.
[4] YOUNG E H, WAREHAM N J, FAROOQI S, et al. The V103I polymorphism of the MC4R gene and obesity: population based studies and meta-analysis of 29 563 individuals [J]. International Journal of Obesity, 2007, 31(9): 1437-1441.
[5] HUSZAR D, LYNCH C A, FAIRCHILD-HUNTRESS V, et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice [J]. Cell, 1997, 88(1): 131-141.
[6] QIU X, LI N, DENG X, et al. The single nucleotide polymorphisms of chicken melanocortin-4 receptor (MC4R) gene and their association analysis with carcass traits [J]. Science in China(Series C:Life Sciences), 2006, 49(6): 560-566.
[7] KIM K S, LARSEN N J, ROTHSCHILD M F. Rapid communication: linkage and physical mapping of the porcine melanocortin-4 receptor (MC4R) gene [J]. Journal of Animal Science, 2000, 78(3): 791-792.
[8] KIM K S, LARSEN N, SHORT T, et al. A missense variant of the porcine melanocortin-4 receptor (MC4R) gene is associated with fatness, growth, and feed intake traits [J]. Mammalian Genome, 2000, 11(2): 131-135.
[9] XU P, NI L, TAO Y, et al. Genome-wide association study for growth and fatness traits in Chinese Sujiang pigs [J]. Animal Genetics, 2020, 51(2): 314-318.
[10]陳露露,王 會(huì),柴志欣,等. 牦牛MDHⅠ基因多態(tài)性及其與生長性狀的關(guān)聯(lián)分析 [J]. 中國畜牧獸醫(yī), 2019, 46(9): 2658-2664.
[11]易恒潔,李 輝,趙忠海,等. 高坡豬肌肉生長抑制素基因多態(tài)性及其與肉質(zhì)性狀的相關(guān)性分析 [J]. 中國畜牧獸醫(yī), 2017, 44(4): 1102-1107.
[12]趙聰哲,羅曉彤,李兆華,等. 大白豬MC4R、CDC16基因多態(tài)性及其與生長性狀的關(guān)聯(lián)分析 [J]. 中國畜牧獸醫(yī), 2019, 46(3): 792-799.
[13]HOUSTON R D, CAMERON N D, RANCE K A. A melanocortin-4 receptor (MC4R) polymorphism is associated with performance traits in divergently selected Large White pig populations [J]. Animal Genetics, 2004, 35(5): 386-390.
[14]SWITONSKI M, MANKOWSKA M, SALAMON S. Family of melanocortin receptor (MCR) genes in mammals-mutations, polymorphisms and phenotypic effects [J]. Journal of Applied Genetics, 2013, 54(4): 461-472.
[15]JOKUBKA R, MAAK S, KERZIENE S, et al. Association of a melanocortin 4 receptor (MC4R) polymorphism with performance traits in Lithuanian White pigs [J]. Journal of Animal Breeding and Genetics, 2006, 123(1): 17-22.
[16]DARVASI A, SOLLER M. Selective DNA pooling for determination of linkage between a molecular marker and a quantitative trait locus [J]. Genetics, 1994, 138(4): 1365-1373.
[17]童大躍. 混合DNA樣品池?cái)U(kuò)增法及其應(yīng)用 [J]. 生物技術(shù)通訊, 1999(3): 213-216.
[18]BOTSTEIN D, RISCH N. Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease [J]. Nature Genetics, 2003, 33(S3): 228-237.
[19]WANG J L, YANG X, XIA K, et al. TGM6 identified as a novel causative gene of spinocerebellar ataxias using exome sequencing [J]. Brain, 2010, 133(12): 3510-3518.
[20]LIU Y, GAO M, LYU Y M, et al. Confirmation by exome sequencing of the pathogenic role of NCSTN mutations in acne inversa (hidradenitis suppurativa) [J]. Journal of Investigative Dermatology, 2011, 131(7): 1570-1572.
[21]楊曉慧,劉 源,唐 輝,等. 豬MC4R基因Asp298Asn位點(diǎn)的多態(tài)性及其與商品豬背膘厚的關(guān)系 [J]. 農(nóng)業(yè)生物技術(shù)學(xué)報(bào), 2008, 16(3): 407-411.
[22]閆德超. 大白豬MC4R、IGF2和VRTN基因的多態(tài)性及其與生產(chǎn)性狀的關(guān)聯(lián)分析 [D]. 武漢:華中農(nóng)業(yè)大學(xué), 2017.
[23]熊 琪,陳文娟,彭 健,等. MC4R和NR6A1基因與大白豬×清平豬F2黑色群體的經(jīng)濟(jì)性狀關(guān)聯(lián)分析 [J]. 湖北農(nóng)業(yè)科學(xué), 2019, 58(5): 90-93.
[24]李星潤,蘭國湘,王孝義,等. 豬MC4R基因Asp298Asn位點(diǎn)多態(tài)性及其與生長性狀的關(guān)聯(lián) [J]. 畜牧與獸醫(yī), 2016, 48(2): 23-27.
[25]PARK H B, CARLBORG , MARKLUND S, et al. Melanocortin-4 receptor (MC4R) genotypes have no major effect on fatness in a Large White×Wild Boar intercross [J]. Animal Genetics, 2015, 33(2): 155-157.
[26]STACHOWIAK M, SZYDLOWSKI M, OBARZANEK-FOJT M, et al. An effect of a missense mutation in the porcine melanocortin-4 receptor (MC4R) gene on production traits in Polish pig breeds is doubtful [J]. Animal Genetics, 2010, 37(1): 55-57.
[27]VOGEL C, ABREU RDE S, KO D, et al. Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line [J]. Molecular Systems Biology, 2010, 6: 400.
[28]QUATTRONE A, DASSI E. Introduction to bioinformatics resources for post-transcriptional regulation of gene expression [J]. Methods in Molecular Biology, 2016, 1358: 3-28.
[29]MIGNONE F, GISSI C, LIUNI S, et al. Untranslated regions of mRNAs [J]. Genome Biology, 2002, 3(3).doi:10.1186/gb-2002-3-3-review50004.
[30]CUI H X, YANG S Y, WANG H Y, et al. The effect of a mutation in the 3-UTR region of the HMGCR gene on cholesterol in Beijing-you chickens [J]. Animal Biotechnology, 2010, 21(4): 241-251.
[31]HOU J X, AN X P, SONG Y X, et al. Two mutations in the caprine MTHFR 3′UTR regulated by MicroRNAs are associated with milk production traits [J]. PLoS One, 2015, 10(7): e0133015.
[32]LI L M, HUANG J M, ZHANG X J, et al. One SNP in the 3′-UTR of HMGB1 gene affects the binding of target bta-miR-223 and is involved in mastitis in dairy cattle [J]. Immunogenetics, 2012, 64(11): 817-824.
[33]ZANG L, WANG Y D, SUN B X, et al. Identification of a 13 bp indel polymorphism in the 3′-UTR of DGAT2 gene associated with backfat thickness and lean percentage in pigs [J]. Gene, 2016, 576(2): 729-733.
[34]ZHANG W? Y, WEI W Y, ZHAO Y Y, et al. The microRNA, miR-29c, participates in muscle development through targeting the YY1 gene and is associated with postmortem muscle pH in pigs [J]. Frontiers of Agricultural Science and Engineering, 2015, 2(4): 311-317.
[35]DJURANOVIC S, NAHVI A, GREEN R. miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay [J]. Science, 2012, 336(6078): 237-240.
(責(zé)任編輯:陳海霞)
收稿日期:2021-01-08
基金項(xiàng)目:國家自然科學(xué)基金項(xiàng)目(31702089);江蘇省第五期“333高層次人才培養(yǎng)工程”項(xiàng)目;江蘇高校“青藍(lán)工程”項(xiàng)目;江蘇省大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃項(xiàng)目(202012806026Y)
作者簡介:周春寶(1973-),男,江蘇高郵人,博士,教授,主要從事動(dòng)物遺傳育種與繁殖研究。(E-mail)zhou_tz@163.com。劉林雨為共同第一作者。
通訊作者:徐 盼,(E-mail)panxu_nj@hotmail.com