王同建 付德龍 張美榮 陳晉市 張飛 王一川
摘 ? 要:為驗(yàn)證繼動(dòng)閥的可靠性(輸出壓力12.0 MPa,響應(yīng)時(shí)間0.2 s),并研究繼動(dòng)閥動(dòng)態(tài)特性對(duì)全液壓制動(dòng)系統(tǒng)制動(dòng)性能的影響,以某型號(hào)越野車(chē)開(kāi)發(fā)的全液壓制動(dòng)系統(tǒng)為研究對(duì)象,建立了繼動(dòng)閥理論分析模型,運(yùn)用AMESim軟件建立了全液壓制動(dòng)系統(tǒng)仿真模型,分析了閥芯摩擦力、節(jié)流口的初始遮蓋量、復(fù)位彈簧初始?jí)嚎s量和彈簧剛度對(duì)制動(dòng)性能的影響,并通過(guò)實(shí)驗(yàn)驗(yàn)證了仿真模型的準(zhǔn)確性. 研究結(jié)果表明:繼動(dòng)閥應(yīng)用于液壓制動(dòng)系統(tǒng)可以滿(mǎn)足制動(dòng)要求(輸出壓力12.0 MPa,響應(yīng)時(shí)間0.2 s);閥芯摩擦力過(guò)大會(huì)使繼動(dòng)閥的開(kāi)啟壓力增大,導(dǎo)致繼動(dòng)閥的比例滯環(huán)增大,影響閥芯的復(fù)位性能;繼動(dòng)閥節(jié)流口的初始遮蓋量越大,打開(kāi)節(jié)流口克服的摩擦力越大,制動(dòng)系統(tǒng)的響應(yīng)時(shí)間越長(zhǎng);通過(guò)調(diào)節(jié)繼動(dòng)閥復(fù)位彈簧初始?jí)嚎s量和彈簧剛度可實(shí)現(xiàn)制動(dòng)壓力的微調(diào)節(jié). 理論模型和仿真模型為全液壓制動(dòng)系統(tǒng)的進(jìn)一步優(yōu)化提供了可靠依據(jù).
關(guān)鍵詞:液壓制動(dòng);繼動(dòng)閥;AMESim仿真;動(dòng)態(tài)特性
中圖分類(lèi)號(hào):TH137.5 ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)志碼:A
Study on Dynamic Characteristics of
Relay Valve in Hydraulic Brake System
WANG Tongjian1,F(xiàn)U Delong1,ZHANG Meirong3,CHEN Jinshi1,2,ZHANG Fei3,WANG Yichuan1
(1. School of Mechanical and Aerospace Engineeringr,Jilin University,Changchun 130025,China;
2. State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130025,China;
3. Inner Mongolia First Machinery Group Co.,Ltd,Baotou 014000,China)
Abstract:To test and verify the reliability of relay valve (with output pressure of 12.0 MPa and response time of 0.2 s), and to study the influence of dynamic characteristics of the relay valve on braking performance of the full hydraulic braking system, taking a type off-road vehicles fully hydraulic braking system as the research object, a theoretical analysis model of the relay valve was established. A simulation model of the full hydraulic brake system was established by applying the software AMESim, and the influence of the spool friction, initial cover, return spring the initial amount of compression and spring stiffness on braking performance was analyzed. The accuracy of the simulation model was verified by experimental results. The comparison shows that the relay valve applied to the hydraulic braking system can meet the braking requirements(output pressure of 12.0 MPa and response time of 0.2s). Excessive friction of the spool increases the opening pressure of the relay valve, which leads to the increase of proportional hysteresis of the relay valve and affects the reset performance of the spool. The greater the initial cover of the relay valve orifice is, the greater the friction to be overcome by opening the orifice becomes, and the longer the response time of the braking system is required. By adjusting the initial compression of the reset spring of the relay valve and the stiffness of the spring, the fine tuning of the brake pressure can be realized. The theoretical model and simulation model provide a reliable basis for further optimization of the full hydraulic braking system.
Key words:hydraulic brakes;relay valve;AMESim simulation;dynamic characteristics
全液壓制動(dòng)系統(tǒng)以液壓油作為傳動(dòng)介質(zhì),與氣壓制動(dòng)系統(tǒng)相比具有制動(dòng)力矩大、響應(yīng)時(shí)間短、性能穩(wěn)定、系統(tǒng)結(jié)構(gòu)簡(jiǎn)單、便于實(shí)現(xiàn)電子控制等優(yōu)點(diǎn)[1]. 目前全液壓制動(dòng)系統(tǒng)主要應(yīng)用于工程機(jī)械、農(nóng)業(yè)機(jī)械、礦用車(chē)輛等大型車(chē)輛中,且有替代其他傳統(tǒng)制動(dòng)形式的趨勢(shì)[2].
國(guó)內(nèi)外學(xué)者對(duì)全液壓制動(dòng)系統(tǒng)的研究已經(jīng)進(jìn)行了較長(zhǎng)一段時(shí)間,取得了較為顯著的成果. 韋建龍等為降低礦車(chē)的故障率,實(shí)現(xiàn)行駛速度的自適應(yīng)智能控制,設(shè)計(jì)了智能穩(wěn)速聯(lián)合電-液制動(dòng)系統(tǒng)[3];Huang等人基于摩托車(chē)路面行駛狀況,通過(guò)模擬液壓調(diào)制器的性能,提出了一種全液壓防抱死系統(tǒng)[4];很多學(xué)者借助仿真模型研究了液壓制動(dòng)系統(tǒng)的性能和動(dòng)態(tài)特性,為制動(dòng)系統(tǒng)的進(jìn)一步發(fā)展奠定了良好基礎(chǔ).
Fan等分別建立了車(chē)輛和制動(dòng)器組件的動(dòng)力學(xué)仿真模型,分析車(chē)輛在不同制動(dòng)狀態(tài)下的制動(dòng)性能[5-6];張振東等人基于AMESim、Simulink軟件對(duì)液壓系統(tǒng)的性能、動(dòng)靜態(tài)特性和全液壓制動(dòng)的雙回路制動(dòng)閥、充液特性進(jìn)行了研究[7-10];黃世健等學(xué)者分析了不同參數(shù)制動(dòng)軟管對(duì)制動(dòng)系統(tǒng)性能的影響[11-12]; 一些學(xué)者集中精力于研究液壓制動(dòng)系統(tǒng)的典型故障模式,建立了液壓制動(dòng)系統(tǒng)的故障診斷模型[13-14]; Ho等人分析了靜液壓傳動(dòng)系統(tǒng)的能量利用率,分析了該系統(tǒng)對(duì)能量回收效率的影響[15];Ramakrishnan等人提出了以能源為核心的控制策略,提升了液壓系統(tǒng)的能量再生效率[16]; Antonio等人提出利用啟發(fā)式算法和模型預(yù)測(cè)控制,對(duì)鉸接車(chē)輛的能源再生式液壓制動(dòng)系統(tǒng)的燃油消耗進(jìn)行分析[17]. Wang等人在分析制動(dòng)系統(tǒng)動(dòng)力分布曲線后,提出了理想的減速器-制動(dòng)器制動(dòng)分配策略[18];Chen等人為提升液壓制動(dòng)系統(tǒng)制動(dòng)力分配的準(zhǔn)確性,提出了基于制動(dòng)器壓差限制調(diào)制的協(xié)同再生制動(dòng)控制算法[19].
重載車(chē)輛大型化的發(fā)展趨勢(shì)導(dǎo)致車(chē)輛整車(chē)長(zhǎng)度較長(zhǎng),各軸間距離較大,若直接將液壓腳制動(dòng)閥輸出的壓力油輸送到車(chē)輛各軸制動(dòng)缸產(chǎn)生制動(dòng)力,勢(shì)必會(huì)引起制動(dòng)響應(yīng)變長(zhǎng)及各軸間制動(dòng)不協(xié)調(diào)等問(wèn)題,為行車(chē)安全帶來(lái)隱患. 繼動(dòng)閥在液壓制動(dòng)系統(tǒng)中的應(yīng)用可以有效提高制動(dòng)系統(tǒng)性能[20-21],其動(dòng)態(tài)特性直接影響液壓制動(dòng)系統(tǒng)的制動(dòng)性能. 但目前針對(duì)繼動(dòng)閥動(dòng)態(tài)特性的相關(guān)研究較少,文獻(xiàn)[20]通過(guò)仿真研究了氣壓制動(dòng)系統(tǒng)中繼動(dòng)閥的動(dòng)態(tài)特性,分析了氣動(dòng)繼動(dòng)閥動(dòng)態(tài)特性的影響因素,為液壓繼動(dòng)閥動(dòng)態(tài)特性的研究提供了思路.
本文以車(chē)輛全液壓制動(dòng)系統(tǒng)中的繼動(dòng)閥為研究對(duì)象,基于制動(dòng)系統(tǒng)和繼動(dòng)閥的結(jié)構(gòu)和理論分析,建立繼動(dòng)閥及全液壓制動(dòng)系統(tǒng)仿真模型,對(duì)繼動(dòng)閥的比例特性及不同輸入信號(hào)下的響應(yīng)特性進(jìn)行分析,并通過(guò)臺(tái)架實(shí)驗(yàn)對(duì)繼動(dòng)閥的動(dòng)態(tài)特性進(jìn)行測(cè)試. 采用理論分析、仿真與實(shí)驗(yàn)相結(jié)合的方法,研究了繼動(dòng)閥的參數(shù)對(duì)其性能的影響,為全液壓制動(dòng)系統(tǒng)的性能優(yōu)化提供了可靠的理論依據(jù).
1 ? 制動(dòng)系統(tǒng)及繼動(dòng)閥工作原理
1.1 ? 全液壓制動(dòng)系統(tǒng)的工作原理
圖1為采用繼動(dòng)閥的雙回路全液壓制動(dòng)系統(tǒng). 該制動(dòng)系統(tǒng)中,前橋蓄能器出口連接雙回路腳制動(dòng)閥P1口和前橋繼動(dòng)閥P口;后橋蓄能器出口與雙回路腳制動(dòng)閥P2口和后橋繼動(dòng)閥P口相連;雙回路腳制動(dòng)閥出口A1、A2分別連接前、后橋繼動(dòng)閥的PP口. 制動(dòng)時(shí),雙回路腳制動(dòng)閥出口壓力油被輸送到前、后橋繼動(dòng)閥控制口,作為控制油液控制繼動(dòng)閥動(dòng)作,繼動(dòng)閥P口處的高壓油液得以迅速進(jìn)入制動(dòng)缸,對(duì)車(chē)輛實(shí)施制動(dòng),其輸出壓力大小與控制口壓力為比例關(guān)系. 繼動(dòng)閥安裝在車(chē)橋上,與制動(dòng)缸距離很近,可以有效地縮短制動(dòng)響應(yīng)時(shí)間.
1.2 ? 繼動(dòng)閥的結(jié)構(gòu)及原理
繼動(dòng)閥作為保障全液壓制動(dòng)系統(tǒng)靈敏性的關(guān)鍵元件,結(jié)構(gòu)如圖2所示,其實(shí)質(zhì)為一個(gè)三通減壓閥,工作過(guò)程如下:
1)腳制動(dòng)閥未動(dòng)作時(shí),繼動(dòng)閥控制口沒(méi)有壓力油,閥芯3在復(fù)位彈簧2的作用下處于圖示位置. 此時(shí),繼動(dòng)閥出油口A與回油口T相通,與進(jìn)油口P不通,因此制動(dòng)缸內(nèi)無(wú)壓力.
2)踩下腳制動(dòng)閥踏板時(shí),制動(dòng)系統(tǒng)壓力油經(jīng)腳制動(dòng)閥和管路到達(dá)繼動(dòng)閥控制口,壓力油作用于繼動(dòng)閥閥芯上端面,推動(dòng)閥芯向下運(yùn)動(dòng),閥芯逐漸切斷出油口A與回油口T的連通,連通進(jìn)油口P與出油口A. 同時(shí)出油口處壓力油經(jīng)過(guò)閥芯上的阻尼孔流入閥芯底部,并產(chǎn)生阻止閥芯繼續(xù)向下運(yùn)動(dòng)的反饋力. 隨著閥芯的下移,輸出壓力升高,反饋力不斷增大,直至穩(wěn)態(tài)液動(dòng)力、反饋力和復(fù)位彈簧的合力大于控制壓力在閥芯上端產(chǎn)生的推力,閥芯反向運(yùn)動(dòng),關(guān)閉進(jìn)油口和出油口間的節(jié)流口,此時(shí)閥芯在液壓推力、彈簧力和液壓反饋力共同作用下保持平衡,繼動(dòng)閥出油口油液壓力保持穩(wěn)定.
3)釋放腳制動(dòng)閥踏板時(shí),繼動(dòng)閥控制壓力油經(jīng)腳制動(dòng)閥回油口回油,繼動(dòng)閥閥芯在復(fù)位彈簧的作用下復(fù)位,關(guān)閉進(jìn)油口P與出油口A間的節(jié)流口,連通出油口A與回油口T,實(shí)現(xiàn)制動(dòng)缸內(nèi)壓力油回油,解除制動(dòng).
2 ? 繼動(dòng)閥力學(xué)模型建立
液壓滑閥節(jié)流閥口形式通??梢苑譃槿荛_(kāi)口和非全周開(kāi)口. 傳統(tǒng)滑閥一般采用全周開(kāi)口形式,但非全周開(kāi)口液壓滑閥流量調(diào)節(jié)范圍寬、小流量穩(wěn)定性好、抗阻塞性能好等優(yōu)點(diǎn)使其得到越來(lái)越多的應(yīng)用[22-24].
液壓制動(dòng)系統(tǒng)中繼動(dòng)閥閥芯回油節(jié)流槽形狀為半圓形,如圖3所示. 為了研究繼動(dòng)閥壓力-流量特性,需要計(jì)算閥芯節(jié)流槽通流面積. 從閥芯結(jié)構(gòu)圖可以看出,繼動(dòng)閥節(jié)流閥口在半圓形節(jié)流槽處存在兩個(gè)截面,一個(gè)截面是閥芯部分圓弧曲面徑向投影所得弓形截面 ,另一個(gè)截面為帶有一圓弧邊的軸向平面[22].
繼動(dòng)閥在半圓形節(jié)流槽處的等效通流截面A′為兩截面A1、A2中較小者. 根據(jù)圖4所示半圓形節(jié)流槽尺寸參數(shù),分別計(jì)算閥口開(kāi)口量為x時(shí)截面A1、A2的面積.
繼動(dòng)閥半圓形節(jié)流槽兩截面面積分別為:
式中:R為繼動(dòng)閥閥芯半徑(mm);r為半圓形節(jié)流槽半徑(mm);x為節(jié)流閥口正開(kāi)口量(mm);h為半圓形節(jié)流槽深度(mm);n為節(jié)流槽個(gè)數(shù).
根據(jù)繼動(dòng)閥閥芯實(shí)際尺寸繪制兩截面面積隨正開(kāi)口量變化曲線,如圖5所示. 從圖中可以看出,在開(kāi)口量2 mm范圍內(nèi),截面A1面積小于截面A2面積. 因此,繼動(dòng)閥節(jié)流閥口在半圓形節(jié)流槽處的有效通流截面為截面A1 .
式中:m為繼動(dòng)閥閥芯質(zhì)量(kg);x為閥芯位移(m);C為阻尼系數(shù)(N/(m·s-1));k為復(fù)位彈簧剛度(N/m);l0為復(fù)位彈簧初始?jí)嚎s量(m);Cd為流量系數(shù),無(wú)因次;Cv為流速系數(shù),無(wú)因次;W為閥口面積梯度(m);Δx為節(jié)流口開(kāi)口量(m);pp為繼動(dòng)閥進(jìn)口壓力(Pa);pA為繼動(dòng)閥出口壓力(Pa);ppp為繼動(dòng)閥控制壓力(Pa);As1為閥芯上端面面積(m2);As2為閥芯下端面面積(m2).
可以看出l0、W、Δx、ppp是影響系統(tǒng)輸出的因素,但是ppp是由腳踏閥輸出口壓力決定的,因此繼動(dòng)閥閥芯摩擦力、初始遮蓋量、復(fù)位彈簧剛度及復(fù)位彈簧初始?jí)嚎s量是影響系統(tǒng)輸出的關(guān)鍵因素.
3 ? AMESim仿真分析
3.1 ? AMESim仿真模型建立
在系統(tǒng)或元件的動(dòng)態(tài)特性研究方面,通常首先對(duì)研究對(duì)象建模,然后依據(jù)傳遞函數(shù)在Matlab/Simulink中建立仿真模型,最后對(duì)系統(tǒng)或元件的動(dòng)態(tài)特性進(jìn)行仿真分析. 但繼動(dòng)閥一方面由于結(jié)構(gòu)復(fù)雜,參數(shù)過(guò)多,相關(guān)物理量難以精確表達(dá);另一方面繼動(dòng)閥的壓力-流量特性存在非線性. 因此用線性簡(jiǎn)化的傳遞函數(shù)在Simulink中分析繼動(dòng)閥的動(dòng)態(tài)特性往往計(jì)算速度緩慢且不夠精確[25]. AMESim以其強(qiáng)大的液壓元件建模和液壓系統(tǒng)分析能力大大提高了液壓元件仿真的精確性. 根據(jù)繼動(dòng)閥的結(jié)構(gòu)及工作原理,在AMESim中搭建其HCD模型并建立其仿真模型[26-27],如圖6所示. 根據(jù)繼動(dòng)閥實(shí)物結(jié)構(gòu)參數(shù)和制動(dòng)系統(tǒng)其它元件參數(shù)設(shè)置仿真模型各子模型參數(shù).
3.2 ? 仿真分析
3.2.1 ? 比例特性仿真
繼動(dòng)閥仿真模型的輸入量為線性變化的控制壓力,其變化規(guī)律如圖7所示. 圖8所示仿真結(jié)果為繼動(dòng)閥出口壓力隨繼動(dòng)閥控制壓力變化規(guī)律. 從仿真曲線圖可以看出,繼動(dòng)閥控制壓力由0 MPa升高到12.5 MPa過(guò)程中,當(dāng)控制壓力低于0.9 MPa,由于控制壓力所產(chǎn)生的推力,不足以克服復(fù)位彈簧力和閥芯運(yùn)動(dòng)摩擦力推動(dòng)閥芯打開(kāi)節(jié)流閥口,此階段出口壓力幾乎為零;隨著控制壓力繼續(xù)增大,閥芯在合力作用下逐漸打開(kāi)節(jié)流閥口,出口壓力隨控制壓力的升高成比例增大. 在控制壓力由12.5 MPa降至0 MPa過(guò)程中,繼動(dòng)閥出口壓力隨控制壓力減小而降低. 因此,繼動(dòng)閥出口壓力與控制壓力成比例,又由于繼動(dòng)閥控制壓力與制動(dòng)踏板角度成比例,所以繼動(dòng)閥的比例特性保證了車(chē)輛慢速制動(dòng)時(shí),駕駛員可以通過(guò)操縱制動(dòng)踏板轉(zhuǎn)動(dòng)特定角度獲得理想制動(dòng)效果.
3.2.2 ? 階躍響應(yīng)特性仿真
在繼動(dòng)閥控制口輸入壓力階躍信號(hào),仿真結(jié)果如圖9所示,0 s時(shí)刻繼動(dòng)閥先導(dǎo)壓力大小由0 MPa變?yōu)?2.5 MPa,繼動(dòng)閥出口壓力隨時(shí)間由0 MPa上升并穩(wěn)定至12.35 MPa. 結(jié)合圖中曲線分析可知,先導(dǎo)壓力輸入后0.005 s內(nèi),繼動(dòng)閥閥芯在先導(dǎo)壓力產(chǎn)生的推力作用下,克服彈簧力和摩擦力打開(kāi)繼動(dòng)閥出口節(jié)流口;當(dāng)繼動(dòng)閥出口壓力對(duì)閥芯的反饋力與彈簧力之和等于先導(dǎo)壓力對(duì)閥芯的推力時(shí),閥芯關(guān)閉出口節(jié)流口,繼動(dòng)閥出口壓力保持12.35 MPa不變. 繼動(dòng)閥在階躍信號(hào)輸入條件下,其出口壓力響應(yīng)時(shí)間為0.011 5 s,最大超調(diào)量為3.3%,輸出壓力無(wú)振蕩.
4 ? 實(shí)驗(yàn)及結(jié)果分析
為了能夠節(jié)約成本,減小實(shí)驗(yàn)場(chǎng)地,采集數(shù)據(jù)便捷并驗(yàn)證所搭建繼動(dòng)閥仿真模型的正確性;因此采用臺(tái)架實(shí)驗(yàn)法進(jìn)行兩種全液壓制動(dòng)狀態(tài)下的實(shí)驗(yàn)研究,如圖10所示,搭建滿(mǎn)足管路條件的實(shí)驗(yàn)臺(tái)架,所設(shè)測(cè)點(diǎn)分別為:1-繼動(dòng)閥入口測(cè)試點(diǎn),2-梭閥出口測(cè)試點(diǎn),3-繼動(dòng)閥出口測(cè)試點(diǎn),4-電液比例閥出口測(cè)試點(diǎn);5-腳踏閥入口測(cè)試點(diǎn),6-腳踏閥出口測(cè)試點(diǎn),7-蓄能器出口測(cè)試點(diǎn);實(shí)驗(yàn)時(shí),保證與仿真模型一致的初始條件:蓄能器充氣壓力為10 MPa,充液壓力為19 MPa.
4.1 ? 比例特性實(shí)驗(yàn)
在1 s內(nèi)緩慢踩下制動(dòng)踏板,實(shí)驗(yàn)結(jié)果如圖11所示,從中可以看出繼動(dòng)閥出口壓力與控制壓力成正比關(guān)系. 當(dāng)繼動(dòng)閥控制壓力不足以克服繼動(dòng)閥復(fù)位彈簧和摩擦力時(shí),輸出壓力為零;隨著控制口壓力的繼續(xù)增大,繼動(dòng)閥出口壓力成比例地升高;當(dāng)控制壓力因踏板復(fù)位而降低時(shí),繼動(dòng)閥出口壓力隨控制壓力成比例的降低,實(shí)驗(yàn)結(jié)果與仿真分析一致.
4.2 ? 階躍響應(yīng)特性實(shí)驗(yàn)
瞬間踩下制動(dòng)踏板,實(shí)驗(yàn)結(jié)果如圖12所示,0.06 s到0.191 s繼動(dòng)閥控制壓力由0 MPa上升至穩(wěn)態(tài)值11.8 MPa,0.092 s到0.189 s繼動(dòng)閥出口壓力由0 MPa上升至穩(wěn)態(tài)值11.55 MPa. 繼動(dòng)閥在緊急制動(dòng)工況下的響應(yīng)時(shí)間為0.083 s. 因此,將繼動(dòng)閥應(yīng)用于液壓制動(dòng)系統(tǒng),制動(dòng)響應(yīng)迅速,可以滿(mǎn)足制動(dòng)系統(tǒng)快速性的要求(≤0.2 s).
通過(guò)仿真與試驗(yàn)對(duì)比,結(jié)果如表1所示,在斜坡信號(hào)和階躍信號(hào)的輸入下,繼動(dòng)閥輸出壓力的比例特性和變化趨勢(shì)基本相同. 響應(yīng)時(shí)間的誤差主要是由于臺(tái)架試驗(yàn)有一定的管路損失,同時(shí)試驗(yàn)臺(tái)架的輸入信號(hào)為人為控制,難以達(dá)到仿真輸入的平穩(wěn)性和準(zhǔn)確性,仿真與試驗(yàn)的結(jié)果在數(shù)值和壓力上升階段的細(xì)微差異. 因此,仿真模型較好的復(fù)現(xiàn)了斜 坡和階躍信號(hào)輸入下,繼動(dòng)閥的輸出特性,仿真模型具有較高的準(zhǔn)確性.
5 ? 繼動(dòng)閥關(guān)鍵參數(shù)對(duì)性能影響分析
5.1 ? 摩擦力對(duì)繼動(dòng)閥滯環(huán)特性的影響
運(yùn)用圖6的繼動(dòng)閥仿真模型,改變繼動(dòng)閥閥芯的摩擦力分別為5 N、45 N,其他條件不變進(jìn)行仿真分析,其結(jié)果如圖13所示,改變閥芯摩擦力對(duì)繼動(dòng)閥滯環(huán)范圍的影響并不明顯;且隨著摩擦力增大,繼動(dòng)閥的開(kāi)啟壓力增大,滯環(huán)范圍會(huì)有小范圍增大.
5.2 ? 復(fù)位彈簧參數(shù)對(duì)繼動(dòng)閥特性的影響
根據(jù)對(duì)繼動(dòng)閥閥芯受力分析知,在繼動(dòng)閥控制壓力一定時(shí),復(fù)位彈簧剛度和初始彈簧力決定繼動(dòng)閥出口壓力. 分別改變復(fù)位彈簧剛度和初始彈簧力進(jìn)行仿真,其仿真結(jié)果如圖14所示,結(jié)果對(duì)比見(jiàn)表2,表3. 可以看出,隨著復(fù)位彈簧剛度、初始彈簧力的減小,輸出制動(dòng)力越大;可以通過(guò)調(diào)節(jié)繼動(dòng)閥復(fù)位彈簧的剛度和初始?jí)嚎s量來(lái)調(diào)節(jié)制動(dòng)壓力大小.
5.3 ? 出口初始遮蓋量對(duì)繼動(dòng)閥特性的影響
運(yùn)用圖6的繼動(dòng)閥仿真模型,改變繼動(dòng)閥閥芯的正遮蓋量分別為3.5 mm、5.5 mm、7.5 mm,其他條件不變進(jìn)行仿真分析,其結(jié)果如圖15所示,結(jié)果對(duì)比如表4所示,繼動(dòng)閥出口初始遮蓋量的大小影響輸出壓力的響應(yīng)時(shí)間. 正遮蓋量較小時(shí),閥芯克服較小的彈簧力便快速打開(kāi)節(jié)流口,出口壓力建立所需時(shí)間短;相反地,較大的正遮蓋量會(huì)增加輸出壓力達(dá)到穩(wěn)態(tài)值的時(shí)間.
6 ? 結(jié) ? 論
本文通過(guò)對(duì)繼動(dòng)閥的理論分析、仿真分析及實(shí)驗(yàn)驗(yàn)證,分析了繼動(dòng)閥的動(dòng)態(tài)特性對(duì)液壓制動(dòng)系統(tǒng)制動(dòng)性能的影響,及繼動(dòng)閥參數(shù)對(duì)其特性的影響,得出如下主要結(jié)論.
1)結(jié)合液壓制動(dòng)系統(tǒng)分析繼動(dòng)閥的工作原理及其工作過(guò)程,理論分析結(jié)果表明:繼動(dòng)閥的閥芯初始遮蓋量、復(fù)位彈簧剛度、彈簧初始?jí)嚎s量是影響制動(dòng)性能的主要因素;
2)在AMESim中對(duì)繼動(dòng)閥的比例特性和階躍響應(yīng)特性進(jìn)行仿真分析,并進(jìn)行臺(tái)架實(shí)驗(yàn). 實(shí)驗(yàn)結(jié)果表明,繼動(dòng)閥的動(dòng)態(tài)特性滿(mǎn)足制動(dòng)系統(tǒng)的要求;實(shí)驗(yàn)與仿真的對(duì)比驗(yàn)證了繼動(dòng)閥模型的正確性;
3)基于繼動(dòng)閥AMESim仿真模型,分析了繼動(dòng)閥參數(shù)對(duì)其特性的影響. 結(jié)果表明:閥芯所受摩擦力增大,繼動(dòng)閥的開(kāi)啟壓力增大,滯環(huán)范圍會(huì)有小范圍增大;繼動(dòng)閥復(fù)位彈簧初始?jí)嚎s量、彈簧剛度越小輸出制動(dòng)力越大;繼動(dòng)閥節(jié)流口的初始遮蓋量越大,打開(kāi)節(jié)流口克服的摩擦力越大,制動(dòng)系統(tǒng)的響應(yīng)時(shí)間越長(zhǎng).
參考文獻(xiàn)
[1] ? ?ZHAO F,LIN M Y,WANG Z. On hydraulic brake system using bench experiments for off-road vehicles[J]. Advanced Materials Research,2012(588):327—330.
[2] ? ?王展. 全液壓制動(dòng)系統(tǒng)仿真分析與實(shí)驗(yàn)研究[D]. 長(zhǎng)春:吉林大學(xué),2012:1—6
WANG Z. Performance simulation and test of the full hydraulic braking system[D]. Changchun:Jilin University,2012:1—6. (In Chinese)
[3] ? ?韋建龍. 礦用防爆車(chē)輛智能穩(wěn)速制動(dòng)液壓系統(tǒng)設(shè)計(jì)[J]. 液壓與氣動(dòng),2019(11):81—86.
WEI J L. Design of Intelligent Steady-speed Brake Hydraulic System for Explosion-proof Vehicles for Mines[J]. Hydraulic and Pneumatic,2019 (11): 81—86. (In Chinese)
[4] ? ?HUANG C K,SHIH M C. Design of a hydraulic anti-lock braking system(ABS) for a motorcycle[J]. Journal of Mechanical Science and Technology,2010,24(5):1141—1149.
[5] ? ?FAN X B,GAN J. Virtual prototype and field test study on hydraulic brake system performance of mining truck[J]. Proceedings of the Institution of Mechanical Engineers,2019,233(2):236—253.
[6] ? ?MIDGLEY W J B,CEBON D. Control of a hydraulic regenerative braking system for a heavy goods vehicle[J]. Proceedings of the Institution of Mechanical,Engineer,2016,230(10):1338—1350.
[7] ? ?宋慧慧,張振東,石楠楠. 全液壓制動(dòng)系統(tǒng)控制閥變參數(shù)仿真分析[J]. 能源研究與信息,2018,34 (4):237—244.
SONG H H,ZHANG Z D,SHI N N. Simulation analysis of variable parameters of control valves for full hydraulic brake system [J]. Energy Research and Information,2018,34(4):237—244. (In Chinese)
[8] ? ?胡波,張振東,王小燕,等. 全液壓制動(dòng)系統(tǒng)雙回路制動(dòng)閥仿真與實(shí)驗(yàn)研究[J]. 能源研究與信息,2016,32(1):39—44.
HU B,ZHANG Z D,WANG X Y,et al. Simulation and experiment on dual circuit braking valve of full hydraulic brake system [J]. Energy Research and Information,2016,32(1): 39—44. (In Chinese)
[9] ? ?余卓平,韓偉,熊璐,等. 基于Byrnes-Isidori標(biāo)準(zhǔn)型的集成式電子液壓制動(dòng)系統(tǒng)液壓力控制[J]. 機(jī)械工程學(xué)報(bào),2016,52(22):92—100.
YU Z P,HAN W,XIONG L,et al. Hydraulic pressure control of integrated ? ? electronic hydraulic braking system based on Byrnes-Isidori Normalized Form[J]. Journal of Mechanical Engineering,2016,52(22):92—100. (In Chinese)
[10] ?韓偉,熊璐,李彧,等. 基于集成式電子液壓制動(dòng)系統(tǒng)的橫擺穩(wěn)定性控制策略研究[J]. 機(jī)械工程學(xué)報(bào),2017,53(24):161—169.
HAN W,XIONG L,LI Y,et al. Research on yaw stability control strategy based on integrated electronic hydraulic brake system [J]. Journal of Mechanical Engineering,2017,53(24):161—169.(In Chinese)
[11] ?黃世健,周維,陳禎福,等. 汽車(chē)液壓制動(dòng)系統(tǒng)需液量特性研究[J]. 武漢理工大學(xué)學(xué)報(bào)(交通科學(xué)與工程版),2019,43(4):741—745.
HUANG S J,ZHOU W,CHEN Z F,et al. Study on liquid demand characteristics of automobile hydraulic braking system[J]. Journal of Wuhan University of Technology (Transportation science & Engineering),2019,43 (4): 741—745. (In Chinese)
[12] ?ABU A S,ALBATALAN. Effect of hydraulic brake pipe inner diameter on vehicle dynamics[J]. International Journal of Automotive Technology,2015,16(2):231—237.
[13] ?NETO M M,GOES L C S. Use of LMS Amesim model and a bond graph support to predict behavior impacts of typical failures in an aircraft hydraulic brake system[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2018,40(9):1—17.
[14] ?GAJRE M N,JEGADEESHWARAN R,SUGUMARAN V,et al. Vibration based fault diagnosis of automobile hydraulic brake system using fuzzy logic with best first tree rules[J]. International Journal of Vehicle Structures & Amp Systems,2016,8(4):214—218.
[15] ?HO T H,AHN K K. Design and control of a closed-loop hydraulic energy-regenerative system[J]. Automation in Construction,2012(22):444—458.
[16] ?RAMAKRISHNAN R,HIREMATH S S,Singaperumal M.Experimental investigations on regeneration energy and energy management strategy in series hydraulic/electric synergy system[J].International Journal of Green Energy,2017,14(3):253—269.
[17] ?ANTONIO T,ENRICO G,MAURO V,et al. Passenger car active braking system: model and experimental validation(Part I)[J]. Proceedings of the Institution of Mechanical Engineers,2018,232(4):585—594.
[18] ?WANG K Y,TANG J H,LI G Q. Research on coordination control strategy of hydraulic retarder and friction brake of coach[J]. Advanced Materials Research,2014,3593(2099):1009—1012.
[19] ?CHEN L,ZHANG J Z,LI Y T,et al. Hardware-in-the-loopsimulation of pressure-difference-limiting modulation of the hydraulic brake for regenerative braking control of electric vehicles[J]. Proceedings of the Institution of Mechanical Engineers,2014,228(6):649—662.
[20] ?JAMES K. Hydraulic brake control system for off-highwayvehicles.[EB/OL]. [2019-07-01].https://saemobilus.sae.org/content/911834.
[21] ?唐云娟. 礦用自卸車(chē)全液壓制動(dòng)系統(tǒng)方案分析[J].工程機(jī)械,2018,49(4):38—42.
TANG Y J. Analysis of Solutions to FullyHydraulic Brake System for Mining Dumper[J]. Construction Machinery and Equipment,2018,49(4):38—42. (In Chinese)
[22] ?方桂花,毛路遙,魏燕燕,等. 基于AMESim的繼動(dòng)閥動(dòng)態(tài)特性研究[J]. 機(jī)械設(shè)計(jì)與制造,2019(7):57—60.
FANG G H,MAO L Y,WEI Y Y,et al. The analysis of dynamic characteristics for relay valve based on AMESim[J].Machinery Design & Manufacture,2019(7):57—60. (In Chinese)
[23] ?陳晉市,劉昕暉,元萬(wàn)榮,等. 典型液壓節(jié)流閥口的動(dòng)態(tài)特性[J].西南交通大學(xué)學(xué)報(bào),2012,47(2):325—332.
CHEN J S,LIU X H,YUAN W R,et al. Dynamic characteristics of typical hydraulic notches[J]. Journal of Southwest Jiaotong University,2012,47(2):325—332. (In Chinese)
[24] ?WANG Z Q,GU L Y,JI H,et al. Flow field simulation and establishment for mathematical models of flow area of spool valve with sloping U-shape notch machined by different methods[J]. Central South University,2014,21(1):140—150. (In Chinese)
[25] ?周會(huì). 液壓滑閥閥口的特性研究[D]. 成都:西南交通大學(xué),2009:33—37.
ZHOU H. Research on the characteristics of the orifice of the hydraulic spool valve[D]. Chengdu:Southwest Jiaotong University,2009:33—37. (In Chinese)
[26] ?劉昕暉,陳晉市. AMESim仿真技術(shù)在液壓系統(tǒng)設(shè)計(jì)分析中的應(yīng)用[J]. 液壓與氣動(dòng),2015(11):1—6.
LIU X H,CHEN J S. Application of AMESim in the design and analysis of hydraulic system[J]. Chinese Hydraulics & Pneumatics,2015(11):1—6. (In Chinese)
[27] ?梁全. 液壓系統(tǒng)AMESim計(jì)算機(jī)仿真指南[M]. 北京:機(jī)械工業(yè)出版社,2014:222—247
LIANG Q. AMESim computer simulation guide for hydraulic system[M]. Beijing:China Machine Press,2014:222—247. (In Chinese)