鄭冉 黎瑞源 呂丹 鄭俊青 石桃雄 陳其皎 陳慶富
摘要:為揭示影響苦蕎籽粒黃酮含量的主要因素,獲得高黃酮含量的苦蕎種質(zhì),該文以“小米蕎×晉蕎2號”重組自交系(RILs)群體為材料,采用酶標儀檢測籽粒黃酮含量,調(diào)查了百粒重、籽粒長寬比、株高、分枝數(shù)及籽粒產(chǎn)量等性狀的變異,并探究籽粒黃酮含量與產(chǎn)量性狀之間的相關關系,比較了不同粒色、不同粒型苦蕎株系的籽粒黃酮含量的差異,基于聚類分析篩選了高黃酮含量和高產(chǎn)優(yōu)異株系。結(jié)果表明:(1)父本‘晉蕎2號的籽粒黃酮含量、籽粒產(chǎn)量、百粒重和籽粒長寬比均極顯著高于母本‘小米蕎;RILs群體中籽粒黃酮含量的范圍是1.34%~3.05%,變異系數(shù)為12.23%;產(chǎn)量性狀的變異系數(shù)范圍在9.38%~25.17%,其中籽粒產(chǎn)量最大,百粒重次之,籽粒長寬比最小;籽粒黃酮含量和產(chǎn)量性狀呈現(xiàn)連續(xù)地近似正態(tài)分布,并存在明顯的雙向超親現(xiàn)象。(2)苦蕎籽粒黃酮含量與產(chǎn)量性狀均不存在顯著相關性;籽粒產(chǎn)量與百粒重、株高存在極顯著正相關。(3)不同粒色和不同果殼類型的株系間籽粒黃酮含量差異不顯著。(4)在歐式距離為17.6~20.6處,219個株系可聚為6類,其中C3類群和C6類群籽粒黃酮含量最高,均值分別為2.39%和2.35%,C2類群在籽粒產(chǎn)量、株高、分枝數(shù)、百粒重、籽粒長寬比等方面表現(xiàn)良好。
關鍵詞: 苦蕎, 重組自交系, 黃酮含量, 產(chǎn)量性狀, 聚類分析
中圖分類號:Q945
文獻標識碼:A
文章編號:10003142(2021)02021609
Abstract:In order toreveal the main factors affecting the flavonoids content of tartary buckwheat in seeds and select high flavonoids content lines, we determined the flavonoids content in seeds of a tartary buckwheat recombinant inbred lines (RILs) population derived from a cross of “Xiaomiqiao × Jinqiao 2”. The genetic variation of seed yield, 100seed weight, seed length to width ratio, plant height, branch number and flavonoids content in seeds were analyzed on RILs population. The relationship between flavonoids content in grains and yield traits was explored by correlation analysis. Variance analysis of flavonoids content in RILs population with different seed colors or shell types was carried out, cluster analysis for the RILs population was carried out based on the phenotypic data of investigated traits, and the excellent lines were selected by variance analysis among groups. The results were as follows: (1)The flavonoids content in seeds, 100seed weight, seed yield, and seed length to width ratio of ‘Jinqiao 2 were significantly higher than those of ‘Xiaomiqiao; The flavonoids content in seeds of the RILs population ranged from 1.34% to 3.05% with the coefficient variation of 12.23%; The coefficient of variation of yield traits ranged from 9.38% to 25.17%, in which grain yield was the largest, followed by 100seed weight, and seed length to width ratio was the smallest; The tremendous transgressive segregation for flavonoids content in seeds was observed in the population. (2)There was no significant correlation between flavonoids content in seeds and the investigated agronomic traits; Seed yield was significantly positively correlated to 100seed weight and plant height. (3)There were no significant differences in flavonoids content among lines with different seed colors or shell types. (4)The RILs population could be divided into six groups at the euclidean distance of 17.6-20.6. Group C3 and Group C6 had the highest flavonoids content in seeds, with the average values of 2.39% and 2.35% respectively. Group C2 had fine performance in plant height, branch number, seed yield, 100seed weight, and seed length to width ratio.
Key words:tartary buckwheat, recombinant inbred line, flavonoids content, yield traits, cluster analysis
苦蕎(Fagopyrm tataricum)籽粒中含有大量的黃酮類化合物,是苦蕎中最重要的抗氧化因子,具有抗腫瘤(李玉英等,2014)、抗氧化(鮑濤,2017)、抗炎癥(Wang et al.,2013)、防止血管增生(SchiniKerth et al.,2011)、降血糖(Lee et al.,2016;Qin et al.,2017)、降血壓(Hou et al.,2017)、降血脂(Qiu et al.,2016;薛朕鈺等,2019)以及促消化(陳蕾,2016;周一鳴等,2019)等多種生理功能,被譽為“20世紀最后的一種營養(yǎng)素”(羅光宏等,2005),高黃酮苦蕎資源的發(fā)掘利用也越來越受關注。目前,國內(nèi)外學者對苦蕎黃酮類物質(zhì)的分析主要集中于成分構(gòu)成(Sato Sakmura,1975;李丹等,2001)、分布與含量測定(徐寶才和丁霄霖,2003;朱友春等,2010;唐宇等,1989;趙玉平和肖春玲,2004)等方面??嗍w黃酮類化合物主要存在形式是黃酮醇和糖苷類化合物,從苦蕎中鑒定出主要的黃酮類化合物有槲皮素3葡萄糖蕓香糖苷、槲皮素30蕓蕎苷(蘆?。?、山奈酚3蕓香糖苷、槲皮素、槲皮素3蕓香糖雙葡萄苷、山奈酚。在整個生育期中,苦蕎黃酮含量在1片真葉(苗期)時最高,孕蕾期至成熟期黃酮含量呈現(xiàn)低-高-低的變化趨勢;各器官中黃酮含量大小依次為花>葉>籽粒>莖>根??嗍w籽粒中黃酮含量為1%~3%,成分中以蘆丁為主。在苦蕎籽粒發(fā)育過程中黃酮含量有一定波動。Gao et al.(2017)用高效液相色譜分析法測定苦蕎種子中蘆丁的含量,表明黃酮含量在種子灌漿期含量最高,隨著種子成熟而降低,最終達到穩(wěn)定狀態(tài)。也有研究表明苦蕎黃酮含量相關基因在灌漿期表達最為豐富(Huang et al.,2017)??嗍w籽粒黃酮含量也存在產(chǎn)地(劉三才等,2007)和品種的差異(母養(yǎng)秀等,2016)。
關于苦蕎籽粒黃酮含量與產(chǎn)量性狀相關性的研究報道較少。李月等(2013a)研究了8個甜蕎品種在全國19個不同地點的籽粒黃酮含量與產(chǎn)量性狀之間的相關性,結(jié)果表明黃酮含量與主莖分枝數(shù)、主莖節(jié)數(shù)、株高、單株粒數(shù)、單株粒重及千粒重不相關。樊林花(2005)利用3個苦蕎品種高黃酮突變體M3代和M4代,進行了籽粒黃酮含量與產(chǎn)量性狀的相關性分析,表明黃酮含量與株高、主莖節(jié)數(shù)、主莖分枝數(shù)和單株粒數(shù)呈正相關,與千粒重呈現(xiàn)極顯著負相關。楊麗娟等(2018)以九江苦蕎為對照對5個米苦蕎和3個多年生苦蕎品種的籽粒性狀和品質(zhì)性狀進行分析,發(fā)現(xiàn)籽粒黃酮含量與各籽粒性狀及品質(zhì)性狀間相關性均未達到顯著水平。饒慶琳等(2016)測定了100份薄殼苦蕎高世代穩(wěn)定品種的籽粒黃酮含量,表明籽粒黃酮含量與米粒質(zhì)量呈極顯著正相關,與果殼質(zhì)量和果殼率呈顯著負相關。周達(2016)對來自371份不同地區(qū)苦蕎的黃酮含量與產(chǎn)量性狀的成分分析與通徑分析表明,單株粒數(shù)、千粒重對黃酮含量直接影響較大,苦蕎籽粒越大,黃酮含量越高。以上研究大多集中于苦蕎自然群體,研究遺傳分離群體黃酮含量的報道較少。重組自交系(RILs)群體是一個穩(wěn)定的永久性分離群體,黎瑞源等(2017)以苦蕎“小米蕎×晉蕎2號”RILs群體為材料,構(gòu)建了SSR分子標記遺傳圖譜,證明該群體適合于遺傳作圖分析,是苦蕎產(chǎn)量和品質(zhì)性狀鑒定和QTL定位研究的材料基礎。本文以“小米蕎×晉蕎2號”RILs群體F8代的219個株系為材料,分析了籽粒黃酮含量、株高、分枝數(shù)、籽粒產(chǎn)量、百粒重、籽粒長寬比的遺傳變異,比較了不同粒色和果殼類型株系的黃酮含量差異,挖掘與籽粒黃酮含量相關的主要性狀,篩選出籽粒黃酮含量及產(chǎn)量性狀表現(xiàn)良好的株系,為高產(chǎn)、高籽粒黃酮含量的苦蕎品種的選育提供指導。
1材料與方法
1.1 材料
以‘小米蕎為母本,‘晉蕎2號為父本構(gòu)建的重組自交系(RILs)F8代的219個株系為供試材料?!∶资w是云南地方品種,中稈、晚熟、種殼極薄、無溝槽、易脫殼成蕎米、出粉率高;‘晉蕎2號是山西省選育的高產(chǎn)優(yōu)質(zhì),早熟、高稈、抗旱、抗倒伏、耐貧瘠、種殼厚有溝槽且不易脫殼。
1.2 性狀調(diào)查
供試材料于2017年8月播種于貴州師范大學長順基地,每個株系3行,中等肥力,常規(guī)田間管理??嗍w成熟后,每個株系按小區(qū)單獨收獲,脫粒,風干后稱重計產(chǎn);株高:直尺測量主莖基部至頂端的高度,厘米表示;分枝數(shù):主莖基部至頂端著生的有效分枝數(shù);百粒重、籽粒長寬比:選取有代表性的籽粒利用SG考種分析測定儀(杭州萬深檢測科技有限公司)進行測定。根據(jù)籽粒果殼特性分為“薄殼”(母本型)、“厚殼”(父本型)2種類型。使用比色卡對種皮顏色從淺到深依次分為黃色、褐色(父本型)、深褐色和黑色(母本型)4種類型。
1.3 籽粒黃酮的測定
每個株系稱取飽滿籽粒20~30 g使用高速粉碎磨樣機充分研磨,稱取0.020 0 g粉末置于2 mL離心管中,加入2 mL 75%的甲醇后置于60 ℃恒溫水浴2 h,8 000 r·min1室溫離心10 min,過濾后收集上清液。黃酮含量的測定參考呂丹等(2019)方法。
1.4 數(shù)據(jù)統(tǒng)計與分析
采用Excel 2016軟件分析群體各性狀的平均值、標準差、變異系數(shù)等描述性統(tǒng)計量。采用SPSS 20.0軟件完成籽粒黃酮含量與籽粒性狀的相關性分析、親本籽粒黃酮含量和產(chǎn)量性狀方差分析(t檢驗)、組間黃酮含量和產(chǎn)量性狀的方差分析(F檢驗)及多重比較(Duncan法)。分別用R3.5.3統(tǒng)計軟件(https://www.Rproject.org/)的scale、dist和hclust函數(shù)完成群體各性狀的標準化和中心化、基于歐氏距離的相似性矩陣構(gòu)建和基于離差平方和法(Ward)的聚類分析。
2結(jié)果與分析
2.1 RILs群體籽粒黃酮含量與產(chǎn)量性狀的變異
親本間籽粒黃酮含量與產(chǎn)量性狀的方差分析表明,‘晉蕎2號黃酮含量、百粒重、籽粒長寬比、籽粒產(chǎn)量均顯著高于‘小米蕎(表1)。從表1可以看出,重組自交系群體籽粒黃酮含量的變異程度較大,范圍在1.34%~3.05%,平均含量為2.12%,變異系數(shù)為12.23%。RILs群體各產(chǎn)量性狀均存在較大變異,變異系數(shù)最大的是籽粒產(chǎn)量(25.17%),其次是百粒重(13.57%),最小的是籽粒長寬比(9.38%)。從圖1可以看出,RILs群體籽粒黃酮含量和產(chǎn)量性狀呈現(xiàn)連續(xù)的近似正態(tài)分布,并且具有明顯的雙向超親分離現(xiàn)象。
2.2 RILs群體籽粒黃酮含量與產(chǎn)量性狀的相關性
由表2可知,籽粒黃酮含量與各產(chǎn)量性狀的相關性均不顯著。籽粒產(chǎn)量與株高和百粒重具有極顯著的正相關性,其中籽粒產(chǎn)量與百粒重的相關系數(shù)是0.332,大于籽粒產(chǎn)量與株高的相關系數(shù)。此外,籽粒長寬比與株高呈顯著正相關;百粒重與株高和分枝數(shù)呈極顯著正相關;分枝數(shù)與株高呈極顯著正相關(表2)。
2.3 不同粒色、不同果殼類型株系的籽粒黃酮含量的差異分析
按照籽粒顏色RILs群體可分為深褐色、褐色(父本型)、黑色(母本型)、黃色4個類型。方差分析表明,不同粒色株系間籽粒黃酮含量差異不顯著。果殼類型為 “薄殼” (母本型)、 “厚殼 (父本型)”的株系個數(shù)依次為69和150(表4),不同果殼類型株系間的籽粒黃酮含量差異不顯著。
2.4 RILs群體籽粒黃酮含量極端株系的篩選
以株高、分枝數(shù)、百粒重、籽粒長寬比、籽粒黃酮含量、籽粒產(chǎn)量等6個性狀為指標,對RILs群體進行聚類分析,在歐式距離為17.6~20.6處,219個株系可分為6個類群(圖2)。其中,C3類群和C6類群分別包含30個和18個株系,黃酮含量分別為2.08%~2.98%和1.97%~3.05%,平均值分別為2.39%和2.35%,顯著高于其他4個類群;C4類群包含26個株系,黃酮含量為1.52%~2.44%,平均值為1.98%,顯著低于其他5個類群;C2類群包含31個株系,株高、分枝數(shù)、籽粒產(chǎn)量、百粒重、籽粒長寬比均表現(xiàn)良好(表5)。
3討論與結(jié)論
本研究中RILs群體219個F8家系性狀變異系數(shù)分析表明,苦蕎重組自交系各性狀中百粒重、 籽粒黃酮含量和籽粒產(chǎn)量變異系數(shù)均高于10%,說明這些性狀間差異較大,具有豐富的遺傳多樣性。其中籽粒產(chǎn)量的變異系數(shù)最大為25.20%,變異程度低于石桃雄等(2017)調(diào)查該RILs群體399個F6家系的籽粒產(chǎn)量,這可能與本文調(diào)查的株系數(shù)量較少有關。百粒重變異系數(shù)為13.57%,接近該群體F5家系(梁龍兵等,2016)和F6家系(石桃雄等,2017)的千粒重變異系數(shù),說明該性狀較穩(wěn)定。籽粒黃酮含量的變異系數(shù)為12.23%,變異范圍為1.34%~3.05%,變異程度高于苦蕎自然種質(zhì)籽粒黃酮含量(周達,2016;汪燕等,2017;呂丹等,2019),說明本研究的RILs群體更有利于篩選籽粒黃酮含量的極端株系。同時研究結(jié)果表明,該群體的父本‘晉蕎2號的籽粒黃酮含量為2.42%,顯著高于母本‘小米蕎,這與胡鞒繽等(2013)和李月等(2013b)使用相同提取劑和顯色劑測定的‘晉蕎2號的籽粒黃酮含量大體一致,但高于黃元射等(2012)以亞硝酸鈉、硝酸鋁以及氫氧化鈉混合液為顯色劑測定的‘晉蕎2號的籽粒黃酮含量(2.02%),這可能與顯色劑不一致有關。
本研究中RILs群體籽粒黃酮含量與所調(diào)查的產(chǎn)量性狀的相關性均未達到顯著水平,這與周達(2016)研究苦蕎自然群體籽粒千粒重及單株粒重的增加可以提高黃酮含量的結(jié)論不同,這可能與群體類型不同有關,表明對影響籽粒黃酮含量的因素還需要進一步挖掘。國內(nèi)許多學者就影響苦蕎產(chǎn)量的農(nóng)藝性狀做了深入的探索,研究表明較高的千粒重、株高、有效花序數(shù)、單株粒數(shù)和單株粒重(趙建棟等,2017;汪燦等,2013;賈瑞玲等,2015)對提升苦蕎產(chǎn)量可起到有效的推進作用,也有研究表明秋季苦蕎適宜的播期可提高其產(chǎn)量(黃凱豐等,2018)。本研究中苦蕎籽粒產(chǎn)量與百粒重、株高呈極顯著正相關,這與前人的研究較為一致,但與楊明君等(2010)以14個苦蕎品種為材料得出的產(chǎn)量與千粒重呈不相關的結(jié)論相反,這主要與試驗材料數(shù)目差異較大有關。綜合上述分析,說明在大田育種中可以選擇百粒重高、株高適中的株系作為高產(chǎn)苦蕎選育的最佳材料。
本研究基于RILs群體的籽粒黃酮含量與產(chǎn)量性狀,將219個株系聚為6類,類群間的方差分析表明,C3類群30個株系和C6類群18個株系的籽粒黃酮含量均值顯著高于其他類群,分別為2.39%和2.39%,兩個類群中的R14、R15、R17、R18、R79、R102、R176、R198、R200、R201、R205、R206、R212、R213、R214、R215、R216和R217等18個株系的果殼類型為薄殼,籽粒黃酮含量均高于‘小米蕎,且接近高值親本‘晉蕎2號,可應用于高籽粒黃酮含量薄殼苦蕎的改良。與常規(guī)苦蕎相比,薄殼苦蕎,如‘小米蕎,其果殼?。ü麣ぢ?0%~20%)(陳慶富等,2015;陳慶富,2018)、無溝槽、易脫殼形成新鮮的苦蕎米,在苦蕎的加工領域具有更廣泛的應用前景。C2類群的31個株系在籽粒黃酮含量、籽粒產(chǎn)量和產(chǎn)量相關性狀等方面綜合表現(xiàn)良好,其中R31株系是薄殼類型,籽粒產(chǎn)量高于高值親本‘晉蕎2號,可用于高產(chǎn)薄殼苦蕎的育種試驗。
參考文獻:
BAO T, 2017. Antioxidant and antidiabetes activity of tartary buckwheat flavonoids derived from alpine mountain of Yunnan Province [D]. Hangzhou: Zhejiang University: 1-80. [鮑濤, 2017. 云南高寒山區(qū)苦蕎黃酮抗氧化和降血糖活性研究 [D]. 杭州:浙江大學:1-80.]
CHEN L, 2016. The effect of tartary buckwheat on the intestinal flora [D]. Shanghai: Shanghai Normal University:1-70. [陳蕾, 2016. 苦蕎對腸道菌群影響的研究 [D].上海:上海師范大學:1-70.]
CHEN QF, 2018. The status of buckwheat production and recent progresses of breeding on new type of cultivated buckwheat [J]. J Guizhou Norm Univ(Nat Sci Ed), 36(3): 1-7. [陳慶富, 2018. 蕎麥生產(chǎn)狀況及新類型栽培蕎麥育種研究的最新進展 [J]. 貴州師范大學學報(自然科學版), 36(3):1-7.]
CHEN QF, CHEN QJ, SHI TX, et al., 2015. Inheritance of tartary buckwheat thick shell character and its relationships with yield factors [J]. Crops, (2): 27-30. [陳慶富, 陳其皎, 石桃雄, 2015. 苦蕎厚果殼性狀的遺傳及其與產(chǎn)量因素的相關性研究 [J]. 作物雜志, (2): 27-30.]
FAN LH, 2005. Analysis on flavone and heredity of agronomic character of tartary buckwheat mutants [D].Taigu: Shanxi Agriculture University: 1-36. [樊林花, 2005. 苦蕎突變體生物黃酮與部分農(nóng)藝性狀的遺傳分析 [D]. 太古:山西農(nóng)業(yè)大學: 1-36.]
GAO J, WANG TT, LIU MX, et al., 2017. Transcriptome analysis of filling stage seeds among three buckwheat species with emphasis on rutin accumulation [J].PLoS ONE,12(12): 1-22.
HOU ZX, HU YY, YANG XB, et al., 2017. Antihypertensive effects of tartary buckwheat flavonoids by improvement of vascular insulin sensitivity in spontaneously hypertensive rats [J]. Food Funct,8(11):4217-4228.
HU QB, YAO YY, LI YQ, et al., 2013. Determination and comparison of total flavonoid content from various parts of different buckwheat[J]. Food Drug, 15(6): 394-396. [胡鞒繽, 姚瑛瑛, 李艷琴, 等, 2013. 蕎麥植株各部位總黃酮含量的測定與比較 [J]. 食品與藥品, 15(6):394-396.]
HUANG J, DENG J, SHI TX, et al., 2017. Global transcriptome analysis and identification of genes involved in nutrients accumulation during seed development of rice tartary buckwheat (Fagopyrum tararicum) [J]. Sci Rep, 7(1): 11792.
HUANG KF, LI ZZ, WANG Y, et al., 2019. Research progress on physiology of buckwheat under highyield cultivation [J]. J Guizhou Norm Univ(Nat Sci Ed), 37(1):115-120. [黃凱豐, 李振宙, 王炎, 等, 2019. 我國蕎麥高產(chǎn)栽培生理研究進展 [J]. 貴州師范大學學報(自然科學版),37(1):115-120.]
HUANG YS, HE SH, ZHANG QT, et al., 2012. Selection on high flavonoids producing Fagopyrum tataricum [J]. Guangdong Agric Sci, 39(18): 20-22. [黃元射, 何紹紅, 張啟堂, 等, 2012. 高黃酮苦蕎品系的篩選 [J]. 廣東農(nóng)業(yè)科學, 39(18):20-22.]
JIA RL, MA N, WEI LP, et al., 2015. Genetic diversity analysis on the agronomic characteristics of 50 tartary buckwheat germplasms [J]. Agric Res Arid Areas, 33(5):11-16. [賈瑞玲, 馬寧, 魏立平, 等, 2015. 50份苦蕎種質(zhì)資源農(nóng)藝性狀的遺傳多樣性分析 [J]. 干旱地區(qū)農(nóng)業(yè)研究, 33(5):11-16.]
LEE DG, JANG IS, YANG KE, et al., 2016. Effect of rutin from tartary buckwheat sprout on serum glucoselowering in animal model of type 2 diabetes [J]. Acta Pharm, 66(2): 297-302.
LI D, XIAO G, DING XL, et al., 2001. Study on antioxidant effect of tartary buckwheat flavonoid [J].J Wuxi Univ Light Ind, 20(1): 44-47. [李丹, 肖剛, 丁霄霖, 等, 2001. 苦蕎黃酮抗氧化作用的研究 [J]. 無錫輕工大學學報, 20(1):44-47.]
LI RY, LIANG LB, SHI TX, et al., 2017.Construction of a microsatellite based genetic map of tartary buckwheat using F5 recombinant inbred lines [J]. J Guizhou Norm Univ(Nat Sci Ed), 35(4): 31-45. [黎瑞源, 梁龍兵, 石桃雄, 等, 2017. 苦蕎重組自交系群體F5代SSR遺傳圖譜的構(gòu)建 [J]. 貴州師范大學學報(自然科學版), 35(4):31-45.]
LI Y, SHI TX, HUAG KF, et al., 2013a. Correlation analysis of tartary buckwheat seed yield with ecological factors and agronomic traits [J]. SW Chin J Agric Sci, 26(1): 35-41. [李月, 石桃雄, 黃凱豐, 等, 2013a. 苦蕎生態(tài)因子及農(nóng)藝性狀與產(chǎn)量的相關性分析 [J]. 西南農(nóng)業(yè)學報, 26(1):35-41.]
LI Y, SONG ZX, HU WQ, et al., 2013b. The correlation between protein and flavonoid contents and environment in different buckwheat cultivars [J]. Jiangsu Agric Sci, 41(5): 79-82. [李月, 宋志新, 胡文強, 等, 2013b. 不同品種蕎麥蛋白質(zhì)和黃酮含量與環(huán)境的相關性 [J]. 江蘇農(nóng)業(yè)科學, 41(5):79-82.]
LI YY, ZHAO SJ, BAI CZ, et al., 2014. Effect of isoquercetin from Fagopyrum tataricum on the proliferation and apoptosis of human gastric carcinom a cell line SGC7901 [J].Food Sci, 35(3): 193-197. [李玉英, 趙淑娟, 白崇智, 等, 2014. 苦蕎異槲皮苷對人胃癌細胞SGC7901增殖及凋亡的影響 [J]. 食品科學, 35(3):193-197.]
LIANG LB, 2016. The study of main agronomic traits and SSR molecular markers in genetic population of tartary buckwheat [D].Guiyang: Guizhou Normal University:1-100. [梁龍兵, 2016. 苦蕎遺傳群體主要農(nóng)藝性狀的遺傳及其SSR分子標記研究 [D]. 貴陽:貴州師范大學: 1-100.]
LIU SC, LI WX, LIU F, et al., 2007. Identification and evaluation of total flavones and protein content in tartary buckwheat germplasm [J]. J Plant Genet Resour, 8(3): 317-320. [劉三才, 李為喜, 劉方, 等, 2007. 苦蕎麥種質(zhì)資源總黃酮和蛋白質(zhì)含量的測定與評價 [J]. 植物遺傳資源學報, 8(3):317-320.]
LUO GH, CHEN TR, ZU TX, et al., 2005. Research of Fagopyrum tatarium bioflavonoids and its quantitative methods [J]. Food Sci, 26(9): 524-527. [羅光宏, 陳天仁, 祖廷勛, 等, 2005. 苦蕎生物類黃酮及其測定方法研究進展 [J]. 食品科學, 26(9):524-527.]
L D, LI RY, ZHENG R, et al., 2019. Variation analysis of flavonoids content in seeds and seed traits of tartary buckwheat germplasm resources [J]. Mol Plant Breed, 18(14): 4762-4774. [呂丹, 黎瑞源, 鄭冉, 等, 2019. 苦蕎種質(zhì)資源籽粒黃酮含量及籽粒性狀的變異分析 [J]. 分子植物育種, 18(14): 4762-4774.]
MU YX, DU YP, CHEN CJ, et al., 2016. Correlation between nutritional quality and agronomic characters and yield of different tartary buckwheat varieties [J]. Jiangsu Agric Sci, 44(6): 139-142. [母養(yǎng)秀, 杜燕萍, 陳彩錦, 等, 2016. 不同苦蕎品種營養(yǎng)品質(zhì)與農(nóng)藝性狀及產(chǎn)量的相關性 [J]. 江蘇農(nóng)業(yè)科學, 44(6):139-142.]
QIN PY, WEI AC, ZHAO DG, et al., 2017. Low concentration of sodium bicarbonate improves the bioactive compound levels and antioxidant and αglucosidase inhibitory activities of tartary buckwheat sprouts [J]. Food Chem, 224: 124-130.
QIU J, LI ZG, QIN YC, et al., 2016. Protective effect of tartary buckwheat on renal function in type 2 diabetics: A randomized controlled trial [J]. Ther Clin Risk Manag, 12: 1721-1727.
RAO QL, CHEN QJ, CHEN QF, et al., 2016. Variation of total flavonoids content of thin shell buckwheat and its relationship with main yield components [J]. Jiangsu Agric Sci, 44(10): 333-336. [饒慶琳, 陳其皎, 陳慶富, 等, 2016. 薄殼苦蕎品系籽??傸S酮含量變異及與主要產(chǎn)量構(gòu)成要素間的相關性 [J]. 江蘇農(nóng)業(yè)科學, 44(10):333-336.]
SATO H, SAKAMURA S, 1975. Isolation and identification of flavonoids in immature buckwheat seed (Fagopyrum esculentum Monch) [J]. J Agric Chem Soc JPN, 49: 53-55.
SCHINIKERTH VB, ETIENNESELLOUM N, CHATAIGNEA T, et al, 2011. Vascular protection by natural productderived polyphenols: in vitro and in vivo evidence [J]. Plant Med, 77(11): 1161-1167.
SHI TX, LI RY, LIANG LB, et al., 2018. Analysis of agronomic traits in recombinant inbred line population of tartary buckwheat (Fagopyrm tataricum) [J]. J S Chin Agric Univ(Nat Sci Ed), 39(1): 18-24. [石桃雄, 黎瑞源, 梁龍兵, 等, 2018. 苦蕎重組自交系群體農(nóng)藝性狀分析 [J]. 華南農(nóng)業(yè)大學學報, 39(1):18-24.]
TANG Y, ZHAO G, REN JC, et al., 1989. Changes of content of flavone and rutin in buckwheat [J]. Plant Physiol Comm, (1): 33-35. [唐宇, 趙鋼, 任建川, 等,1989. 蕎麥中總黃酮和蘆丁含量的變化 [J]. 植物生理學通訊, (1):33-35.]
WANG C, HU D, YANG H, et al., 2013. Multiple analysis of relationship between main agronomic traits and yield in tartary buckwheat [J]. Crops, (6): 18-22. [汪燦, 胡丹, 楊浩, 等, 2013. 苦蕎主要農(nóng)藝性狀與產(chǎn)量關系的多重分析 [J]. 作物雜志, (6):18-22.]
WANG LJ, YANG XS, QIN PY, et al., 2013. Flavonoid composition, antibacterial and antioxidant properties of tartary buckwheat bran extract [J]. Ind Crops Prod, 49: 312-317.
WANG Y, LIANG CG, SUN YH, et al., 2017. The yield and quality of tartary buckwheat varieties and the response to low nitrogen [J]. J Guizhou Norm Univ(Nat Sci Ed), 35(6): 66-73. [汪燕, 梁成剛, 孫艷紅, 等, 2017. 不同苦蕎品種的產(chǎn)量與品質(zhì)及其對低氮的響應 [J]. 貴州師范大學學報(自然科學版), 35(6):66-73.]
XU BC, DING XL, 2003. The quantitative methods of flavonoids in buckwheat (Fagopyrum tataricum) [J]. J Wuxi Univ Light Ind (J Food Sci Biotechnol), 22(2): 98-101. [徐寶才, 丁霄霖, 2003. 苦蕎黃酮的測定方法 [J]. 無錫輕工大學學報(食品與生物技術(shù)), 22(2):98-101.]
XUE ZY, XUE M, WANG X, et al., 2019. Study on antioxidant and hypolipidemic effects of nude oat extruded products with flavones in buckwheat [J]. Food Res Devel, 40(12):33-38. [薛朕鈺, 薛淼, 王雪, 等, 2019. 添加苦蕎黃酮提取物的裸燕麥擠壓膨化產(chǎn)品抗氧化及降血脂功效研究 [J]. 食品研究與開發(fā), 40(12):33-38.]
YANG LJ, CHEN QF, LI HY, et al., 2018. Analysis of grain characters and quality in new varieties of tartary buckwheat [J]. Guangdong Agric Sci, 45(5): 7-13. [楊麗娟, 陳慶富, 李洪有, 等, 2018. 新類型苦蕎品種籽粒性狀和米粒品質(zhì)分析 [J]. 廣東農(nóng)業(yè)科學, 45(5):7-13.]
YANG MJ, YANG Y, GUO ZX, et al., 2010. Correlation analysis between grain yield and main character of tartary buckwheat in dry land [J]. Inn Mongol Agric Sci Technol, (2): 49-50. [楊明君, 楊媛, 郭忠賢, 等, 2010. 旱作苦蕎麥籽粒產(chǎn)量與主要性狀的相關分析 [J]. 內(nèi)蒙古農(nóng)業(yè)科技, (2):49-50.]
ZHAO JD, LI XL, SHI XH, et al., 2016. Principal component analysis and cluster analysis of Fagopyrum tataricum varieties(lines) [J]. Agric Sci Technol, 17(12): 2707-2712.
ZHAO YP, XIAO CL, 2004. Determination of total flavones on Fagopyrum gaertn of variety organs [J]. Food Sci, 25(10): 264-266. [趙玉平, 肖春玲, 2004. 苦蕎麥不同器官總黃酮含量測定及分析 [J]. 食品科學, 25(10):264-266.]
ZHOU D, 2016. Analysis on the main agronomic traits and flavonoids content variation of tartary buckwheat resources [D]. Yangling: Northwest A & F University: 1-69. [周達, 2016. 苦蕎資源主要農(nóng)藝性狀及黃酮含量變異分析 [D]. 楊凌:西北農(nóng)林科技大學:1-69.]
ZHOU YM, ZHAO S, FENG F, et al., 2019. Modulatory effect of set yogurt with tartary buckwheat juice on intestinal flora in mice [J]. Food Sci, 40(13):123-129. [周一鳴, 趙燊, 馮飛, 等, 2019. 凝固型苦蕎酸奶對小鼠腸道菌群的調(diào)節(jié)作用 [J]. 食品科學, 40(13):123-129.]
ZHU YC, TIAN SL, WANG DH, et al., 2010. Change of flavones content and nutrient ingredients of buckwheat at different growth stages [J].Gansu Agric Sci Technol, (6): 24-27. [朱友春, 田世龍, 王東暉, 等, 2010. 不同生育期苦蕎黃酮含量與營養(yǎng)成分變化研究 [J]. 甘肅農(nóng)業(yè)科技, (6):24-27.]
(責任編輯何永艷)