• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO?

    2021-03-19 03:21:46ZhenyunZhang張振雲(yún)LeiXu許磊andJunjieQi齊俊杰
    Chinese Physics B 2021年3期
    關鍵詞:俊杰

    Zhenyun Zhang(張振雲(yún)), Lei Xu(許磊), and Junjie Qi(齊俊杰)

    School of Materials Science and Engineering,University of Science and Technology Beijing,Beijing 100083,China

    Keywords: perovskite solar cells ZnO nanorods, interface modification, preparation parameters, Mg doped ZnO

    1. Introduction

    The organic-inorganic perovskite light-harvesting materials have the advantages of inexpensive fabrication with solution techniques,strong absorption in the visible spectrum,and high carrier mobility.[1-3]Since the first use of the materials as dye sensitizers in dye-sensitized solar cells with the power conversion efficiency(PCE)of 3.8%,[4]perovskite solar cells(PSCs) have been widely investigated in recent years. The PCE of the PSCs is improving rapidly and now has reached more than 25%.[5-9]

    The structure of the PSCs usually includes an anode, a hole transportation layer (HTL), a light absorption layer, an electron transportation layer(ETL),and a cathode.[10-12]The ETL always plays a significant role in transporting electrons and blocking holes. Among different metal oxides applied as ETL,zinc oxide(ZnO)has garnered keen attention due to the superior opto-electronic properties,and they can be regulated by tuning the composition, doping, and morphology.[13-15]In addition, high-quality ZnO can be obtained via solutionprocessed at low temperature.[16]Many attempts have been made in facilitating the PCE of ZnO-based PSCs to over 20%.By tuning ZnO/perovskite interface with sulfidation,the PCE of the ZnO-based device was increased to 20.7%,[17]as well as protonated ethanolamine and MgO.[18]However, the PCE is still lower than the TiO2based PSCs. The difference in PCE may result from the non-optimized ZnO NR crystallinity(conductivity of NR) that impacts the electron transportation between the perovskite absorbing layer and ETL,[19]but may also be owning to the recombination originating from traps at the interface between ETL/perovskite. As a result, it is very important to improve the ZnO NR crystallinity and reduce the trap density at the interface between ETL/perovskite. MgO was applied as a passivation layer to reduce the interfacial traps.[18]Despite the improved efficiency of the device, the preparation process is not simple, and the ZnO-based PSCs are unsatisfactory to be persistent in the air without sealing.Polyvinylpyrrolidone(PVP)is a water-soluble polymer,which was incorporated between ETL and Ag cathode to improve electron transport for inverted PSCs.[20]While whether the PVP interlayer between perovskite and ETL would influence the device performance is interesting.

    It is well known that element doping is an effective method to modify the crystallinity and the electrical/optical properties of the material.[21]Magnesium (Mg) is an ideal doping element to regulate the energy band structure of ZnO owing to the similar radius of Mg and Zn. Mg doped ZnO nanocolloidal ETL was applied in PSC, achieving a PCE of 16.5%with low FF.[22]Few studies about Mg doped ZnO NRs in PSC fields were reported.

    In this paper,the PVP layer is inserted between ZnO NRs and perovskite material.Steady-state photoluminescence(PL)and x-ray diffraction(XRD)measurements show that the PVP layer helps reduce the interfacial defects and enhance perovskite crystallinity. Meanwhile,it also slows the PSC degradation,and 80%of primary PCE remains after being exposed to air for 30 d without encapsulation. In addition, we incorporate Mg in ZnO NRs and optimize the preparation parameters to improve ZnO NR crystallinity and promote the electron transportation. As a result,photovoltaic parameters of the ZnO NRs based PSCs are enhanced,and a PCE of 19.63%is attained.

    2. Experimental details

    We used fluorine-doped tin oxide(FTO)transparent glass as the electrode. After etching with zinc powder and hydrochloric acid (HCl) solution, the FTO was cleaned with alkaline detergent, deionized water, acetone, ethyl alcohol,and isopropanol in ultrasonic cleaners. The seed layer was first deposited by the sol-gel method as follows:[23]a solution of Zn(CH3COO)2·2H2O (10 mM) in ethylene glycol monomethyl ether was spin coated at 3000 rpm for 30 s on the FTO substrates, then the FTO substrates with ZnO seed layer were annealed at 350?C for 30 min. The ZnO NRs were prepared by hydrothermal method,[24]zinc nitrate hexahydrate (Zn(NO3)2·6H2O) and hexamethylenetetramine(HMTA) were dissolved in deionized water in equimolar(30 mM). The magnesium nitrate (Mg(NO3)2·6H2O) (0, 1%,2%, 5%, 10%) was added into the precursor solution to induce Mg doping. The FTO substrates with the ZnO seed layer were immersed in the precursor solution and put into the highpressure reaction vessel. The seed layer at 30 mM precursor concentration was kept at 90?C for different growth time(2.5 h,3 h,3.5 h,4 h).Then the FTO substrates with ZnO NRs were rinsed with DI water several times and was annealed at 450?C for 30 min.A PVP solution in deionized water(1 wt%)was spin-coated on the ZnO NRs at 5000 rpm for 60 s and was annealed at 100?C for 10 min.

    Perovskite film was prepared by the twostep sequential deposition method[25]ZnO NRs were infiltrated with PbI2by spin-coating a PbI2solution in DMF (1 M) that was kept at 70?C, which adopted a spinning rate of 4000 rpm and a spinning period of 30 s. After keeping on the hot plate at 70?C for 30 min to dry PbI2and cooling to room temperature, the film was dipped into CH3NH3I (MAI) solution in 2-propanol (0.063 M) and then dried for 30 min to form in situ CH3NH3PbI3(MAPbI3) film. The Spiro-OMeTAD solution was prepared by mixing 72.3 mg Spiro-OMeTAD,30 μL 4-tert-butylpyridine and 35 μL bis(trifluoromethane)sulfonamide lithium salt(Li-TFSI)stock solution(260 mg/mL Li-TFSI in acetonitrile) in 1mL chlorobenzene. The Spiro-OMeTAD solution was spin coated on MAPbI3film at 4000 rpm for 30 s, and the HTL was formed. Finally, gold back contact was deposited on the surface of HTL using a thermal evaporator.

    3. Results and discussion

    To obtain high-quality ZnO NRs,we optimize the preparation parameters of ZnO NRs by varying the immersion time of the seed layer in a 30 mM precursor solution. Figures 1(a)-1(d) show that the surface and cross-sectional scanning electron micrograph(SEM)images of ZnO NRs in a 30 mM precursor solution for different growth time. The length of the ZnO NRs increases from about 450 nm to 600 nm, 850 nm,and 1000 nm as the growth time increases from 2.5 h to 3 h,3.5 h, and 4 h, respectively. While the diameter of the ZnO NRs is about 70 nm for the varying growth time. It suggests that changing the growth time at the fixed precursor concentration will only affect the length of the ZnO NRs and the influence on the diameter is not obvious. The result is in good agreement with the previous report for ZnO NRs.[24]

    Figure 1(e)presents that the absorbance of ZnO NRs improves with the increasing length. It has been reported that the length of the ZnO NRs may influence the infiltration and the formation of the perovskite material;[27]as shown in Fig.1(f),XRD patterns of perovskite deposited on different ZnO NRs show there are no PbI2peaks in ZnO NRs with the growth time of 2.5 h,3 h,3.5 h. Especially the XRD pattern of the sample with 3.5 h shows the strongest peaks of (110), (112), (220),and(310)planes of perovskite due to the most perovskite infiltrated in the longest ZnO NRs. It indicates the complete reaction of PbI2and MAI.Figure S1 presents the cross-sectional SEM image of MAPbI3film deposited on the ZnO NRs with different growth time. The whole thickness of the absorbing layer increases with the prolonged growth time of ZnO. We can see a compact and well crystallinity capping layer of the perovskite film is formed on the vertical ZnO NRs when the growth time is 3.5 h.However,when the growth time increases to 4 h,PbI2cannot completely convert to MAPbI3crystals and it is disadvantageous for the device performance.

    Figure 2 shows the fabrication procedure of PSC based on ZnO NRs.The schematic illustration of the prepared PSC with the structure of FTO/ZnO NRs/MAPbI3/Spiro-OMeTAD/Au and the cross-sectional SEM images of the device are shown in Figs. 3(a) and 3(b). The corresponding energy level diagram of the device based on related materials are shown in Fig.3(c).[22]We can see the perovskite absorption layer protects the ZnO NRs from contacting the HTL directly. The pores in the ZnO NRs are fully filled with perovskite. It is advantageous to collect carriers efficiently by ZnO NRs and Spiro-OMeTAD.

    Fig.1. Surface and cross-sectional SEM images of ZnO nanorod in a 30 mM precursor solution for different growth time (a) 2.5 h, (b)3 h,(c)3.5 h,(d)4 h. (e)Absorption spectra of ZnO NRs in a 30 mM precursor solution for different growth time. (f)XRD patterns of perovskite deposited on ZnO NRs with different growth time.

    Fig.2. Fabrication procedure of PSC based on ZnO NRs.

    We further compare the influence of the length on the device performance. As shown in Fig.3(d), the device performance changes with the length of ZnO NRs and the corresponding photovoltaic parameters are listed in Table S1. It is revealed that the optimal length of ZnO NRs is 850 nm corresponding to the growth time of 3.5 h. The optimal short circuit current density (JSC) of 18.27 mA/cm2, open circuit voltage(VOC) of 1.00 V, fill factor (FF) of 0.73, and the maximum PCE of 13.45%,which is better than other time of 2.5 h(PCE of 10.11%,JSCof 15.69 mA/cm2,VOCof 0.91V,FF of 0.70),3 h(PCE of 11.76%,JSCof 17.24 mA/cm2,VOCof 0.94 V,FF of 0.72)and 4 h(PCE of 12.98%,JSCof 18.03 mA/cm2,VOCof 0.97 V,FF of 0.73). After growing from 2.5 h to 3.5 h,the JSCincreases from 15.69 mA/cm2to 18.27 mA/cm2as the length increases from 450 nm to 850 nm. The increase of the length of ZnO NRs allows more perovskite to infiltrate into the space of the ZnO NRs,which improve the harvest efficiency of visible light and enhance the JSC.[24]However, when ZnO NRs grow to 1000 nm, they will be disorderly to hinder the infiltration of perovskite and increase the probability of charge recombination between the ZnO NRs/perovskite interface,leading to the decline of the device performance. Therefore, the following studies are focused on ZnO NRs with the length of 850 nm.

    Next, we prepared a layer of PVP coating between the ZnO NRs/perovskite interface. Figure S2 shows high resolution transmission electron microscopy (HRTEM) image of ZnO NRs with PVP coating, verifying the existence of PVP coating. In order to investigate the effect of the PVP layer on the MAPbI3film,surface morphologies of perovskite films were detected shown in Fig.S3. We can see both films are continuous and of full coverage. With the PVP coating, the average grain size turns larger. We infer this is ascribed to the solubilization and dispersion characteristic of PVP,improving surface hydrophilicity and reducing surface energy.[27]The XRD patterns of MAPbI3deposited on ZnO with/without PVP coating are shown in Fig.S4. The results present both films own tetragonal perovskite structure,and the sharper peaks for PVP coating imply the optimized MAPbI3crystallinity.[28]As shown in Table S4,the full width at half-maximum(FWHM)of (110) peak reduces from 0.200?to 0.173?after inserting the PVP layer. This result is in good agreement with the enlarged grain size, confirming the optimized MAPbI3crystallinity with PVP. Figure 4(a) presents the absorbance of MAPbI3films deposited on ZnO NRs and ZnO/PVP films.The sample with PVP exhibits a slightly higher absorbance near the short-wavelength region due to the enlarged grain size and optimized crystallinity. Trap states are always an issue in polycrystalline films, such as ZnO and perovskite materials.Decreasing them could improve the device performance. PL measurements were applied to investigate the trap states.[29]Figure 4(b) presents the PL spectra of perovskite films deposited on ZnO NRs and ZnO/PVP. The data shows that the former owns a higher PL intensity than the latter, indicating that the PVP coating reduces the defects density at the ZnO NRs/perovskite interface. It turns out that PVP coating could lower the carrier recombination losses,enhance the charge transportation,and facilitate the charge extraction from the perovskite absorption layer to ZnO ETL.In addition,electrochemical impedance spectroscopy (EIS) was implemented to investigate the origin of the improved electron transportation and suppressed carrier recombination after PVP inserting. Nyquist plots of the MAPbI3cells are shown in Fig.4(c).The radius of the semicircle in Nyquist plot represents the recombination resistance(Rrec)of the devices. The node of EIS semicircle with the x-axis gives series resistance (Rs) of the PSC.It is clear that PVP coating makes the Rsdecrease and the Rrecincrease,which can reduce the charge recombination and promote the charge transfer.[11]To further identify the physical origin of the charge separation and transportation, Mott-Schottky analysis was applied. The relationship between V and 1/C2is delivered by the following equation:[30]

    where ε, ε0are permittivity, q, A, N, V are the elementary charge,the active area,the free carrier concentration,and the applied bias, C is the dark measured capacitance, Vbiis the built-in potentials,which can be evaluated by the kink point of the linear region with the x-axis of the Mott-Schottky curve.We can see the ZnO/PVP based device presents a higher Vbithan that of ZnO,which matches well with the tendency of the VOCdiscussed later in Fig.6(a). It is well known that Vbiis beneficial to the charge separation and the suppressed carrier recombination.[30]The higher Vbiof the ZnO/PVP based device should be related to the decreased charge recombination,resulting from the elimination defects and the optimized interfacial between ZnO/perovskite. Combining the above analysis,PVP coating can suppress the non-radiative recombination loss in the cell,leading to a higher VOCcompared to the pristine devices. Therefore,the interface between ZnO/perovskite is meliorated with the reduced defects density and the improved charge transportation.

    Fig.3. (a)Cross-sectional SEM images and(b)schematics of the device structure. (c)Energetic diagram of PSC based on ZnO NRs with a length of 850 nm. (d)J-V plots of the devices based on ZnO NRs with different growth time.

    Fig.4. (a)Absorption spectra and(b)PL spectra of MAPbI3 film deposited on ZnO and ZnO/PVP films,(c)Nyquist plots of PSCs and(the inset depicts the equivalent circuit)(d)Mott-Schottky curves of the best devices based on ZnO and ZnO/PVP films.

    Fig.5. (a)EDS elemental mapping spectra of Mg: ZnO NRs on FTO(O,Mg, and Zn). (b)XPS of Mg(5%): ZnO NRs(c)high-resolution XPS spectra of Mg 1s peak.

    Mg doped ZnO NRs were prepared. Figure 5(a) shows the EDS elemental mapping of the Mg: ZnO film. The distributions of the film composition (Mg, ZnO, and O) imply Mg has been incorporated in the ZnO NRs uniformly. The existence of Mg in the film was further confirmed by the Xray photoelectron spectra(XPS)spectrum of the Mg 1s region(Figs.5(b)and 5(c)).

    Figure S5 shows that the XRD patterns of the ZnO NRs with different Mg doping concentration. All the diffraction peaks correspond to the wurtzite structure of ZnO,suggesting the absence of impurity phase in the samples,and Mg doping does not alter the structure of the ZnO. We infer Mg atoms mainly exist in the ZnO as substitutes or interstitials.[31]After doping Mg, all the peaks become much stronger and sharper compared with the pristine ZnO NRs,suggesting an enhanced crystallinity of the doping ETL.[32]It is beneficial to the electron transportation and improving FF and JSCof the device performance,which will be discussed later in Fig.S6.

    In order to further investigate the influence of Mg doping on the ZnO NRs, the band gap was calculated from the absorption spectra. As shown in Fig.6(a), after 5%Mg doping, the band gap increases. Based on the previous reports,the increased band gap is ascribed to the rise of the conduction band,[22,33]leading to a faster electron transportation at the interface. It is helpful to enhance the FF and JSC. Moreover,EIS measurements were performed to reveal the recombination dynamics and interfacial charge transfer of the doped and none doped PSCs. Figure 6(b)shows the Nyquist plots of the MAPbI3cells. Mg doping makes the Rrecincrease, leading to the lower carrier recombination. Rsappear to be lower than the pristine device, resulting in a faster electron injection. These results match well with the previous literature that Mg doping increased the conductivity, resulting mainly from the decreased internal resistance,which enhances the electron density in ZnO.[23]

    Fig.6.(a)The extrapolated plots of(αhν)2 as a function of hν got from the absorption spectra of ZnO NRs with different content(x=0%,5%)and applied to calculate their band gaps. (b) Nyquist plots of PSCs based on ZnO NRs with different Mg content(x=0%, 5%)(the inset depicts the equivalent circuit).

    Figure 7(a)depicts J-V plots of the champion PSCs based on pristine ZnO, ZnO/PVP, and ZnO: Mg (5%)/PVP layers.The performance parameters are listed in Table 1. After doping with Mg(5%),the device obtains the best PCE of 19.63%,the JSCincreases from 19.96 mA/cm2to 21.66 mA/cm2, the VOCrises from 1.13 V to 1.14 V, and the FF increases from 0.77 to 0.79. The effect of Mg doping concentration on the cells performance was also probed. The photovoltaic performance of solar cells based on the ZnO NRs with different Mg concentrations(0,1%,2%,5%,10%atomic percent)is shown in Fig.S6 and Table S3. It is clear that doping concentration significantly impacts the device performance. When the doping content increased to 10%, the photovoltaic performance of the device decreases to 15.78%, owing to a significant reduction in the JSCand FF. Obviously, 5% doping content is the optimized doping amount. With PVP coating, the performance of PSC is improved, yielding a PCE of 17.27%, the JSCincreases from 19.63 mA/cm2to 19.96 mA/cm2,the VOCand FF rise from 1.10 V to 1.13 V,0.75 to 0.77,respectively.Based on the above analysis, the obvious enhancement is ascribed to the optimized interface and the enhanced perovskite crystallinity. Both devices based on the PVP coating and the Mg doping present a higher reproducibility compared to the pristine devices(Fig.7(b)).

    Table 1. Summary of device characteristics of the cells based on modified ZnO NRs under 1 sun illumination(AM 1.5G,100 mW/cm2).

    The stability of PSCs based on Mg(5%): ZnO NRs with and without PVP coating were tested under lab conditions with a relative humidity of 30%-50% without encapsulation. As Fig.7(c)shows,the PCE of cell with PVP coating retains 80%of the initial PCE values after aging 30 days. While the PCE of cell without PVP coating only retains 57% after 20 days,indicating that the PVP coating contributes to the stability of the devices,which is possibly attributed to the enhanced crystallinity of MAPbI3[11]and the optimized interface.[17]

    Fig.7. (a)Current density-voltage curves of devices and(b)the PCEs distribution of the devices based on ZnO NRs,ZnO/PVP,and ZnO:Mg(5%)/PVP.(c)Evolution of PCE for unsealed PSCs with or without PVP coating under lab conditions with a relative humidity of 30%-50%.

    4. Conclusion

    We have fabricated the effective charge collection and transportation mesoscopic perovskite solar cells based on ZnO NRs by some key optimization of the ETL and ETL/perovskite interface,comprising optimization of the preparation parameters of the ZnO NRs, the use of PVP layer, and Mg doping.The superior length of the ZnO NRs was controlled by manipulating the growth time.By inserting the PVP layer,interfacial traps were reduced, certifying by PL and EIS measurements.Meanwhile, crystallization of MAPbI3was enhanced, identified by XRD and SEM measurements. EIS measurement reveals that Mg doping increases the conductivity of ZnO NRs and improves electron extraction and transportation. Combining together, the PCE of the device rises from 16.28% to 19.63%.The devices with the PVP inserting layer also present better stability than the pristine ones. Our study provides a facile approach to improve the efficiency and the stability of photovoltaic cells. In such a synergistic way, the PSCs based on ZnO NRs are promising in the solar cell field.

    猜你喜歡
    俊杰
    Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
    “畫家陳”
    Effect of the particle temperature on lift force of nanoparticle in a shear rarefied flow*
    Bian Que
    能自律者為俊杰
    文苑(2020年7期)2020-08-12 09:36:36
    俊杰印象
    海峽姐妹(2019年11期)2019-12-23 08:42:18
    表演大師
    我的同桌
    我可是有主角光環(huán)的人
    我給桌子“洗臉”
    久久99一区二区三区| 成年女人毛片免费观看观看9 | 久久免费观看电影| 成人黄色视频免费在线看| 国产精品免费大片| 午夜福利影视在线免费观看| 丝袜在线中文字幕| 精品亚洲乱码少妇综合久久| 热99久久久久精品小说推荐| 在线看a的网站| 热99re8久久精品国产| 久久久久久亚洲精品国产蜜桃av| 色播在线永久视频| 欧美+亚洲+日韩+国产| 波多野结衣av一区二区av| 亚洲精品久久成人aⅴ小说| 捣出白浆h1v1| 男女下面插进去视频免费观看| 午夜精品久久久久久毛片777| 亚洲精品国产色婷婷电影| 午夜日韩欧美国产| 日韩欧美国产一区二区入口| 亚洲第一青青草原| a级毛片在线看网站| 成人国语在线视频| 久久精品亚洲熟妇少妇任你| 18禁观看日本| 国产成人系列免费观看| 精品人妻在线不人妻| 欧美日韩亚洲高清精品| 国产一级毛片在线| 在线观看人妻少妇| 丝袜喷水一区| 天天躁狠狠躁夜夜躁狠狠躁| 日韩欧美一区视频在线观看| 18禁国产床啪视频网站| videosex国产| av网站免费在线观看视频| 高清黄色对白视频在线免费看| 亚洲九九香蕉| 亚洲精品中文字幕一二三四区 | 国产有黄有色有爽视频| 天天操日日干夜夜撸| 天堂中文最新版在线下载| 叶爱在线成人免费视频播放| 99国产精品一区二区蜜桃av | 国产免费一区二区三区四区乱码| 中文字幕精品免费在线观看视频| 亚洲一卡2卡3卡4卡5卡精品中文| 免费高清在线观看日韩| 欧美日韩一级在线毛片| av在线播放精品| 国产日韩欧美视频二区| 亚洲第一青青草原| 亚洲天堂av无毛| 伦理电影免费视频| 侵犯人妻中文字幕一二三四区| 国产精品麻豆人妻色哟哟久久| 国产免费现黄频在线看| 国产一区二区在线观看av| 黄色怎么调成土黄色| 日韩一区二区三区影片| 宅男免费午夜| 香蕉国产在线看| 狂野欧美激情性xxxx| 精品久久久精品久久久| 国产精品麻豆人妻色哟哟久久| 黑丝袜美女国产一区| 三级毛片av免费| 精品少妇久久久久久888优播| 秋霞在线观看毛片| 亚洲av美国av| 欧美日韩成人在线一区二区| 男女高潮啪啪啪动态图| 黄网站色视频无遮挡免费观看| 国产淫语在线视频| 黄频高清免费视频| 日本猛色少妇xxxxx猛交久久| av不卡在线播放| 午夜免费成人在线视频| 大陆偷拍与自拍| 免费在线观看黄色视频的| 脱女人内裤的视频| av线在线观看网站| 黄频高清免费视频| 成人国语在线视频| 九色亚洲精品在线播放| 宅男免费午夜| 香蕉国产在线看| 天堂8中文在线网| 亚洲熟女毛片儿| 久久毛片免费看一区二区三区| 天天操日日干夜夜撸| 一级片'在线观看视频| 国产在视频线精品| 国产精品香港三级国产av潘金莲| 一级片免费观看大全| 中文字幕人妻丝袜一区二区| 99精国产麻豆久久婷婷| 久久久久视频综合| 岛国在线观看网站| 国产欧美日韩一区二区三 | 久久国产亚洲av麻豆专区| 999精品在线视频| 91精品三级在线观看| 国产欧美日韩一区二区精品| 热re99久久国产66热| 日韩制服丝袜自拍偷拍| 精品国产一区二区三区久久久樱花| 热99re8久久精品国产| 精品高清国产在线一区| 免费少妇av软件| 久久人妻熟女aⅴ| 中文精品一卡2卡3卡4更新| 中文字幕精品免费在线观看视频| 国产真人三级小视频在线观看| 国产免费福利视频在线观看| 夫妻午夜视频| 飞空精品影院首页| 国产精品.久久久| 亚洲欧美成人综合另类久久久| 在线观看免费高清a一片| 午夜精品国产一区二区电影| 亚洲九九香蕉| 精品一区在线观看国产| 黄色 视频免费看| 久久久久精品人妻al黑| 国产成人av教育| 99国产精品99久久久久| 欧美av亚洲av综合av国产av| 美女大奶头黄色视频| 夫妻午夜视频| 久久久久久久国产电影| 免费女性裸体啪啪无遮挡网站| 国产97色在线日韩免费| 侵犯人妻中文字幕一二三四区| 精品一区二区三卡| 精品人妻一区二区三区麻豆| 一个人免费看片子| 久久久久国内视频| 日日爽夜夜爽网站| 天天躁狠狠躁夜夜躁狠狠躁| 最新的欧美精品一区二区| 人人妻人人添人人爽欧美一区卜| 99久久人妻综合| 国产亚洲精品久久久久5区| 视频区图区小说| 中文字幕av电影在线播放| 久久精品国产a三级三级三级| 久久人妻福利社区极品人妻图片| 伦理电影免费视频| 伊人久久大香线蕉亚洲五| 精品久久久久久久毛片微露脸 | 亚洲成人免费电影在线观看| 成人免费观看视频高清| 午夜久久久在线观看| 久热爱精品视频在线9| 99精品欧美一区二区三区四区| 国产欧美日韩一区二区精品| 五月天丁香电影| 少妇被粗大的猛进出69影院| 一进一出抽搐动态| 国产老妇伦熟女老妇高清| 国产av一区二区精品久久| 亚洲人成电影观看| 日韩免费高清中文字幕av| 日韩 欧美 亚洲 中文字幕| 男女边摸边吃奶| 国产精品一区二区免费欧美 | 久久久久国产一级毛片高清牌| 亚洲午夜精品一区,二区,三区| 久久中文看片网| 别揉我奶头~嗯~啊~动态视频 | 伊人亚洲综合成人网| 伦理电影免费视频| 亚洲欧美激情在线| 午夜福利免费观看在线| 丰满人妻熟妇乱又伦精品不卡| 一区二区三区激情视频| 女性生殖器流出的白浆| 国产激情久久老熟女| 亚洲三区欧美一区| 丝袜美腿诱惑在线| 女警被强在线播放| 黄色片一级片一级黄色片| 午夜日韩欧美国产| a级片在线免费高清观看视频| 欧美人与性动交α欧美精品济南到| 国产成人精品久久二区二区免费| www.自偷自拍.com| 精品乱码久久久久久99久播| 亚洲av国产av综合av卡| 精品国产一区二区久久| 黑丝袜美女国产一区| 日本av免费视频播放| 国产日韩一区二区三区精品不卡| 亚洲精品国产区一区二| 男女床上黄色一级片免费看| 麻豆av在线久日| 欧美日韩亚洲国产一区二区在线观看 | 日韩大片免费观看网站| 欧美国产精品va在线观看不卡| 国产精品香港三级国产av潘金莲| 精品国产乱码久久久久久男人| 最黄视频免费看| avwww免费| 日本黄色日本黄色录像| 天天操日日干夜夜撸| 各种免费的搞黄视频| 男男h啪啪无遮挡| 亚洲 国产 在线| 欧美日本中文国产一区发布| 大香蕉久久成人网| 国产精品 欧美亚洲| 五月天丁香电影| 亚洲欧美色中文字幕在线| 久久中文字幕一级| 18禁裸乳无遮挡动漫免费视频| 国产成人精品久久二区二区免费| 纯流量卡能插随身wifi吗| 啦啦啦 在线观看视频| 国产熟女午夜一区二区三区| 亚洲精品国产色婷婷电影| 秋霞在线观看毛片| 黄片小视频在线播放| 国产成人影院久久av| 精品一区二区三区四区五区乱码| 丝袜美腿诱惑在线| 中亚洲国语对白在线视频| 亚洲avbb在线观看| 无限看片的www在线观看| 婷婷色av中文字幕| 亚洲精品一二三| cao死你这个sao货| 老司机午夜十八禁免费视频| 啦啦啦中文免费视频观看日本| 国产精品久久久久久精品电影小说| 十八禁高潮呻吟视频| 汤姆久久久久久久影院中文字幕| 91麻豆精品激情在线观看国产 | 性色av乱码一区二区三区2| 精品久久久久久电影网| 91精品国产国语对白视频| 热re99久久精品国产66热6| 午夜福利,免费看| 国产成人影院久久av| 精品国产国语对白av| 久久久欧美国产精品| 欧美日韩福利视频一区二区| 日韩一区二区三区影片| 纵有疾风起免费观看全集完整版| 大片免费播放器 马上看| 国产不卡av网站在线观看| 国产成人一区二区三区免费视频网站| 下体分泌物呈黄色| 免费观看人在逋| 两个人看的免费小视频| 国产xxxxx性猛交| 美女主播在线视频| 激情视频va一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 日日夜夜操网爽| 男女无遮挡免费网站观看| 国产国语露脸激情在线看| a 毛片基地| 久久精品人人爽人人爽视色| 精品国产乱子伦一区二区三区 | 黑人欧美特级aaaaaa片| 80岁老熟妇乱子伦牲交| 首页视频小说图片口味搜索| 丝瓜视频免费看黄片| 黄片大片在线免费观看| 免费日韩欧美在线观看| 香蕉丝袜av| 亚洲欧美日韩高清在线视频 | 啪啪无遮挡十八禁网站| 美国免费a级毛片| 午夜福利,免费看| 亚洲综合色网址| www.自偷自拍.com| 99精品久久久久人妻精品| 国产精品99久久99久久久不卡| 精品久久久久久久毛片微露脸 | 久久精品熟女亚洲av麻豆精品| 久久久国产成人免费| av免费在线观看网站| 午夜福利免费观看在线| 日韩大码丰满熟妇| 日本wwww免费看| 日韩一区二区三区影片| 国产精品久久久久久人妻精品电影 | 淫妇啪啪啪对白视频 | 一进一出抽搐动态| 12—13女人毛片做爰片一| 人成视频在线观看免费观看| 天天躁日日躁夜夜躁夜夜| 中文字幕人妻丝袜一区二区| 久久久精品94久久精品| 91成人精品电影| 亚洲天堂av无毛| 欧美人与性动交α欧美精品济南到| 曰老女人黄片| 欧美xxⅹ黑人| 一本综合久久免费| 欧美激情极品国产一区二区三区| 色视频在线一区二区三区| 在线观看免费视频网站a站| 色婷婷av一区二区三区视频| 老熟女久久久| 国产成人av教育| 国产无遮挡羞羞视频在线观看| 亚洲av欧美aⅴ国产| 午夜福利影视在线免费观看| 国产av精品麻豆| 日本av手机在线免费观看| 久久久精品免费免费高清| 国产成人欧美在线观看 | 少妇 在线观看| 精品国产乱码久久久久久男人| 日日爽夜夜爽网站| 19禁男女啪啪无遮挡网站| 丰满迷人的少妇在线观看| 欧美黑人精品巨大| 精品欧美一区二区三区在线| 国产精品影院久久| 国产成人一区二区三区免费视频网站| 999久久久国产精品视频| a在线观看视频网站| 下体分泌物呈黄色| 精品福利永久在线观看| 丝袜脚勾引网站| 51午夜福利影视在线观看| 国产免费一区二区三区四区乱码| 久久女婷五月综合色啪小说| 久久 成人 亚洲| 久久av网站| 免费av中文字幕在线| 日韩视频在线欧美| 日本撒尿小便嘘嘘汇集6| 一二三四在线观看免费中文在| 1024香蕉在线观看| 视频区图区小说| 五月天丁香电影| 91精品三级在线观看| 777米奇影视久久| 亚洲国产欧美日韩在线播放| 狠狠婷婷综合久久久久久88av| 丝袜喷水一区| 国产主播在线观看一区二区| 老司机福利观看| 亚洲少妇的诱惑av| 精品久久久久久电影网| 女人高潮潮喷娇喘18禁视频| 久久这里只有精品19| 老司机靠b影院| 国产黄色免费在线视频| 777久久人妻少妇嫩草av网站| 国产免费福利视频在线观看| www日本在线高清视频| 日韩视频一区二区在线观看| 精品久久久精品久久久| 少妇裸体淫交视频免费看高清 | 无遮挡黄片免费观看| 黄色片一级片一级黄色片| 成人av一区二区三区在线看 | 男女午夜视频在线观看| 亚洲国产av影院在线观看| 女人被躁到高潮嗷嗷叫费观| 国产极品粉嫩免费观看在线| 亚洲精品国产av蜜桃| 后天国语完整版免费观看| 亚洲精品在线美女| 免费观看a级毛片全部| 一边摸一边做爽爽视频免费| 汤姆久久久久久久影院中文字幕| 丰满饥渴人妻一区二区三| 免费高清在线观看视频在线观看| 韩国高清视频一区二区三区| 欧美日韩成人在线一区二区| 国产精品久久久久久精品古装| 亚洲人成电影观看| 不卡一级毛片| 中文字幕人妻熟女乱码| 嫩草影视91久久| 日本wwww免费看| 久久精品国产a三级三级三级| 免费人妻精品一区二区三区视频| 99国产精品99久久久久| 久久精品aⅴ一区二区三区四区| 成年美女黄网站色视频大全免费| 精品第一国产精品| 老汉色∧v一级毛片| 免费女性裸体啪啪无遮挡网站| 成人18禁高潮啪啪吃奶动态图| 亚洲欧美精品综合一区二区三区| 在线永久观看黄色视频| 亚洲欧美成人综合另类久久久| 日韩 亚洲 欧美在线| 国产精品九九99| 中文精品一卡2卡3卡4更新| 国产高清视频在线播放一区 | 久久久国产一区二区| 亚洲专区国产一区二区| 国产一区二区三区在线臀色熟女 | 久久久久网色| 19禁男女啪啪无遮挡网站| 多毛熟女@视频| 少妇粗大呻吟视频| 中亚洲国语对白在线视频| 亚洲午夜精品一区,二区,三区| 啪啪无遮挡十八禁网站| 午夜两性在线视频| 成年人黄色毛片网站| 成人av一区二区三区在线看 | 啦啦啦免费观看视频1| 大片电影免费在线观看免费| 国产精品国产av在线观看| 国产高清videossex| 国产91精品成人一区二区三区 | 一区二区三区激情视频| 99香蕉大伊视频| 亚洲专区中文字幕在线| 十分钟在线观看高清视频www| 亚洲欧美色中文字幕在线| 高清av免费在线| 日韩欧美一区二区三区在线观看 | 欧美精品一区二区大全| 一级a爱视频在线免费观看| 交换朋友夫妻互换小说| 日韩中文字幕欧美一区二区| 国产熟女午夜一区二区三区| 人人妻,人人澡人人爽秒播| 欧美日韩成人在线一区二区| 动漫黄色视频在线观看| 视频区图区小说| 国产野战对白在线观看| 国产有黄有色有爽视频| 精品国产一区二区久久| 91成人精品电影| 自拍欧美九色日韩亚洲蝌蚪91| 精品一区二区三卡| 久久午夜综合久久蜜桃| www.av在线官网国产| 啦啦啦中文免费视频观看日本| 欧美日韩中文字幕国产精品一区二区三区 | 久久这里只有精品19| 国产野战对白在线观看| 亚洲国产看品久久| 精品一区在线观看国产| 国产一区二区三区综合在线观看| 精品国产国语对白av| 51午夜福利影视在线观看| 水蜜桃什么品种好| 91国产中文字幕| 欧美亚洲日本最大视频资源| 性少妇av在线| 在线观看免费视频网站a站| 制服人妻中文乱码| 欧美日本中文国产一区发布| 欧美乱码精品一区二区三区| 纵有疾风起免费观看全集完整版| 韩国高清视频一区二区三区| 国产成人一区二区三区免费视频网站| 搡老岳熟女国产| 丰满人妻熟妇乱又伦精品不卡| 人人妻人人爽人人添夜夜欢视频| 热re99久久国产66热| 免费观看av网站的网址| 国产精品免费视频内射| 别揉我奶头~嗯~啊~动态视频 | 亚洲欧洲日产国产| 十八禁网站免费在线| 亚洲国产欧美网| 少妇裸体淫交视频免费看高清 | 国产精品影院久久| 男女边摸边吃奶| 亚洲va日本ⅴa欧美va伊人久久 | 国产国语露脸激情在线看| 久久久精品区二区三区| 国产成人影院久久av| 国产视频一区二区在线看| 亚洲国产欧美一区二区综合| 手机成人av网站| 亚洲av欧美aⅴ国产| 九色亚洲精品在线播放| 欧美日韩福利视频一区二区| 激情视频va一区二区三区| a在线观看视频网站| 一二三四在线观看免费中文在| 母亲3免费完整高清在线观看| 欧美激情久久久久久爽电影 | 性色av一级| 久久免费观看电影| 亚洲专区字幕在线| 成人亚洲精品一区在线观看| 精品一区二区三区av网在线观看 | 妹子高潮喷水视频| 电影成人av| 国产精品熟女久久久久浪| 色94色欧美一区二区| 精品一区二区三区av网在线观看 | 婷婷成人精品国产| 老鸭窝网址在线观看| 欧美精品啪啪一区二区三区 | 多毛熟女@视频| 午夜福利乱码中文字幕| 2018国产大陆天天弄谢| 久久国产精品男人的天堂亚洲| 欧美日韩一级在线毛片| 蜜桃国产av成人99| 黄片大片在线免费观看| 久久精品亚洲熟妇少妇任你| 国产在线视频一区二区| 亚洲国产中文字幕在线视频| 成人av一区二区三区在线看 | 日韩免费高清中文字幕av| 欧美黑人欧美精品刺激| 各种免费的搞黄视频| 夜夜骑夜夜射夜夜干| 波多野结衣av一区二区av| 欧美亚洲 丝袜 人妻 在线| 色播在线永久视频| 亚洲第一青青草原| 大码成人一级视频| 婷婷成人精品国产| 天天操日日干夜夜撸| 99久久综合免费| 大香蕉久久网| 大片免费播放器 马上看| 国产亚洲精品久久久久5区| 国产成+人综合+亚洲专区| 久久人妻福利社区极品人妻图片| 黑人操中国人逼视频| 久久国产精品大桥未久av| 91九色精品人成在线观看| 亚洲九九香蕉| 一本大道久久a久久精品| 天堂中文最新版在线下载| 老司机影院成人| 最近最新中文字幕大全免费视频| 色老头精品视频在线观看| 狠狠狠狠99中文字幕| a级毛片黄视频| 中亚洲国语对白在线视频| 亚洲精品第二区| 亚洲一区二区三区欧美精品| 久久国产精品影院| 又大又爽又粗| 黄网站色视频无遮挡免费观看| 欧美亚洲 丝袜 人妻 在线| 国产日韩欧美视频二区| 男女免费视频国产| 午夜日韩欧美国产| 精品人妻熟女毛片av久久网站| 欧美另类亚洲清纯唯美| 精品亚洲乱码少妇综合久久| 制服诱惑二区| 国产视频一区二区在线看| 国产精品久久久久久人妻精品电影 | 一级片免费观看大全| 曰老女人黄片| 中亚洲国语对白在线视频| 日韩 亚洲 欧美在线| 中亚洲国语对白在线视频| 国产精品一区二区精品视频观看| 欧美在线一区亚洲| 欧美精品亚洲一区二区| 18在线观看网站| 啦啦啦啦在线视频资源| 欧美成狂野欧美在线观看| 每晚都被弄得嗷嗷叫到高潮| 国产黄色免费在线视频| 热re99久久精品国产66热6| 欧美日韩成人在线一区二区| 少妇被粗大的猛进出69影院| 亚洲精品粉嫩美女一区| 亚洲 欧美一区二区三区| 在线天堂中文资源库| 91精品国产国语对白视频| 国产精品自产拍在线观看55亚洲 | 这个男人来自地球电影免费观看| 精品人妻1区二区| 两个人看的免费小视频| 亚洲七黄色美女视频| 久久久久久人人人人人| 黑人猛操日本美女一级片| 黄色视频,在线免费观看| 亚洲欧美激情在线| 可以免费在线观看a视频的电影网站| 亚洲精品美女久久久久99蜜臀| 亚洲一区中文字幕在线| 国产成人av教育| 1024香蕉在线观看| 国精品久久久久久国模美| 俄罗斯特黄特色一大片| 我要看黄色一级片免费的| 成年美女黄网站色视频大全免费| 精品福利观看| a级毛片在线看网站| 一区二区三区激情视频| 欧美日韩福利视频一区二区| 好男人电影高清在线观看| 日韩大片免费观看网站| 亚洲国产毛片av蜜桃av| www.精华液| 人妻一区二区av| 啦啦啦视频在线资源免费观看| 午夜福利在线免费观看网站| av不卡在线播放| 欧美精品啪啪一区二区三区 | 日韩大码丰满熟妇| 久久人人爽人人片av| a在线观看视频网站| 亚洲熟女毛片儿| 两性夫妻黄色片|