• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO?

    2021-03-19 03:21:46ZhenyunZhang張振雲(yún)LeiXu許磊andJunjieQi齊俊杰
    Chinese Physics B 2021年3期
    關鍵詞:俊杰

    Zhenyun Zhang(張振雲(yún)), Lei Xu(許磊), and Junjie Qi(齊俊杰)

    School of Materials Science and Engineering,University of Science and Technology Beijing,Beijing 100083,China

    Keywords: perovskite solar cells ZnO nanorods, interface modification, preparation parameters, Mg doped ZnO

    1. Introduction

    The organic-inorganic perovskite light-harvesting materials have the advantages of inexpensive fabrication with solution techniques,strong absorption in the visible spectrum,and high carrier mobility.[1-3]Since the first use of the materials as dye sensitizers in dye-sensitized solar cells with the power conversion efficiency(PCE)of 3.8%,[4]perovskite solar cells(PSCs) have been widely investigated in recent years. The PCE of the PSCs is improving rapidly and now has reached more than 25%.[5-9]

    The structure of the PSCs usually includes an anode, a hole transportation layer (HTL), a light absorption layer, an electron transportation layer(ETL),and a cathode.[10-12]The ETL always plays a significant role in transporting electrons and blocking holes. Among different metal oxides applied as ETL,zinc oxide(ZnO)has garnered keen attention due to the superior opto-electronic properties,and they can be regulated by tuning the composition, doping, and morphology.[13-15]In addition, high-quality ZnO can be obtained via solutionprocessed at low temperature.[16]Many attempts have been made in facilitating the PCE of ZnO-based PSCs to over 20%.By tuning ZnO/perovskite interface with sulfidation,the PCE of the ZnO-based device was increased to 20.7%,[17]as well as protonated ethanolamine and MgO.[18]However, the PCE is still lower than the TiO2based PSCs. The difference in PCE may result from the non-optimized ZnO NR crystallinity(conductivity of NR) that impacts the electron transportation between the perovskite absorbing layer and ETL,[19]but may also be owning to the recombination originating from traps at the interface between ETL/perovskite. As a result, it is very important to improve the ZnO NR crystallinity and reduce the trap density at the interface between ETL/perovskite. MgO was applied as a passivation layer to reduce the interfacial traps.[18]Despite the improved efficiency of the device, the preparation process is not simple, and the ZnO-based PSCs are unsatisfactory to be persistent in the air without sealing.Polyvinylpyrrolidone(PVP)is a water-soluble polymer,which was incorporated between ETL and Ag cathode to improve electron transport for inverted PSCs.[20]While whether the PVP interlayer between perovskite and ETL would influence the device performance is interesting.

    It is well known that element doping is an effective method to modify the crystallinity and the electrical/optical properties of the material.[21]Magnesium (Mg) is an ideal doping element to regulate the energy band structure of ZnO owing to the similar radius of Mg and Zn. Mg doped ZnO nanocolloidal ETL was applied in PSC, achieving a PCE of 16.5%with low FF.[22]Few studies about Mg doped ZnO NRs in PSC fields were reported.

    In this paper,the PVP layer is inserted between ZnO NRs and perovskite material.Steady-state photoluminescence(PL)and x-ray diffraction(XRD)measurements show that the PVP layer helps reduce the interfacial defects and enhance perovskite crystallinity. Meanwhile,it also slows the PSC degradation,and 80%of primary PCE remains after being exposed to air for 30 d without encapsulation. In addition, we incorporate Mg in ZnO NRs and optimize the preparation parameters to improve ZnO NR crystallinity and promote the electron transportation. As a result,photovoltaic parameters of the ZnO NRs based PSCs are enhanced,and a PCE of 19.63%is attained.

    2. Experimental details

    We used fluorine-doped tin oxide(FTO)transparent glass as the electrode. After etching with zinc powder and hydrochloric acid (HCl) solution, the FTO was cleaned with alkaline detergent, deionized water, acetone, ethyl alcohol,and isopropanol in ultrasonic cleaners. The seed layer was first deposited by the sol-gel method as follows:[23]a solution of Zn(CH3COO)2·2H2O (10 mM) in ethylene glycol monomethyl ether was spin coated at 3000 rpm for 30 s on the FTO substrates, then the FTO substrates with ZnO seed layer were annealed at 350?C for 30 min. The ZnO NRs were prepared by hydrothermal method,[24]zinc nitrate hexahydrate (Zn(NO3)2·6H2O) and hexamethylenetetramine(HMTA) were dissolved in deionized water in equimolar(30 mM). The magnesium nitrate (Mg(NO3)2·6H2O) (0, 1%,2%, 5%, 10%) was added into the precursor solution to induce Mg doping. The FTO substrates with the ZnO seed layer were immersed in the precursor solution and put into the highpressure reaction vessel. The seed layer at 30 mM precursor concentration was kept at 90?C for different growth time(2.5 h,3 h,3.5 h,4 h).Then the FTO substrates with ZnO NRs were rinsed with DI water several times and was annealed at 450?C for 30 min.A PVP solution in deionized water(1 wt%)was spin-coated on the ZnO NRs at 5000 rpm for 60 s and was annealed at 100?C for 10 min.

    Perovskite film was prepared by the twostep sequential deposition method[25]ZnO NRs were infiltrated with PbI2by spin-coating a PbI2solution in DMF (1 M) that was kept at 70?C, which adopted a spinning rate of 4000 rpm and a spinning period of 30 s. After keeping on the hot plate at 70?C for 30 min to dry PbI2and cooling to room temperature, the film was dipped into CH3NH3I (MAI) solution in 2-propanol (0.063 M) and then dried for 30 min to form in situ CH3NH3PbI3(MAPbI3) film. The Spiro-OMeTAD solution was prepared by mixing 72.3 mg Spiro-OMeTAD,30 μL 4-tert-butylpyridine and 35 μL bis(trifluoromethane)sulfonamide lithium salt(Li-TFSI)stock solution(260 mg/mL Li-TFSI in acetonitrile) in 1mL chlorobenzene. The Spiro-OMeTAD solution was spin coated on MAPbI3film at 4000 rpm for 30 s, and the HTL was formed. Finally, gold back contact was deposited on the surface of HTL using a thermal evaporator.

    3. Results and discussion

    To obtain high-quality ZnO NRs,we optimize the preparation parameters of ZnO NRs by varying the immersion time of the seed layer in a 30 mM precursor solution. Figures 1(a)-1(d) show that the surface and cross-sectional scanning electron micrograph(SEM)images of ZnO NRs in a 30 mM precursor solution for different growth time. The length of the ZnO NRs increases from about 450 nm to 600 nm, 850 nm,and 1000 nm as the growth time increases from 2.5 h to 3 h,3.5 h, and 4 h, respectively. While the diameter of the ZnO NRs is about 70 nm for the varying growth time. It suggests that changing the growth time at the fixed precursor concentration will only affect the length of the ZnO NRs and the influence on the diameter is not obvious. The result is in good agreement with the previous report for ZnO NRs.[24]

    Figure 1(e)presents that the absorbance of ZnO NRs improves with the increasing length. It has been reported that the length of the ZnO NRs may influence the infiltration and the formation of the perovskite material;[27]as shown in Fig.1(f),XRD patterns of perovskite deposited on different ZnO NRs show there are no PbI2peaks in ZnO NRs with the growth time of 2.5 h,3 h,3.5 h. Especially the XRD pattern of the sample with 3.5 h shows the strongest peaks of (110), (112), (220),and(310)planes of perovskite due to the most perovskite infiltrated in the longest ZnO NRs. It indicates the complete reaction of PbI2and MAI.Figure S1 presents the cross-sectional SEM image of MAPbI3film deposited on the ZnO NRs with different growth time. The whole thickness of the absorbing layer increases with the prolonged growth time of ZnO. We can see a compact and well crystallinity capping layer of the perovskite film is formed on the vertical ZnO NRs when the growth time is 3.5 h.However,when the growth time increases to 4 h,PbI2cannot completely convert to MAPbI3crystals and it is disadvantageous for the device performance.

    Figure 2 shows the fabrication procedure of PSC based on ZnO NRs.The schematic illustration of the prepared PSC with the structure of FTO/ZnO NRs/MAPbI3/Spiro-OMeTAD/Au and the cross-sectional SEM images of the device are shown in Figs. 3(a) and 3(b). The corresponding energy level diagram of the device based on related materials are shown in Fig.3(c).[22]We can see the perovskite absorption layer protects the ZnO NRs from contacting the HTL directly. The pores in the ZnO NRs are fully filled with perovskite. It is advantageous to collect carriers efficiently by ZnO NRs and Spiro-OMeTAD.

    Fig.1. Surface and cross-sectional SEM images of ZnO nanorod in a 30 mM precursor solution for different growth time (a) 2.5 h, (b)3 h,(c)3.5 h,(d)4 h. (e)Absorption spectra of ZnO NRs in a 30 mM precursor solution for different growth time. (f)XRD patterns of perovskite deposited on ZnO NRs with different growth time.

    Fig.2. Fabrication procedure of PSC based on ZnO NRs.

    We further compare the influence of the length on the device performance. As shown in Fig.3(d), the device performance changes with the length of ZnO NRs and the corresponding photovoltaic parameters are listed in Table S1. It is revealed that the optimal length of ZnO NRs is 850 nm corresponding to the growth time of 3.5 h. The optimal short circuit current density (JSC) of 18.27 mA/cm2, open circuit voltage(VOC) of 1.00 V, fill factor (FF) of 0.73, and the maximum PCE of 13.45%,which is better than other time of 2.5 h(PCE of 10.11%,JSCof 15.69 mA/cm2,VOCof 0.91V,FF of 0.70),3 h(PCE of 11.76%,JSCof 17.24 mA/cm2,VOCof 0.94 V,FF of 0.72)and 4 h(PCE of 12.98%,JSCof 18.03 mA/cm2,VOCof 0.97 V,FF of 0.73). After growing from 2.5 h to 3.5 h,the JSCincreases from 15.69 mA/cm2to 18.27 mA/cm2as the length increases from 450 nm to 850 nm. The increase of the length of ZnO NRs allows more perovskite to infiltrate into the space of the ZnO NRs,which improve the harvest efficiency of visible light and enhance the JSC.[24]However, when ZnO NRs grow to 1000 nm, they will be disorderly to hinder the infiltration of perovskite and increase the probability of charge recombination between the ZnO NRs/perovskite interface,leading to the decline of the device performance. Therefore, the following studies are focused on ZnO NRs with the length of 850 nm.

    Next, we prepared a layer of PVP coating between the ZnO NRs/perovskite interface. Figure S2 shows high resolution transmission electron microscopy (HRTEM) image of ZnO NRs with PVP coating, verifying the existence of PVP coating. In order to investigate the effect of the PVP layer on the MAPbI3film,surface morphologies of perovskite films were detected shown in Fig.S3. We can see both films are continuous and of full coverage. With the PVP coating, the average grain size turns larger. We infer this is ascribed to the solubilization and dispersion characteristic of PVP,improving surface hydrophilicity and reducing surface energy.[27]The XRD patterns of MAPbI3deposited on ZnO with/without PVP coating are shown in Fig.S4. The results present both films own tetragonal perovskite structure,and the sharper peaks for PVP coating imply the optimized MAPbI3crystallinity.[28]As shown in Table S4,the full width at half-maximum(FWHM)of (110) peak reduces from 0.200?to 0.173?after inserting the PVP layer. This result is in good agreement with the enlarged grain size, confirming the optimized MAPbI3crystallinity with PVP. Figure 4(a) presents the absorbance of MAPbI3films deposited on ZnO NRs and ZnO/PVP films.The sample with PVP exhibits a slightly higher absorbance near the short-wavelength region due to the enlarged grain size and optimized crystallinity. Trap states are always an issue in polycrystalline films, such as ZnO and perovskite materials.Decreasing them could improve the device performance. PL measurements were applied to investigate the trap states.[29]Figure 4(b) presents the PL spectra of perovskite films deposited on ZnO NRs and ZnO/PVP. The data shows that the former owns a higher PL intensity than the latter, indicating that the PVP coating reduces the defects density at the ZnO NRs/perovskite interface. It turns out that PVP coating could lower the carrier recombination losses,enhance the charge transportation,and facilitate the charge extraction from the perovskite absorption layer to ZnO ETL.In addition,electrochemical impedance spectroscopy (EIS) was implemented to investigate the origin of the improved electron transportation and suppressed carrier recombination after PVP inserting. Nyquist plots of the MAPbI3cells are shown in Fig.4(c).The radius of the semicircle in Nyquist plot represents the recombination resistance(Rrec)of the devices. The node of EIS semicircle with the x-axis gives series resistance (Rs) of the PSC.It is clear that PVP coating makes the Rsdecrease and the Rrecincrease,which can reduce the charge recombination and promote the charge transfer.[11]To further identify the physical origin of the charge separation and transportation, Mott-Schottky analysis was applied. The relationship between V and 1/C2is delivered by the following equation:[30]

    where ε, ε0are permittivity, q, A, N, V are the elementary charge,the active area,the free carrier concentration,and the applied bias, C is the dark measured capacitance, Vbiis the built-in potentials,which can be evaluated by the kink point of the linear region with the x-axis of the Mott-Schottky curve.We can see the ZnO/PVP based device presents a higher Vbithan that of ZnO,which matches well with the tendency of the VOCdiscussed later in Fig.6(a). It is well known that Vbiis beneficial to the charge separation and the suppressed carrier recombination.[30]The higher Vbiof the ZnO/PVP based device should be related to the decreased charge recombination,resulting from the elimination defects and the optimized interfacial between ZnO/perovskite. Combining the above analysis,PVP coating can suppress the non-radiative recombination loss in the cell,leading to a higher VOCcompared to the pristine devices. Therefore,the interface between ZnO/perovskite is meliorated with the reduced defects density and the improved charge transportation.

    Fig.3. (a)Cross-sectional SEM images and(b)schematics of the device structure. (c)Energetic diagram of PSC based on ZnO NRs with a length of 850 nm. (d)J-V plots of the devices based on ZnO NRs with different growth time.

    Fig.4. (a)Absorption spectra and(b)PL spectra of MAPbI3 film deposited on ZnO and ZnO/PVP films,(c)Nyquist plots of PSCs and(the inset depicts the equivalent circuit)(d)Mott-Schottky curves of the best devices based on ZnO and ZnO/PVP films.

    Fig.5. (a)EDS elemental mapping spectra of Mg: ZnO NRs on FTO(O,Mg, and Zn). (b)XPS of Mg(5%): ZnO NRs(c)high-resolution XPS spectra of Mg 1s peak.

    Mg doped ZnO NRs were prepared. Figure 5(a) shows the EDS elemental mapping of the Mg: ZnO film. The distributions of the film composition (Mg, ZnO, and O) imply Mg has been incorporated in the ZnO NRs uniformly. The existence of Mg in the film was further confirmed by the Xray photoelectron spectra(XPS)spectrum of the Mg 1s region(Figs.5(b)and 5(c)).

    Figure S5 shows that the XRD patterns of the ZnO NRs with different Mg doping concentration. All the diffraction peaks correspond to the wurtzite structure of ZnO,suggesting the absence of impurity phase in the samples,and Mg doping does not alter the structure of the ZnO. We infer Mg atoms mainly exist in the ZnO as substitutes or interstitials.[31]After doping Mg, all the peaks become much stronger and sharper compared with the pristine ZnO NRs,suggesting an enhanced crystallinity of the doping ETL.[32]It is beneficial to the electron transportation and improving FF and JSCof the device performance,which will be discussed later in Fig.S6.

    In order to further investigate the influence of Mg doping on the ZnO NRs, the band gap was calculated from the absorption spectra. As shown in Fig.6(a), after 5%Mg doping, the band gap increases. Based on the previous reports,the increased band gap is ascribed to the rise of the conduction band,[22,33]leading to a faster electron transportation at the interface. It is helpful to enhance the FF and JSC. Moreover,EIS measurements were performed to reveal the recombination dynamics and interfacial charge transfer of the doped and none doped PSCs. Figure 6(b)shows the Nyquist plots of the MAPbI3cells. Mg doping makes the Rrecincrease, leading to the lower carrier recombination. Rsappear to be lower than the pristine device, resulting in a faster electron injection. These results match well with the previous literature that Mg doping increased the conductivity, resulting mainly from the decreased internal resistance,which enhances the electron density in ZnO.[23]

    Fig.6.(a)The extrapolated plots of(αhν)2 as a function of hν got from the absorption spectra of ZnO NRs with different content(x=0%,5%)and applied to calculate their band gaps. (b) Nyquist plots of PSCs based on ZnO NRs with different Mg content(x=0%, 5%)(the inset depicts the equivalent circuit).

    Figure 7(a)depicts J-V plots of the champion PSCs based on pristine ZnO, ZnO/PVP, and ZnO: Mg (5%)/PVP layers.The performance parameters are listed in Table 1. After doping with Mg(5%),the device obtains the best PCE of 19.63%,the JSCincreases from 19.96 mA/cm2to 21.66 mA/cm2, the VOCrises from 1.13 V to 1.14 V, and the FF increases from 0.77 to 0.79. The effect of Mg doping concentration on the cells performance was also probed. The photovoltaic performance of solar cells based on the ZnO NRs with different Mg concentrations(0,1%,2%,5%,10%atomic percent)is shown in Fig.S6 and Table S3. It is clear that doping concentration significantly impacts the device performance. When the doping content increased to 10%, the photovoltaic performance of the device decreases to 15.78%, owing to a significant reduction in the JSCand FF. Obviously, 5% doping content is the optimized doping amount. With PVP coating, the performance of PSC is improved, yielding a PCE of 17.27%, the JSCincreases from 19.63 mA/cm2to 19.96 mA/cm2,the VOCand FF rise from 1.10 V to 1.13 V,0.75 to 0.77,respectively.Based on the above analysis, the obvious enhancement is ascribed to the optimized interface and the enhanced perovskite crystallinity. Both devices based on the PVP coating and the Mg doping present a higher reproducibility compared to the pristine devices(Fig.7(b)).

    Table 1. Summary of device characteristics of the cells based on modified ZnO NRs under 1 sun illumination(AM 1.5G,100 mW/cm2).

    The stability of PSCs based on Mg(5%): ZnO NRs with and without PVP coating were tested under lab conditions with a relative humidity of 30%-50% without encapsulation. As Fig.7(c)shows,the PCE of cell with PVP coating retains 80%of the initial PCE values after aging 30 days. While the PCE of cell without PVP coating only retains 57% after 20 days,indicating that the PVP coating contributes to the stability of the devices,which is possibly attributed to the enhanced crystallinity of MAPbI3[11]and the optimized interface.[17]

    Fig.7. (a)Current density-voltage curves of devices and(b)the PCEs distribution of the devices based on ZnO NRs,ZnO/PVP,and ZnO:Mg(5%)/PVP.(c)Evolution of PCE for unsealed PSCs with or without PVP coating under lab conditions with a relative humidity of 30%-50%.

    4. Conclusion

    We have fabricated the effective charge collection and transportation mesoscopic perovskite solar cells based on ZnO NRs by some key optimization of the ETL and ETL/perovskite interface,comprising optimization of the preparation parameters of the ZnO NRs, the use of PVP layer, and Mg doping.The superior length of the ZnO NRs was controlled by manipulating the growth time.By inserting the PVP layer,interfacial traps were reduced, certifying by PL and EIS measurements.Meanwhile, crystallization of MAPbI3was enhanced, identified by XRD and SEM measurements. EIS measurement reveals that Mg doping increases the conductivity of ZnO NRs and improves electron extraction and transportation. Combining together, the PCE of the device rises from 16.28% to 19.63%.The devices with the PVP inserting layer also present better stability than the pristine ones. Our study provides a facile approach to improve the efficiency and the stability of photovoltaic cells. In such a synergistic way, the PSCs based on ZnO NRs are promising in the solar cell field.

    猜你喜歡
    俊杰
    Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
    “畫家陳”
    Effect of the particle temperature on lift force of nanoparticle in a shear rarefied flow*
    Bian Que
    能自律者為俊杰
    文苑(2020年7期)2020-08-12 09:36:36
    俊杰印象
    海峽姐妹(2019年11期)2019-12-23 08:42:18
    表演大師
    我的同桌
    我可是有主角光環(huán)的人
    我給桌子“洗臉”
    www.色视频.com| videossex国产| 亚洲成人久久爱视频| 精品99又大又爽又粗少妇毛片| 成人一区二区视频在线观看| 大话2 男鬼变身卡| av又黄又爽大尺度在线免费看 | 久久精品国产亚洲网站| 99久久精品一区二区三区| 国产精品1区2区在线观看.| 久久99蜜桃精品久久| 高清av免费在线| 欧美成人a在线观看| 建设人人有责人人尽责人人享有的 | 国产在视频线在精品| 不卡视频在线观看欧美| 日韩欧美精品v在线| 亚洲av福利一区| 亚洲高清免费不卡视频| 99久久人妻综合| 18+在线观看网站| 国产免费一级a男人的天堂| 亚洲伊人久久精品综合 | 小蜜桃在线观看免费完整版高清| 22中文网久久字幕| 亚洲欧洲日产国产| 水蜜桃什么品种好| 亚洲精品国产成人久久av| 18禁裸乳无遮挡免费网站照片| 久久久国产成人精品二区| 99久久精品一区二区三区| 日本-黄色视频高清免费观看| 日韩精品青青久久久久久| 免费不卡的大黄色大毛片视频在线观看 | 午夜福利在线观看吧| 成人二区视频| 岛国毛片在线播放| 看非洲黑人一级黄片| 嫩草影院精品99| 嫩草影院入口| 尤物成人国产欧美一区二区三区| 国产av码专区亚洲av| 久久精品夜夜夜夜夜久久蜜豆| 亚洲av一区综合| 99热6这里只有精品| 精品久久久久久久久久久久久| 黄色一级大片看看| 免费播放大片免费观看视频在线观看 | 秋霞在线观看毛片| 尾随美女入室| 日韩欧美精品v在线| 我要看日韩黄色一级片| 少妇熟女欧美另类| 高清视频免费观看一区二区 | 乱人视频在线观看| 欧美3d第一页| 九草在线视频观看| 菩萨蛮人人尽说江南好唐韦庄 | 麻豆成人av视频| 亚洲精品久久久久久婷婷小说 | 直男gayav资源| 亚洲欧美日韩东京热| 久久99蜜桃精品久久| 舔av片在线| 久久人人爽人人片av| 欧美变态另类bdsm刘玥| 国产精品福利在线免费观看| 久久99热这里只频精品6学生 | 久久热精品热| 青春草亚洲视频在线观看| 欧美xxxx性猛交bbbb| 欧美潮喷喷水| 久久99精品国语久久久| 国产黄片视频在线免费观看| 亚洲美女搞黄在线观看| 三级男女做爰猛烈吃奶摸视频| 国产精品av视频在线免费观看| 日日干狠狠操夜夜爽| 蜜桃亚洲精品一区二区三区| 人人妻人人澡人人爽人人夜夜 | 亚洲国产欧美人成| 99热6这里只有精品| 日韩欧美在线乱码| av国产免费在线观看| 欧美性猛交╳xxx乱大交人| 三级毛片av免费| 国产又色又爽无遮挡免| 日本午夜av视频| 天美传媒精品一区二区| 蜜桃久久精品国产亚洲av| 精品酒店卫生间| eeuss影院久久| 91在线精品国自产拍蜜月| 免费看日本二区| 国产成人freesex在线| 亚洲成人中文字幕在线播放| 亚洲高清免费不卡视频| 啦啦啦观看免费观看视频高清| 亚洲电影在线观看av| 在线免费观看的www视频| 日韩欧美精品免费久久| 中文字幕久久专区| 午夜福利在线在线| 国产高清有码在线观看视频| 日韩欧美国产在线观看| 国产av码专区亚洲av| 亚州av有码| 亚洲综合精品二区| 中文字幕久久专区| 亚洲激情五月婷婷啪啪| 国产成人91sexporn| av卡一久久| 国产精品一区www在线观看| 免费黄网站久久成人精品| 网址你懂的国产日韩在线| 亚洲欧洲国产日韩| 老司机影院成人| 日韩一区二区视频免费看| 日韩一本色道免费dvd| 欧美性感艳星| videos熟女内射| 国产免费福利视频在线观看| 丰满乱子伦码专区| 久久精品久久久久久久性| 亚洲国产精品合色在线| 亚洲国产欧洲综合997久久,| 国产美女午夜福利| 岛国毛片在线播放| av又黄又爽大尺度在线免费看 | 麻豆久久精品国产亚洲av| 97在线视频观看| 国产视频内射| 欧美区成人在线视频| 国产av不卡久久| 热99re8久久精品国产| 高清视频免费观看一区二区 | 性色avwww在线观看| 欧美一级a爱片免费观看看| 精品人妻偷拍中文字幕| 99久久无色码亚洲精品果冻| 国产精品野战在线观看| 热99在线观看视频| 最近的中文字幕免费完整| 欧美激情国产日韩精品一区| 爱豆传媒免费全集在线观看| 成人鲁丝片一二三区免费| 国产精品1区2区在线观看.| 国产男人的电影天堂91| 免费看日本二区| 变态另类丝袜制服| 亚洲国产成人一精品久久久| 午夜福利网站1000一区二区三区| 成人午夜高清在线视频| 麻豆一二三区av精品| 久久国产乱子免费精品| 亚洲国产色片| 精品酒店卫生间| 午夜福利在线在线| 日韩欧美精品免费久久| 国产伦理片在线播放av一区| 国产欧美另类精品又又久久亚洲欧美| 国产精品伦人一区二区| 午夜福利网站1000一区二区三区| 少妇猛男粗大的猛烈进出视频 | 国产久久久一区二区三区| 国产午夜福利久久久久久| 男女国产视频网站| 在线播放国产精品三级| 久久热精品热| 一区二区三区乱码不卡18| 美女被艹到高潮喷水动态| 少妇人妻一区二区三区视频| 午夜精品在线福利| 国产毛片a区久久久久| 色吧在线观看| 女人被狂操c到高潮| 人人妻人人澡人人爽人人夜夜 | 一夜夜www| 久久久a久久爽久久v久久| 日本免费一区二区三区高清不卡| 91精品伊人久久大香线蕉| 国产亚洲av片在线观看秒播厂 | 久久这里只有精品中国| 三级毛片av免费| 女人久久www免费人成看片 | 亚洲色图av天堂| 亚洲av成人av| 九九爱精品视频在线观看| 22中文网久久字幕| 少妇猛男粗大的猛烈进出视频 | 十八禁国产超污无遮挡网站| 日本色播在线视频| 国产麻豆成人av免费视频| 少妇熟女aⅴ在线视频| 97超视频在线观看视频| 欧美丝袜亚洲另类| 中文亚洲av片在线观看爽| 成年女人永久免费观看视频| 别揉我奶头 嗯啊视频| 欧美精品一区二区大全| 日日摸夜夜添夜夜爱| 成人综合一区亚洲| 日本与韩国留学比较| 丰满少妇做爰视频| 国产伦一二天堂av在线观看| 国产亚洲91精品色在线| 午夜精品国产一区二区电影 | 免费人成在线观看视频色| 亚洲精品成人久久久久久| 亚洲国产色片| 高清午夜精品一区二区三区| 欧美zozozo另类| 一级毛片aaaaaa免费看小| 精品久久久久久久久亚洲| 国产精品熟女久久久久浪| 国产探花极品一区二区| 国国产精品蜜臀av免费| 中文字幕免费在线视频6| ponron亚洲| 免费搜索国产男女视频| 亚洲成av人片在线播放无| 日本wwww免费看| 日韩 亚洲 欧美在线| 少妇高潮的动态图| 在线观看美女被高潮喷水网站| 亚洲天堂国产精品一区在线| 亚洲乱码一区二区免费版| 一级毛片我不卡| 亚洲国产日韩欧美精品在线观看| 亚洲熟妇中文字幕五十中出| 国产在线一区二区三区精 | 老司机影院成人| www.av在线官网国产| 国产成人福利小说| 国产成人精品一,二区| 少妇人妻一区二区三区视频| 中文字幕精品亚洲无线码一区| 波野结衣二区三区在线| 91在线精品国自产拍蜜月| 可以在线观看毛片的网站| 成人国产麻豆网| 国产乱来视频区| 高清午夜精品一区二区三区| 亚洲高清免费不卡视频| 亚洲国产精品合色在线| 超碰av人人做人人爽久久| 成人美女网站在线观看视频| 国产伦精品一区二区三区视频9| 午夜激情欧美在线| 亚洲精品aⅴ在线观看| 91精品伊人久久大香线蕉| 国产精品不卡视频一区二区| 美女黄网站色视频| 国产乱人偷精品视频| 自拍偷自拍亚洲精品老妇| 免费观看的影片在线观看| 日本熟妇午夜| 深爱激情五月婷婷| 波多野结衣巨乳人妻| 最近最新中文字幕免费大全7| 嘟嘟电影网在线观看| 久久热精品热| 亚洲国产精品成人久久小说| 亚洲中文字幕一区二区三区有码在线看| 69人妻影院| 国产欧美日韩精品一区二区| 国产成年人精品一区二区| 99热这里只有精品一区| 97人妻精品一区二区三区麻豆| 国产精品美女特级片免费视频播放器| 日本黄大片高清| 美女内射精品一级片tv| 伦理电影大哥的女人| 成人漫画全彩无遮挡| 中文字幕久久专区| 最近最新中文字幕免费大全7| 亚洲欧美精品综合久久99| 亚洲av中文av极速乱| 午夜福利视频1000在线观看| 色网站视频免费| 69人妻影院| 国产成人午夜福利电影在线观看| 色综合站精品国产| a级一级毛片免费在线观看| 久久久久久伊人网av| 特大巨黑吊av在线直播| 村上凉子中文字幕在线| 午夜激情欧美在线| 久久精品人妻少妇| 国产精品嫩草影院av在线观看| 亚洲最大成人中文| 国产黄片视频在线免费观看| 搞女人的毛片| 一个人免费在线观看电影| 99久久精品一区二区三区| 亚洲精品乱久久久久久| 级片在线观看| 美女国产视频在线观看| 尤物成人国产欧美一区二区三区| 日韩制服骚丝袜av| 内地一区二区视频在线| av播播在线观看一区| 成人av在线播放网站| 精品国产一区二区三区久久久樱花 | 女的被弄到高潮叫床怎么办| 亚洲av中文av极速乱| 国产片特级美女逼逼视频| 精品国产露脸久久av麻豆 | 午夜爱爱视频在线播放| 91久久精品电影网| 久久久久网色| 欧美精品一区二区大全| 国产精品一区www在线观看| 天堂中文最新版在线下载 | 22中文网久久字幕| 国产美女午夜福利| 亚洲精品自拍成人| 最近2019中文字幕mv第一页| 久久热精品热| 午夜激情福利司机影院| 日产精品乱码卡一卡2卡三| 亚洲成人久久爱视频| 1000部很黄的大片| 国产精品久久久久久精品电影小说 | 校园人妻丝袜中文字幕| 麻豆成人av视频| 激情 狠狠 欧美| 午夜视频国产福利| 久久久久久大精品| 亚洲成av人片在线播放无| 欧美一区二区国产精品久久精品| 亚洲人成网站在线观看播放| 激情 狠狠 欧美| 少妇的逼水好多| 亚洲av成人av| 日韩一区二区视频免费看| 久久久久久伊人网av| 亚洲美女搞黄在线观看| www.色视频.com| 久久精品国产亚洲av天美| 久久久久精品久久久久真实原创| 免费黄网站久久成人精品| eeuss影院久久| 久热久热在线精品观看| av免费观看日本| 一级av片app| 亚洲精品,欧美精品| 中文字幕精品亚洲无线码一区| 精品人妻偷拍中文字幕| 久久人人爽人人片av| 永久免费av网站大全| 日本一二三区视频观看| 精品熟女少妇av免费看| 中文乱码字字幕精品一区二区三区 | 亚洲激情五月婷婷啪啪| 国产乱来视频区| 久久久午夜欧美精品| 精品无人区乱码1区二区| 日韩一本色道免费dvd| 最近2019中文字幕mv第一页| 亚洲真实伦在线观看| 国产精品久久久久久精品电影小说 | 国产一区二区在线av高清观看| 精品免费久久久久久久清纯| 色尼玛亚洲综合影院| 黄色一级大片看看| 亚洲内射少妇av| 女的被弄到高潮叫床怎么办| 成人毛片60女人毛片免费| 91在线精品国自产拍蜜月| 中文字幕av在线有码专区| 久久久久久久久大av| 欧美丝袜亚洲另类| 精品熟女少妇av免费看| 亚洲婷婷狠狠爱综合网| 亚洲最大成人中文| 日韩欧美三级三区| 如何舔出高潮| 我的老师免费观看完整版| 一级二级三级毛片免费看| 精品无人区乱码1区二区| 国产伦在线观看视频一区| 国产一区二区三区av在线| 最近中文字幕高清免费大全6| 午夜精品一区二区三区免费看| 亚洲电影在线观看av| 日韩大片免费观看网站 | 老女人水多毛片| av在线观看视频网站免费| 日本av手机在线免费观看| 中文字幕亚洲精品专区| 亚洲第一区二区三区不卡| 免费av毛片视频| 欧美色视频一区免费| 精品久久久久久久人妻蜜臀av| 国产不卡一卡二| 人妻系列 视频| 国产精品国产三级专区第一集| 三级国产精品片| 村上凉子中文字幕在线| 亚洲人成网站在线播| 久久这里只有精品中国| 国产精品麻豆人妻色哟哟久久 | 99在线视频只有这里精品首页| 国产精品综合久久久久久久免费| 精品无人区乱码1区二区| 国产亚洲5aaaaa淫片| 久久久国产成人精品二区| 少妇被粗大猛烈的视频| 久久精品国产鲁丝片午夜精品| 日韩大片免费观看网站 | 久久久久久久久大av| 久久人妻av系列| 国产精品一区二区三区四区久久| 国产午夜精品一二区理论片| 久久99热这里只频精品6学生 | 一级毛片久久久久久久久女| 99久久九九国产精品国产免费| 国产成人a∨麻豆精品| 九九在线视频观看精品| 国产人妻一区二区三区在| 日本免费一区二区三区高清不卡| 国产69精品久久久久777片| 精品久久久久久久久亚洲| 亚洲图色成人| 国产成年人精品一区二区| 成人欧美大片| 综合色丁香网| 亚洲成色77777| 久久国内精品自在自线图片| 亚洲中文字幕一区二区三区有码在线看| 在线免费十八禁| 亚洲精品亚洲一区二区| 国产精品蜜桃在线观看| 搡女人真爽免费视频火全软件| 国产 一区 欧美 日韩| 亚洲自偷自拍三级| 97超碰精品成人国产| 欧美精品国产亚洲| 亚洲国产精品久久男人天堂| 欧美一区二区精品小视频在线| av国产久精品久网站免费入址| 国产伦理片在线播放av一区| 丰满乱子伦码专区| 精品国内亚洲2022精品成人| 亚洲国产精品专区欧美| 女人被狂操c到高潮| 国产高潮美女av| 91精品伊人久久大香线蕉| 欧美潮喷喷水| 欧美又色又爽又黄视频| 亚洲欧美日韩卡通动漫| 99热精品在线国产| 国产不卡一卡二| 久久精品久久久久久久性| 中文天堂在线官网| 午夜精品在线福利| 天堂中文最新版在线下载 | 岛国毛片在线播放| 欧美一区二区国产精品久久精品| 99在线人妻在线中文字幕| 久久久久性生活片| 国产爱豆传媒在线观看| 国产黄色视频一区二区在线观看 | 成人特级av手机在线观看| 亚洲无线观看免费| 欧美xxxx黑人xx丫x性爽| 永久免费av网站大全| 久久99热6这里只有精品| 看非洲黑人一级黄片| 丝袜喷水一区| 噜噜噜噜噜久久久久久91| 成人高潮视频无遮挡免费网站| 国产精品久久视频播放| 国产高潮美女av| 啦啦啦啦在线视频资源| 国产成人免费观看mmmm| 国产成人a区在线观看| 丰满人妻一区二区三区视频av| 国产在视频线在精品| www.色视频.com| 在线播放国产精品三级| 国产不卡一卡二| 欧美成人免费av一区二区三区| 亚洲真实伦在线观看| 99热全是精品| 亚洲av中文av极速乱| 热99re8久久精品国产| 精品人妻偷拍中文字幕| 亚洲欧美中文字幕日韩二区| 国产一级毛片七仙女欲春2| 亚洲欧美清纯卡通| 高清午夜精品一区二区三区| 性色avwww在线观看| 在线a可以看的网站| 一个人观看的视频www高清免费观看| 岛国毛片在线播放| 一区二区三区四区激情视频| 国产精品乱码一区二三区的特点| 少妇裸体淫交视频免费看高清| 高清视频免费观看一区二区 | 国产片特级美女逼逼视频| 91aial.com中文字幕在线观看| 精品人妻一区二区三区麻豆| 久久久久久大精品| 黄色日韩在线| 国产麻豆成人av免费视频| 男人舔女人下体高潮全视频| 久久精品熟女亚洲av麻豆精品 | 毛片女人毛片| 亚洲成人精品中文字幕电影| 久久人妻av系列| 青春草亚洲视频在线观看| 在线观看66精品国产| 午夜精品在线福利| 91久久精品电影网| 午夜激情欧美在线| av播播在线观看一区| 老司机福利观看| 在线观看一区二区三区| 精品久久久久久久久久久久久| 97超视频在线观看视频| 亚洲丝袜综合中文字幕| 欧美一区二区国产精品久久精品| 国产在线男女| 一级二级三级毛片免费看| 亚洲成av人片在线播放无| 中国国产av一级| 亚洲国产日韩欧美精品在线观看| 久久久久久久午夜电影| 久久久欧美国产精品| 青春草亚洲视频在线观看| 麻豆成人av视频| 国产高清有码在线观看视频| 国产精品.久久久| 一区二区三区免费毛片| 看十八女毛片水多多多| 一边摸一边抽搐一进一小说| 欧美三级亚洲精品| 亚洲av免费高清在线观看| 中文天堂在线官网| 99热6这里只有精品| av播播在线观看一区| 99久国产av精品| 亚洲美女视频黄频| 高清在线视频一区二区三区 | 亚洲av不卡在线观看| 欧美精品国产亚洲| 精品酒店卫生间| 国产美女午夜福利| 色综合亚洲欧美另类图片| 亚洲国产日韩欧美精品在线观看| 一本久久精品| 亚洲精品,欧美精品| 国产高清三级在线| 最近中文字幕高清免费大全6| 1000部很黄的大片| 免费黄网站久久成人精品| 欧美性猛交黑人性爽| 成人亚洲欧美一区二区av| 99热这里只有是精品在线观看| 美女黄网站色视频| 亚洲在久久综合| 亚洲国产精品成人久久小说| 搡女人真爽免费视频火全软件| 人人妻人人看人人澡| 一本久久精品| 日本色播在线视频| av专区在线播放| 久久午夜福利片| 午夜福利在线在线| 久久久久久久亚洲中文字幕| 国产一区二区亚洲精品在线观看| 亚洲,欧美,日韩| 毛片一级片免费看久久久久| 少妇高潮的动态图| 久久午夜福利片| 天堂中文最新版在线下载 | 国产高清不卡午夜福利| 亚洲精品影视一区二区三区av| 岛国毛片在线播放| 一夜夜www| 久久鲁丝午夜福利片| 六月丁香七月| 精品一区二区三区人妻视频| 非洲黑人性xxxx精品又粗又长| av免费观看日本| 午夜久久久久精精品| 床上黄色一级片| 久久亚洲国产成人精品v| 国产免费视频播放在线视频 | 亚洲激情五月婷婷啪啪| 国产精品伦人一区二区| 精品一区二区免费观看| 黄色欧美视频在线观看| 乱人视频在线观看| 亚洲色图av天堂| 国产精品熟女久久久久浪| 亚洲精品乱码久久久久久按摩| 超碰97精品在线观看| 免费av毛片视频| 免费一级毛片在线播放高清视频| 亚洲av一区综合| 小说图片视频综合网站| 成人性生交大片免费视频hd| 免费av毛片视频| 国产成人freesex在线| 久久精品夜色国产| 亚洲精品乱久久久久久| 亚洲色图av天堂| 国产69精品久久久久777片| 麻豆国产97在线/欧美| 三级男女做爰猛烈吃奶摸视频| 亚洲精品456在线播放app| 久久精品综合一区二区三区|