• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hall conductance of a non-Hermitian two-band system with k-dependent decay rates

    2023-03-13 09:17:40JunjieWang王俊杰FudeLi李福德andXuexiYi衣學喜
    Chinese Physics B 2023年2期
    關鍵詞:俊杰

    Junjie Wang(王俊杰) Fude Li(李福德) and Xuexi Yi(衣學喜)

    1Center for Quantum Sciences and School of Physics,Northeast Normal University,Changchun 130024,China

    2Center for Advanced Optoelectronic Functional Materials Research,and Key Laboratory for UV-Emitting Materials and Technology of Ministry of Education,Northeast Normal University,Changchun 130024,China

    Keywords: Hall conductance,non-Hermitian,topological insulators

    1.Introduction

    Since the discovery of quantum Hall effect in the 1980s,the topological band theory has been extensively developed and applied in various systems, ranging from insulator and semimetal to superconductor.[1-4]In theory,the Chern number captures the winding of the eigenstates and is defined via the integral of the Berry curvature over the first Brillouin zone.It can not only be used to classify topological materials,but also quantify the response of the system to an external field.For example, the Hall conductance is quantized and proportional to the sum of the Thouless-Kohmoto-Nightingale-den Nijs(TKNN)invariants(or Chern numbers)of all filled bands.[5-7]This theory is previously established in closed systems, and one may wonder if it holds valid for open systems.

    Open systems can be described effectively by the non-Hermitian Hamiltonian.Recently, the non-Hermitian topological theories have been introduced and experiments have been conducted in dozens of open systems.[8-47]Many interesting features are predicted and observed in the non-Hermitian systems, including the band defined on the complex plane,[11]the breakdown of the conventional bulkboundary correspondence,[12-17]and the non-Hermitian skin effect.[13,18-25]The definition of the topological invariance for the non-Hermitian systems has also been discussed.[11,32]

    From the side of response, the impact of the non-Hermitian on observable has been studied using fieldtheoretical techniques within the linear response theory (e.g.,the Kubo formula).[35-39]They found that there is no link between the non-Hermitian topological invariants and the quantization of observables[35]and the observables are no longer quantized in general otherwise requiring more strict conditions than that of a nonzero non-Hermitian Chern number.[36]In these studies, the non-Hermitian term was introduced via self-energy in the low-energy limit,[37]or phenomenologically introduced to add into the system, so a non-Hermitian version of the TKNN could be derived to show the topological contribution.[36]This rises a question that how the decay rate depends on the momentum of the electron,and how the decay depends on the couplings between the system and the environment, and how a non-Hermitian system withk-dependent decay rate responses to an external stimulus.

    In this work, we will answer these questions and shed more light on the response theory for the non-Hermitian twoband systems by the adiabatic perturbation theory.[48-50]The reminder of this paper is organized as follows.In Section 2,we introduce the system-environment couplings and derive a master equation by which we obtain a non-Hermitian Hamiltonian to describe the two-band system subjected to environments.The dependence of the decay rates on the Bloch vectors is also derived and discussed.In Section 3,we work out the response of the non-Hermitian two-band systems to a constant electric field using the adiabatic perturbation theory.The results show that the response of the system can be divided into two terms.The first term is proportional to the non-Hermitian Chern number for two-band systems, which is reminiscent of the relationship between the Chern number and the Hall conductance of closed systems.While the second term can be treated as a correction that suggests the relationship between the Chern number and the conductance might fail for open systems.In Section 4,taking a tight-binding electron in a two-dimensional lattice as an example,we calculate and plot the complex-band structures as a function of the momentum of the electron,kxandky.The Hall conductance of the system is also shown and analyzed.We find that Hall conductance depends on the strength of the decay rate and the electron occupation on the Bloch band,which no longer leads to a quantized Hall conductance in general and a delay in the response of the system to the constant electric field appears.We also compare the Hall conductance of the open systems by the non-Hermitian Hamiltonian and by master equation in this section.In Section 5,we conclude the paper with discussions.

    2.Master equation and effective non-Hermitian Hamiltonian

    We start with a two-band Chern insulator,whose Hamiltonian can be expressed as(setting ˉh=1)

    Here,γ(k) is the decay rate that depends on the Bloch vectors.N(ωn)={exp[ωn/kBT]-1}-1represents the average number of photons in the system.In the Weisskopf-Wigner approximation,N(k) ={exp[2d(k)/kBT]-1}-1.In order to obtain an effective non-Hermitian Hamiltonian, the master equation can be written as

    This type of master equation has been studied in Ref.[54],where the environmental electromagnetic field along thexaxis is assumed,Ax=Ext.In the following discussion, we lift this restriction and consider the field along thexandydirections.When the quantum-jump term in Eq.(9) can be neglected,the system reduces to a system described by an effective non-Hermitian Hamiltonian

    This situation holds valid when we consider the dynamics in a sufficiently short period of time,[57-59]which greatly simplifies the calculation, because it suffices to study the eigenvectors and eigenvalues of an effective Hamiltonian, instead of performing a time-resolved calculation of the density matrix.Here, we consider a Bose reservoir as an environment.Similarly,we also obtain an effective non-Hermitian Hamiltonian for the Fermi reservoir(see Eq.(A5)).

    In the limitT →0, we find thatN(k)→0.With this consideration and a unitary transformation,we have

    whereαis the dimensionless coupling strength,andωcis the hard upper cutoff.The indexsaccounts for various physical situations,for example for Ohmic spectrum,s=1.We have

    3.Hall conductance

    In order to derive the response to a constant electric field?, one can introduce a uniform vector potentialA(t) that changes in time such that?tA(t)=-?, which can modify the Bloch vectors, i.e.,k(t)=k+eA(t).The Hamiltonian ?Heff(k(t))satisfies the following time-dependent Schr¨odinger equation:

    Consider a crystal under the perturbation of a weak electric field.We can write the total Hamiltonian as ?Heff(k(t)) =?Heff+ ?H', where ?H'stands for the perturbation Hamiltonian.If the system is initially in the ground band,it will always stay in this band if the adiabatic condition is met.But now,we consider the case that there is still a small probability for particles to move from ground to excited band.So we can use the adiabatic perturbation theory with the perturbation Hamiltonian ?H'=-i?/?t.The corresponding ground band wave function up to the first order in the field strength satisfies[49]

    wherehstands for the Planck constant andNis known as the non-Hermitian Chern number defined in Ref.[11].We observe that this response can no longer be proportional to the Chern number of the non-Hermitian system.The responseσHfor the non-Hermitian system can be divided into two terms.The first term is the Chern number of the non-Hermitian system,while the second term can be treated as a correction that suggests the relationship between the Chern number and the conductance might fail for open systems,which is not quantized and a delay in the response can be found.[66]Specific details will be clearer after simplifying Eq.(24),leading to

    which is the key result of this work.Re(σH)and Im(σH)are the real and imaginary parts ofσH,respectively.The first part Re(σH)is related to the non-Hermitian Chern number, and it is no longer quantized in general.The second part Im(σH)can be understood as the environment induced delay for the system in its response to the electric field, which is reminiscent of the complex admittance in a delay circuit with capacitor and inductor.The energy bands of the non-Hermitian systems are complex in general, which indicates that energy and particle may exchange between system and environment.Due to the decay effect, the Hall conductance is generalized to Hall admittance.So we define the real part of theσHas the Hall conductance and the imaginary part as the Hall susceptance.WhenΓ(k)=0,the Hall conductance returns to the quantized result and the delay disappears,

    Next we present a more detailed analysis for the Hall conductance in Eq.(25).First, for a general non-Hermitian two bands system,the Berry connectionAiu-(k)for band|u-(k)〉with energyE-is defined as

    In this case, we prove that non-Hermitian Berry curvatures withk-dependent decay rateΩu±(k)and(k)are real and equal to the curvature of the Hermitian system due to thatΓ(k)andd(k)have the same direction, leading to quantization of the non-Hermitian Chern number.

    Meanwhile theP(k) term in Eq.(25) depends onΓ(k),withP(k)→1 whenΓ(k)→0.Therefore Re(σH) is not quantized in general and it is no longer proportional to the Chern number of the non-Hermitian system.However, whenΓ(k)→0,we can obtain a nearly quantized Hall conductance.And if the spectral density of the environmentJζ(k)andd(k)is linearly dependent such thatΓζ(k) =ζd(k), whereζis ak-independent constant, we can get a Hall conductance as Re(σH)=[1/(1+ζ2)]n,n ∈(0,±1), i.e., it is not quantized due to the rate[1/(1+ζ2)]in the Hall conductance,but it still possesses a plateau in the dependence of the conductance on the parameter of the system.

    From Eqs.(25)and(26),we can find that ath(k)=0 the phase transition occurs

    BeacuseΓ(k)/d(k)?1, the phase transition occurs whend(k)=0 (where the energy gaps close).This condition of phase transition is the same as the corresponding closed systems.Hence, the phase transition points remain unchanged comparing to the isolated system.

    Assuming the decay rates are very small, we can ignore the quadratic term of the decay ratesΓ2.In this situation,the Hall conductance reads

    In this case,it can be seen that Hall conductance(Re(σH))is proportional to the non-Hermitian Chern number, and it takes quantized values as the change of the parameter.In order to show the validity of the above conclusions,we compare the above results with the Hall conductance by solving the steadystate solution of the master equation,[54,67]

    where

    with

    Although the Hall conductance can be calculated by the master equation description, it can not establish a direct relationship between the Hall conductance and the topological invariant even if we ignore the quadratic term of the decay rates.

    4.Example

    To demonstrate the response theory of the non-Hermitian two-band system,we consider the following example ofdα(k)

    This model describes a time reversal symmetry-breaking system,which might be a magnetic semiconductor with Rashbatype spin-orbit coupling,spin-dependent effective mass,and a uniform magnetization in thezdirection.[68]This model can be realized in graphene with Fe atoms are adsorbed on top,which possesses quantum anomalous Hall effect in the presence of both Rashba spin-orbit coupling and an exchange field.[69]

    The corresponding complex band structuresE+=d(k)-2iΓ(k) andE-=-d(k), are shown in Fig.1.Considering that the mode density isξ(k), both Re(E±) and Im(E±) are zero (see Figs.1(a) and 1(b)) at (kx,ky)=(0,π) in the tours surface with the parameterm=2.We conclude that the phase transition point is atm=2,the same as in the closed system.Real and imaginary parts ofE+andE-for allkwithm=3(see Figs.1(c) and 1(d)) have a gap between them and the band structures are the topological nontrivial.The imaginary part of the energy eigenvalueE+, the decay rate, depends on the Bloch vectork(see Fig.1(b)),which indicates that the relaxation time of the particle is different at different positions in the momentum space.Comparing Re(E±)and Im(E±)with the same parameters, we find that they have similar distribution in the momentum space,which is easy to understand because the relaxation time of the particle is relatively short at a higher energy Bloch band under the influence of the environment.

    Fig.1.Complex band structures of the non-Hermitian Chern insulator Re(E)± =±d(k), |Im(E+)|=2Γ(k), and |Im(E-)|=0.The mode density ξ(k) is taken to plot this figure.(a), (b) Real and imaginary parts of the gapless bands with an exceptional point on(kx,ky)=(0,π)in the tours surface with chosen parameters m=2,δ =0.05,and t=1.(c), (d) Real and imaginary parts of the gapped bands with m = 3,δ =0.05,and t=1.

    The Hall conductance and Hall susceptance defined in Eq.(25) are shown in Fig.2.In the isolated system limit,i.e.,Γ(k)→0, the Hamiltonian model reduces to a Hermitian model.In this case, the real part of the Hall conductance Re(σH) =-1 for 0&lt;m&lt; 2, while for 2&lt;m&lt; 4,Re(σH) = 1, and Im(σH) remains zero for closed systems,namely,the Hall conductance is quantized without delay.For the open system, however, as shown in Fig.2(a), we find that the phase transition points, i.e.,m=0, 2, 4, remain unchanged,but the Hall conductance is no longer quantized under the influence of the environment.Although the Hall conductance is nearly quantized withδ=0.1.The feature of nonquantization can be clearly observed whenδis increased to 0.3 and beyond.Besides,as Eq.(12)shows,the parameterβisk-dependent, which leads the Hall conductance no longer possesses a plateau in its dependence on the system parameter.The details of the dependence are closely related to the choice of the model and the spectral density of the environment.In Fig.2(b), we show the Hall susceptance Im(σH)which can be understood a delay in the response due to the system-environment couplings.Im(σH)increases withδ(we show here from 0.1 to 0.3), while Re(σH) decreases asδchanging from 0.1 to 0.3.

    Fig.2.The Hall conductance Re(σH)and the Hall susceptance Im(σH)(in units of e2/h)as a function of m with different δ given by Eq.(25)and with ξ(k) as the mode density.For comparison, the red solid line corresponds to the conventional Hall conductance of closed system(t=1).

    Fig.3.The Hall conductance Re(σH)(in units of e2/h)as a function of m with different ζ given by Eq.(25) with spectral density of the environment Jζ(k).For comparison, the red solid line corresponds to the conventional Hall conductance of the corresponding closed system(t=1).

    In Fig.3, we show the Hall conductance of the non-Hermitian two-band systems Re(σH)for differentζ.We consider the spectral density of the environmentJζ(k) andd(k)are linear.One can find that the Hall conductance still possesses a plateau as the change ofm,but its value is no longer an integer,for instance,Re(σH)=0.8 whenζ=0.5.

    In Fig.4, we show the Hall conductance for the non-Hermitian two-band systems Re(σH) and the Hall conductance for open systems by solving the master equationσME.The same mode densityξ(k)as that used in Fig.4(a)has been taken to calculate the results in Fig.4(a), while Fig.4(b) for the Ohmic spectral density.One can see that the Hall conductance obtained by the two methods is almost the same,because the quantum-jump term has negligible effect on the first-order steady-state solution of the master equation.Hence in this case,it is a good approximation to approximate the model by a non-Hermitian Hamiltonian.The non-Hermitian Hamiltonian is obviously more convenient to describe such a system, because it is easy to study the eigenvectors and eigenvalues of an effective Hamiltonian and the calculation is straightforward.

    Fig.4.The Hall conductance Re(σH)and the Hall conductance σME(in units of e2/h)as a function of m given by Eqs.(25) and(38), respectively.The red solid line is the Hall conductance for the non-Hermitian two-band systems, while the blue dashed line is for the Hall conductance obtained by solving the master equation.Panel(a)is plotted for mode density ξ(k)with δ =0.2,t=1,while(b)is for the Ohmic spectral density of the environment with α =0.2,ωc=1,and t=1.

    5.Conclusions

    We have developed the response theory for the non-Hermitian two-band systems and applied it into topological insulators subjected to environments.An effective non-Hermitian system is obtained by simplifying the Markov master equation by ignoring the jump terms and a decay rate that depends on the Bloch vector is given.Based on this formalism, the Hall conductance is calculated by the adiabatic perturbation theory.We find that although the phase transition point does not changes,the Hall conductance that depends on the strength of the decay rate and distribution of the electron on the Bloch band is a weighted integration of curvature of the ground band and it is not quantized in general.In addition, the system-environment coupling induces a delay in the response of the topological insulator to the constant electric field.Finally, comparing the Hall conductance obtained by the non-Hermitian two-band model with that by solving the master equation, we claim that the non-Hermitian Hamiltonian description is a good approximation and it can provide insight understanding for the response of open systems more than that of the master equation description.

    Appendix A:System coupled to Fermi reservoir

    Appendix C:Derivation of Eq.(C1)

    For the system thatΓ(k)andd(k)are proportional, the Berry curvatureΩu-(k)for the band|u-(k)〉with energyEcan be written as

    Acknowledgements

    The authors acknowledge Hongzhi Shen and Weijun Cheng for helpful comments.This work was supported by the National Natural Science Foundation of China (Grant Nos.12175033 and 12147206).

    猜你喜歡
    俊杰
    “畫家陳”
    Effect of the particle temperature on lift force of nanoparticle in a shear rarefied flow*
    Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO?
    Bian Que
    能自律者為俊杰
    文苑(2020年7期)2020-08-12 09:36:36
    俊杰印象
    海峽姐妹(2019年11期)2019-12-23 08:42:18
    表演大師
    我的同桌
    我可是有主角光環(huán)的人
    我給桌子“洗臉”
    日韩欧美在线二视频| 99香蕉大伊视频| av片东京热男人的天堂| 欧美精品一区二区免费开放| 超色免费av| 午夜精品在线福利| 日韩有码中文字幕| 精品熟女少妇八av免费久了| 十分钟在线观看高清视频www| 成人影院久久| 啦啦啦在线免费观看视频4| 久久国产亚洲av麻豆专区| 日本三级黄在线观看| 黄色 视频免费看| 免费日韩欧美在线观看| 免费在线观看亚洲国产| 亚洲精品国产色婷婷电影| 一区二区三区国产精品乱码| av国产精品久久久久影院| 婷婷丁香在线五月| tocl精华| 亚洲第一欧美日韩一区二区三区| 婷婷丁香在线五月| xxxhd国产人妻xxx| 在线观看舔阴道视频| 亚洲 欧美 日韩 在线 免费| 国产精品影院久久| 亚洲激情在线av| 黄色视频,在线免费观看| а√天堂www在线а√下载| 国产色视频综合| 国产av又大| 亚洲成国产人片在线观看| 香蕉国产在线看| 国产伦人伦偷精品视频| 日本免费a在线| 亚洲aⅴ乱码一区二区在线播放 | 啦啦啦 在线观看视频| 亚洲男人天堂网一区| 黄色视频,在线免费观看| 久久人妻熟女aⅴ| 99国产精品一区二区蜜桃av| 99国产精品一区二区蜜桃av| 人成视频在线观看免费观看| 少妇裸体淫交视频免费看高清 | 人人妻人人澡人人看| 欧美久久黑人一区二区| 水蜜桃什么品种好| 丰满的人妻完整版| 成人黄色视频免费在线看| 欧美久久黑人一区二区| 国产无遮挡羞羞视频在线观看| 亚洲第一青青草原| 亚洲人成电影免费在线| 黄色毛片三级朝国网站| 村上凉子中文字幕在线| 啪啪无遮挡十八禁网站| 久久影院123| 日本黄色视频三级网站网址| 亚洲av成人av| av福利片在线| 美国免费a级毛片| 久久国产乱子伦精品免费另类| 99精国产麻豆久久婷婷| 久久久国产一区二区| 欧美日韩瑟瑟在线播放| 80岁老熟妇乱子伦牲交| 日韩高清综合在线| 久久久久精品国产欧美久久久| 中文字幕av电影在线播放| 12—13女人毛片做爰片一| 久久香蕉国产精品| 首页视频小说图片口味搜索| 亚洲一区中文字幕在线| 少妇被粗大的猛进出69影院| 18禁裸乳无遮挡免费网站照片 | 丁香欧美五月| 亚洲成人国产一区在线观看| 黄频高清免费视频| 国产av一区在线观看免费| 欧美成人午夜精品| 欧美激情极品国产一区二区三区| 免费不卡黄色视频| 日韩精品中文字幕看吧| 国产高清视频在线播放一区| 免费av毛片视频| 99riav亚洲国产免费| xxx96com| 亚洲成人久久性| 亚洲精品粉嫩美女一区| 桃色一区二区三区在线观看| www日本在线高清视频| 亚洲国产精品999在线| 高清黄色对白视频在线免费看| 久久久国产一区二区| 欧美精品亚洲一区二区| 在线永久观看黄色视频| 亚洲人成电影免费在线| 欧美 亚洲 国产 日韩一| 在线观看一区二区三区激情| 亚洲av熟女| 国产成人啪精品午夜网站| 久久国产精品影院| 亚洲精品国产精品久久久不卡| 国产成人av教育| 91在线观看av| avwww免费| 午夜福利在线观看吧| 久久午夜综合久久蜜桃| 999久久久国产精品视频| 嫩草影院精品99| 国产精品亚洲av一区麻豆| 女性被躁到高潮视频| 精品一品国产午夜福利视频| 麻豆av在线久日| 久久人人爽av亚洲精品天堂| 18禁观看日本| 久久久久久久精品吃奶| 久久影院123| 悠悠久久av| 久久精品人人爽人人爽视色| 精品久久久久久成人av| 久久婷婷成人综合色麻豆| 日韩三级视频一区二区三区| 国产成人欧美在线观看| 亚洲国产精品999在线| 日本a在线网址| 国产成人啪精品午夜网站| 黑人巨大精品欧美一区二区mp4| 亚洲av美国av| 亚洲一区高清亚洲精品| 777久久人妻少妇嫩草av网站| 欧美黑人精品巨大| 欧美成狂野欧美在线观看| 看免费av毛片| 国产男靠女视频免费网站| 51午夜福利影视在线观看| 国产精品 欧美亚洲| 亚洲熟女毛片儿| av欧美777| 亚洲一码二码三码区别大吗| 黄色丝袜av网址大全| 夜夜看夜夜爽夜夜摸 | 国内久久婷婷六月综合欲色啪| 黑人巨大精品欧美一区二区mp4| 欧美黑人欧美精品刺激| 亚洲免费av在线视频| 激情在线观看视频在线高清| 亚洲成av片中文字幕在线观看| 国产熟女午夜一区二区三区| 一边摸一边抽搐一进一出视频| 久久精品国产清高在天天线| 97超级碰碰碰精品色视频在线观看| 在线十欧美十亚洲十日本专区| 国产精品国产av在线观看| 一级作爱视频免费观看| 亚洲一区中文字幕在线| 女生性感内裤真人,穿戴方法视频| 女人被狂操c到高潮| 国产精品免费视频内射| 91成年电影在线观看| 婷婷丁香在线五月| 18禁观看日本| 久久久久国内视频| 中文字幕高清在线视频| 精品一区二区三卡| 国产欧美日韩综合在线一区二区| 国产乱人伦免费视频| 国产精品二区激情视频| 可以免费在线观看a视频的电影网站| 亚洲欧美精品综合一区二区三区| 国产一区二区三区综合在线观看| 国产精品亚洲av一区麻豆| 在线观看免费视频日本深夜| 黑丝袜美女国产一区| 自拍欧美九色日韩亚洲蝌蚪91| 一级黄色大片毛片| 大陆偷拍与自拍| 美女扒开内裤让男人捅视频| 成人国产一区最新在线观看| 久久亚洲真实| 精品久久久精品久久久| 亚洲精品美女久久久久99蜜臀| 日本vs欧美在线观看视频| 国产精品98久久久久久宅男小说| 一二三四社区在线视频社区8| 日韩一卡2卡3卡4卡2021年| 精品福利观看| 国产av精品麻豆| 久久伊人香网站| 日本免费一区二区三区高清不卡 | 精品久久蜜臀av无| 亚洲国产欧美日韩在线播放| 人成视频在线观看免费观看| 国产亚洲精品综合一区在线观看 | 亚洲 欧美一区二区三区| 午夜影院日韩av| 男人的好看免费观看在线视频 | 亚洲av第一区精品v没综合| 91大片在线观看| 免费看a级黄色片| 午夜福利在线观看吧| 看黄色毛片网站| 久久精品国产亚洲av香蕉五月| 久9热在线精品视频| 超碰成人久久| 国产成人精品在线电影| 最新美女视频免费是黄的| 亚洲成人免费电影在线观看| 在线看a的网站| 午夜免费鲁丝| av视频免费观看在线观看| 免费在线观看黄色视频的| 亚洲国产欧美网| 国产欧美日韩一区二区三区在线| 亚洲aⅴ乱码一区二区在线播放 | 日本 av在线| 亚洲人成电影免费在线| 丰满饥渴人妻一区二区三| 欧美激情高清一区二区三区| 可以在线观看毛片的网站| 精品一品国产午夜福利视频| 久久久国产成人精品二区 | 日本vs欧美在线观看视频| 久久香蕉精品热| 俄罗斯特黄特色一大片| 久久青草综合色| 一a级毛片在线观看| 精品熟女少妇八av免费久了| 精品国产亚洲在线| 电影成人av| 国产亚洲精品综合一区在线观看 | 91九色精品人成在线观看| 久久天堂一区二区三区四区| 欧美另类亚洲清纯唯美| 久久人人精品亚洲av| 国产精品成人在线| 国产精品1区2区在线观看.| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲激情在线av| 精品久久久久久电影网| 女性被躁到高潮视频| 国产精品日韩av在线免费观看 | 女同久久另类99精品国产91| 亚洲精品中文字幕一二三四区| av国产精品久久久久影院| 日本 av在线| 色婷婷av一区二区三区视频| 好男人电影高清在线观看| 亚洲一区二区三区欧美精品| 欧美日韩瑟瑟在线播放| 欧美激情高清一区二区三区| 国产亚洲精品综合一区在线观看 | av天堂久久9| 欧美激情久久久久久爽电影 | 国内毛片毛片毛片毛片毛片| 99香蕉大伊视频| netflix在线观看网站| 91成人精品电影| 少妇裸体淫交视频免费看高清 | 日韩欧美三级三区| 国产有黄有色有爽视频| 99在线视频只有这里精品首页| 午夜久久久在线观看| 欧美激情久久久久久爽电影 | 国产真人三级小视频在线观看| 久久精品国产亚洲av高清一级| 国产精品秋霞免费鲁丝片| 女人爽到高潮嗷嗷叫在线视频| 国产又爽黄色视频| 免费搜索国产男女视频| 亚洲男人的天堂狠狠| 老司机在亚洲福利影院| 国产野战对白在线观看| 久99久视频精品免费| 亚洲欧美激情在线| 午夜福利在线观看吧| 老司机深夜福利视频在线观看| 亚洲精品国产精品久久久不卡| 中文字幕最新亚洲高清| 亚洲片人在线观看| 亚洲一区高清亚洲精品| 亚洲精品一区av在线观看| 两性夫妻黄色片| 欧美日韩精品网址| 精品国产乱码久久久久久男人| 精品国内亚洲2022精品成人| 国产精品二区激情视频| 国产在线精品亚洲第一网站| 欧美黑人精品巨大| 美女扒开内裤让男人捅视频| 精品一区二区三卡| 成人三级做爰电影| 亚洲第一av免费看| 中出人妻视频一区二区| 国产在线观看jvid| 成人国语在线视频| 国产深夜福利视频在线观看| 久久午夜亚洲精品久久| 夜夜看夜夜爽夜夜摸 | 精品国产国语对白av| 十八禁网站免费在线| 国产高清国产精品国产三级| 80岁老熟妇乱子伦牲交| 免费av中文字幕在线| 国产成人系列免费观看| 最新在线观看一区二区三区| 国产男靠女视频免费网站| 国产极品粉嫩免费观看在线| 女人被躁到高潮嗷嗷叫费观| 一级作爱视频免费观看| 亚洲精品国产区一区二| 国产精品偷伦视频观看了| 老熟妇乱子伦视频在线观看| 人成视频在线观看免费观看| 亚洲av五月六月丁香网| cao死你这个sao货| 欧美激情久久久久久爽电影 | 中出人妻视频一区二区| 天天影视国产精品| 欧美成人免费av一区二区三区| 国产亚洲精品第一综合不卡| 日韩一卡2卡3卡4卡2021年| 老熟妇仑乱视频hdxx| 国产成人影院久久av| 色老头精品视频在线观看| 中文字幕人妻丝袜制服| 超碰成人久久| 欧美成人性av电影在线观看| 热99国产精品久久久久久7| 俄罗斯特黄特色一大片| 日韩免费高清中文字幕av| 亚洲中文av在线| 人妻丰满熟妇av一区二区三区| 99热只有精品国产| 精品久久久久久久久久免费视频 | 亚洲精品国产一区二区精华液| 91成人精品电影| 亚洲欧美激情综合另类| 国产男靠女视频免费网站| 美女 人体艺术 gogo| 亚洲国产欧美日韩在线播放| 久99久视频精品免费| 999精品在线视频| 国产精品偷伦视频观看了| 国产精品亚洲一级av第二区| 国产精华一区二区三区| 精品一区二区三区视频在线观看免费 | 欧美成人免费av一区二区三区| 亚洲成人精品中文字幕电影 | 老司机靠b影院| 后天国语完整版免费观看| 精品国产亚洲在线| 国产欧美日韩一区二区精品| 999久久久国产精品视频| 99精品久久久久人妻精品| 国产成人欧美| 女警被强在线播放| 午夜免费成人在线视频| e午夜精品久久久久久久| 日韩欧美国产一区二区入口| 夜夜夜夜夜久久久久| 亚洲全国av大片| 亚洲国产精品一区二区三区在线| 国产成人精品久久二区二区免费| 90打野战视频偷拍视频| 国产精品一区二区在线不卡| 国产在线观看jvid| 91麻豆av在线| 精品人妻在线不人妻| 国产亚洲欧美精品永久| 久热这里只有精品99| 成人亚洲精品av一区二区 | 最新美女视频免费是黄的| 宅男免费午夜| 久久青草综合色| 日本黄色日本黄色录像| 精品高清国产在线一区| 制服丝袜大香蕉在线| 久久精品国产亚洲av涩爱 | 午夜两性在线视频| 日韩亚洲欧美综合| 又粗又爽又猛毛片免费看| 国产人妻一区二区三区在| 老熟妇仑乱视频hdxx| 一进一出抽搐动态| 99国产极品粉嫩在线观看| 亚洲成a人片在线一区二区| 亚洲乱码一区二区免费版| 男人狂女人下面高潮的视频| eeuss影院久久| 亚洲avbb在线观看| 亚洲激情在线av| 日本一本二区三区精品| 国产黄a三级三级三级人| 99精品在免费线老司机午夜| 嫩草影院精品99| 国产精品亚洲美女久久久| 天美传媒精品一区二区| 网址你懂的国产日韩在线| 久久天躁狠狠躁夜夜2o2o| 在线观看免费视频日本深夜| 1024手机看黄色片| 久久热精品热| 最新在线观看一区二区三区| 少妇丰满av| www.熟女人妻精品国产| 亚洲自偷自拍三级| 成人精品一区二区免费| 观看美女的网站| 国内精品一区二区在线观看| 成人无遮挡网站| 亚洲 欧美 日韩 在线 免费| 可以在线观看的亚洲视频| 成人国产一区最新在线观看| 国产精品伦人一区二区| 久久亚洲精品不卡| 国产成人a区在线观看| 九色成人免费人妻av| 看黄色毛片网站| 免费看美女性在线毛片视频| 亚洲色图av天堂| 97热精品久久久久久| 亚洲电影在线观看av| 欧美xxxx黑人xx丫x性爽| 色5月婷婷丁香| 宅男免费午夜| 精品午夜福利在线看| 亚洲专区中文字幕在线| 精品欧美国产一区二区三| 国产精品久久久久久久电影| 午夜亚洲福利在线播放| 国产精品亚洲美女久久久| a在线观看视频网站| 老司机深夜福利视频在线观看| 国产黄a三级三级三级人| 欧美一级a爱片免费观看看| 精品午夜福利在线看| 级片在线观看| 久久婷婷人人爽人人干人人爱| 国产单亲对白刺激| 日韩精品青青久久久久久| 真人一进一出gif抽搐免费| 精品不卡国产一区二区三区| 最近最新免费中文字幕在线| 老熟妇乱子伦视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 日韩国内少妇激情av| 一个人免费在线观看电影| 国产精品亚洲美女久久久| 亚洲av电影在线进入| 精品久久久久久久人妻蜜臀av| 变态另类丝袜制服| 中文在线观看免费www的网站| 亚洲欧美日韩无卡精品| 亚洲精品一卡2卡三卡4卡5卡| a级毛片免费高清观看在线播放| 欧美+日韩+精品| 日本 欧美在线| 夜夜看夜夜爽夜夜摸| 精品人妻熟女av久视频| 搡老岳熟女国产| 99久久成人亚洲精品观看| 亚州av有码| 中文字幕av在线有码专区| 国产黄色小视频在线观看| 亚洲专区国产一区二区| 亚洲人成电影免费在线| 美女免费视频网站| 十八禁国产超污无遮挡网站| 一个人免费在线观看的高清视频| 亚洲av五月六月丁香网| 精品欧美国产一区二区三| 国产av在哪里看| 亚洲av电影不卡..在线观看| 国产高清视频在线观看网站| 一本综合久久免费| 最近最新免费中文字幕在线| 国产精品综合久久久久久久免费| 中出人妻视频一区二区| 久久久久久久久久黄片| 在线国产一区二区在线| 99国产精品一区二区蜜桃av| 亚洲一区二区三区色噜噜| 99久久精品国产亚洲精品| 国产一区二区在线观看日韩| 国内精品久久久久精免费| 听说在线观看完整版免费高清| 精品福利观看| 能在线免费观看的黄片| 午夜福利欧美成人| 国产色婷婷99| 精品免费久久久久久久清纯| 亚洲 欧美 日韩 在线 免费| 两人在一起打扑克的视频| 精品国产三级普通话版| 美女被艹到高潮喷水动态| 嫩草影院新地址| 国产精品久久久久久久电影| 日本撒尿小便嘘嘘汇集6| 国产伦精品一区二区三区视频9| 中文字幕久久专区| 91在线精品国自产拍蜜月| 亚洲第一区二区三区不卡| xxxwww97欧美| 国产私拍福利视频在线观看| 午夜日韩欧美国产| 久久亚洲真实| 日本免费一区二区三区高清不卡| 亚洲av电影不卡..在线观看| 少妇的逼好多水| 一个人看视频在线观看www免费| 桃红色精品国产亚洲av| 人人妻人人澡欧美一区二区| 直男gayav资源| 国产亚洲欧美在线一区二区| 99久久九九国产精品国产免费| 久久久国产成人免费| 亚洲国产精品sss在线观看| 十八禁国产超污无遮挡网站| 亚洲av一区综合| 亚洲电影在线观看av| 两人在一起打扑克的视频| 一进一出好大好爽视频| 99久久99久久久精品蜜桃| 天天躁日日操中文字幕| 91午夜精品亚洲一区二区三区 | 中文字幕久久专区| 岛国在线免费视频观看| 99久久久亚洲精品蜜臀av| 婷婷丁香在线五月| 国产国拍精品亚洲av在线观看| 欧美绝顶高潮抽搐喷水| 午夜精品在线福利| 亚洲精品成人久久久久久| 国产色婷婷99| 亚洲av熟女| 老熟妇仑乱视频hdxx| 校园春色视频在线观看| 国产精品三级大全| 免费无遮挡裸体视频| 一进一出抽搐动态| 国产免费av片在线观看野外av| 久久久久久久久中文| 18美女黄网站色大片免费观看| 波多野结衣高清无吗| 久久久久精品国产欧美久久久| 亚洲狠狠婷婷综合久久图片| 中文亚洲av片在线观看爽| 欧美丝袜亚洲另类 | 一个人观看的视频www高清免费观看| av在线蜜桃| 99久国产av精品| 少妇的逼好多水| 激情在线观看视频在线高清| bbb黄色大片| 久久久成人免费电影| 国产亚洲精品av在线| 男插女下体视频免费在线播放| 日韩欧美精品v在线| 国产精品一区二区免费欧美| 91在线精品国自产拍蜜月| 一区二区三区高清视频在线| 国产久久久一区二区三区| 床上黄色一级片| 国语自产精品视频在线第100页| 在线免费观看不下载黄p国产 | www.www免费av| 日本与韩国留学比较| 久久久精品大字幕| 一区二区三区四区激情视频 | 精品午夜福利视频在线观看一区| 国产av不卡久久| 国产乱人伦免费视频| 亚洲欧美激情综合另类| 99热只有精品国产| 欧美精品啪啪一区二区三区| bbb黄色大片| 宅男免费午夜| 亚洲最大成人中文| 国产麻豆成人av免费视频| 91麻豆精品激情在线观看国产| 熟妇人妻久久中文字幕3abv| 99精品久久久久人妻精品| 男女做爰动态图高潮gif福利片| 久久久久久久久中文| 俺也久久电影网| 精品久久久久久,| 免费人成在线观看视频色| 最近最新免费中文字幕在线| 欧美日本亚洲视频在线播放| 中文字幕久久专区| 亚洲五月天丁香| 精品人妻1区二区| 亚洲欧美日韩高清在线视频| 两个人视频免费观看高清| 此物有八面人人有两片| 又黄又爽又刺激的免费视频.| 两个人视频免费观看高清| 此物有八面人人有两片| 日本一本二区三区精品| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品在线观看二区| 午夜精品一区二区三区免费看| 啪啪无遮挡十八禁网站| av在线观看视频网站免费| 99热这里只有是精品50| 欧美成人性av电影在线观看| 久久欧美精品欧美久久欧美| 久久久久久久亚洲中文字幕 | 国产精品综合久久久久久久免费| 又爽又黄a免费视频| 一个人免费在线观看电影| 精品人妻偷拍中文字幕| 九色国产91popny在线|