• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5?xO4/SiO2 composite magnetic nanoparticles?

    2021-03-19 03:21:04XiangYu俞翔LiChenWang王利晨ZhengRuiLi李崢睿YanMi米巖DiAnWu吳迪安andShuLiHe賀淑莉
    Chinese Physics B 2021年3期
    關(guān)鍵詞:迪安

    Xiang Yu(俞翔), Li-Chen Wang(王利晨), Zheng-Rui Li(李崢睿),Yan Mi(米巖), Di-An Wu(吳迪安), and Shu-Li He(賀淑莉)

    Department of Physics,Capital Normal University,Beijing 100048,China

    Keywords: magnetic nanoparticles,magnetic anisotropy,Zn0.5CoxFe2.5?xO4/SiO2,magnetic hyperthermia

    1. Introduction

    Iron oxide magnetic nanoparticles (NPs) have wide application prospects in biomedical field, for its advantage of stable chemical properties, excellent biocompatibility, appropriate magnetic properties, simplicity of preparation and tunable nature. The composite nanostructure is made by modifying SiO2, polyethylene glycol or polydopamine on the surface of the as-obtained NPs. The composite nanostructure displays extremely rich diagnostic and therapeutic functions in the fields of targeted drug release, magnetic resonance imaging, biological magnetic separation and magnetic hyperthermia.[1-8]Magnetic hyperthermia is a new kind of local tumor hyperthermia. Compared with the photohyperthermia which mainly uses near infrared laser with lower penetration depth,the alternating current(AC)magnetic field can penetrate into the body tissue to 15 cm and 99% of the electromagnetic energy is not absorbed by the human body.[9]Therefore, magnetic hyperthermia has unique superiorities in the treatment of deep tumors. The hyperthermia performance of traditional Fe3O4magnetic NPs is not very ideal, due to their certain limitations of magnetic properties.[10-12]Therefore,in an actual application process,we have to enhance the dosage of nano materials or the energy of AC field to meet the needs of hyperthermia, which certainly introduces a hidden danger to the safety of magnetic hyperthermia applications.

    In order to enhance the magnetic hyperthermia properties of Fe3O4-based magnetic NPs, Lee et al.prepared magnetic NPs with a core-shell structure(Zn0.4Co0.6Fe2O4@Zn0.4Mn0.6Fe2O4) in 2011. The saturation magnetization and magnetic anisotropy of the samples were effectively adjusted, a maximum specific power loss(SLP) value of 3886 W/g was successfully developed. This can be attributed to the soft and hard magnetic exchange coupling, based on theoretical calculations as a guide. The core-shell NPs can eliminate the tumor tissue of nude mice thoroughly, which is significantly better than the commercial Feridex control group and adriamycin chemotherapy control group.[12]However, because the core-shell NPs need to be grown by seed mediated method repeatedly and the size of the core and shell needs to be precisely controlled, these make the practical application of the samples difficult. In 2018, it was reported that the soft and hard magnetic coupling ferrite NPs were successfully prepared by doping Mn2+and Co2+directly to Fe3O4. The preparation of the NPs is easy to achieve, and the SLP value can approach the theoretical limit of 3417 W/gmetal. In vitro cell hyperthermia experiment,the use of low-dose magnetic NPs can effectively kill tumor cells in a very short time.[13]However, its biocompatibility is significantly lower than Fe3O4, which restricts its application in vivo. In recent research results,Zn0.5Fe2.5O4magnetic NPs were reported as typical soft ferrite NPs, which have excellent biocompatibility and good magnetic hyperthermia properties.[14]On the other hand, the theoretical simulation results indicated that the magnetic hyperthermia properties of soft ferrite NPs can be further improved significantly by properly increasing the magnetic anisotropy of the sample.[12]

    In this paper,Zn0.5CoxFe2.5?xO4(x=0,0.05, 0.1, 0.15)serial magnetic NPs were synthesized by doping Zn2+and Co2+ions to Fe3O4, to improve the saturation magnetization and magnetic anisotropy of the samples. The SiO2shell was modified on the surface of the series of NPs by reverse microemulsion method, to enhance the biocompatibility and water solubility of the NPs. The results show that the magnetic hyperthermia properties of the samples increase first and then decrease with the increase of Co2+doping amount. The peak SLP value of Zn0.5CoxFe2.5?xO4/SiO2samples can reach 1974 W/gmetalwith x=0.1.

    2. Experiments and methods

    2.1. Materials

    Fe(acac)3, Zn(acac)2·nH2O, Co(acac)2and ammonia(29%) were purchased from Alfa aesar; sodium oleate was purchased from TCI; tetraethyl orthosilicate (TEOS), igepal CO-520 and cyclohexane were purchased from Aldrich;oleic acid and benzyl ether were purchased from Acros.

    2.2. Synthesis of Zn0.5CoxFe2.5?xO4 magnetic nanoparticles

    Zn0.5CoxFe2.5?xO4magnetic NPs were prepared by the modified thermal decomposition method.[15]Firstly,2.5 mmol Fe(acac)3,0.5 mmol Zn(acac)2·nH2O and Co(acac)2,2 mmol sodium oleate,4.5 mL oleic acid and 20 mL benzyl ether were added to the four neck flask. Under the protection of argon,the mixture was heated to 120?C,and kept for 30 min to remove impurities with low boiling point. Then the mixture was heated to 295?C with the rate of 10?C/min, and maintained for 2 h. Finally, the heating device is removed so that the reaction system can be cooled to room temperature,and ethanol is added and centrifuged to separate the NPs.

    2.3. Silica coating of Zn0.5CoxFe2.5?xO4 magnetic nanoparticles

    SiO2was coated on the surface of NPs via reverse microemulsion method.[16]First, 20 mL cyclohexane and 1.15 mL CO-520 were added to the flask, and mixed thoroughly with sonication bath for 10 min. Then 20 mg Zn0.5CoxFe2.5?xO4magnetic NPs and 1 mL cyclohexane were added into an eppendorf tube,thoroughly mixed by sonication bath, and then transferred into the flask. After the mixture was sonicated for 20 min,0.15 mL ammonia was added dropwise and magnetically stirred for 10 min. Finally, 0.1 mL of TEOS was added and reacted for 24 hours.The as-synthesized Zn0.5CoxFe2.5?xO4/SiO2composite NPs are separated by centrifugation by adding ethanol and hexane.

    2.4. Characterization

    The morphology of NPs was observed with a transmission electron microscope (TEM, Hitachi H-7650); the highresolution TEM images were obtained by an FEI Tecnai G2 F30 TEM;the crystal structure was characterized by an x-ray diffractometer(XRD,Bruker D8 advance);the magnetic properties were measured by a commercial superconducting quantum interference device magnetometer (SQUID-VSM). The field-dependent magnetization curves (M-H) were recorded from 0 to ±5 T at 300 K and 10 K. Temperature-dependent magnetization curves(M-T)were measured under zero-fieldcooled/field-cooled (ZFC/FC) mode from 10 K to 300 K under a magnetic field of 500 Oe;and the magnetic hyperthermia properties were measured by MSI HYPER 5 machine.

    2.5. Calculation of SLP and ILP values

    The specific loss power (SLP) is introduced to evaluate the magnetic hyperthermia properties of the samples,which is expressed as

    where C is the volume specific heat capacity,Vsis the volume of the sample, m is the mass of the metallic elements of the NPs in the sample, dT/dt is the initial slope of the temperature rise curve.

    According to the research,the hyperthermia properties of materials can be more essentially reflected by deducting the amplitude and frequency of AC field from SLP values. Therefore,the intrinsic loss power(ILP)is introduced for evaluation,which is expressed as

    where H is the amplitude of the AC field and f is the frequency of the AC field.

    2.6. In vitro experiments

    The cytotoxicity of the Zn0.5CoxFe2.5?xO4/SiO2composite NPs was assessed using in vitro cell toxicity assay. Mouse fibroblast cells (MEF) purchased from the American Type Culture Collection were seeded in 96-well plates at a density of 5000 cells per well. Then, different concentrations of the Zn0.5CoxFe2.5?xO4/SiO2composite NPs were added to the wells and incubated for 24 h further. The cell viabilities were determined by the standard Cell Counting Kit-8(CCK-8,Dojindo,Japan)assay.

    3. Results and discussion

    Our approach is schematically shown in Fig.1.Zn0.5CoxFe2.5?xO4NPs were synthesized using sodium oleate instead of oleamine and 1,2-hexadecanediol in the classic formulation. This modified thermal decomposition method can save material and time cost more effectively.[15,17-20]Silica coating of Zn0.5CoxFe2.5?xO4NPs was performed via the reverse microemulsion method.[16]The hyperthermia properties of Zn0.5CoxFe2.5?xO4/SiO2composite NPs were systematically studied under AC field.

    Fig.1. Scheme of the synthetic route and research method of Zn0.5CoxFe2.5?xO4/SiO2 NPs.

    As shown in Fig.2,XRD patterns of Zn0.5CoxFe2.5?xO4(x = 0, 0.05, 0.1, 0.15) serial NPs and the standard patterns of Zn0.54Fe2.46O4(PDF card #86-0509, Fdˉ3m) match so well. All the peaks can be indexed, which indicates that the Zn0.5CoxFe2.5?xO4(x=0,0.05,0.1,0.15)serial NPs have single spinel cubic phase structures.

    Fig.2. XRD patterns of Zn0.5CoxFe2.5?xO4 (x=0, 0.05, 0.1, 0.15)serial NPs.

    Using the modified thermal decomposition method, we have synthesized magnetic NPs with controllable size and morphology using sodium oleate instead of oleamine and 1,2-hexadecanediol in the classical formula.[15]It can be seen from Fig.3 that Zn0.5CoxFe2.5?xO4(x=0, 0.05, 0.1, 0.15) serial NPs with stable morphology at 21 nm and good monodispersity were synthesized using the ratio of 3 mmol metal precursor,2 mmol sodium oleate,4 mL oleic acid and 20 mL benzyl ether.

    The surface of the NPs was coated with SiO2via the reverse microemulsion method, as shown in Fig.4. It can be seen that Zn0.5CoxFe2.5?xO4/SiO2(x=0,0.05,0.1,0.15)serial samples have uniform size,uniform coating of SiO2shell,no defect, thickness of about 6 nm, and no formation of free SiO2shell. In addition,it can be seen from the high-resolution TEM images that the SiO2shell can fully and uniformly coat the magnetic nanoparticle. This can be attribute to the precise control of the volume ratio of ammonia and TEOS in the reaction(0.15 mL:0.1 mL),in which the concentration of hydrolyzed TEOS monomer is always controlled in the range of heterogeneous nucleation, and the unexpected homogeneous nucleation will be avoided.[16]

    Fig.3. TEM images of Zn0.5CoxFe2.5?xO4: (a)x=0,(b)x=0.05,(c)x=0.1,(d)x=0.15 NPs.

    Fig.4. TEM images of Zn0.5CoxFe2.5?xO4/SiO2: (a) x=0, (b) x=0.05,(c)x=0.1,(d)x=0.15 composite NPs.The insets show the highresolution TEM images of the corresponding Zn0.5CoxFe2.5?xO4/SiO2 composite NPs.

    The magnetic properties of Zn0.5CoxFe2.5?xO4(x = 0,0.05, 0.1, 0.15) serial samples were measured by SQUIDVSM. In earlier research, the saturation magnetization of Zn0.5Fe2.5O4with Zn2+ion partially replaces Fe2+ions in Fe3O4was effectively enhanced.[21]We further measured the M-H curves of Zn0.5CoxFe2.5?xO4serial samples at 300 K and 10 K, as shown in Fig.5. From the saturation magnetization on the data measured at 300 K, the saturation magnetization decreases monotonously with the increase of the doping amount of Co2+ions. From the doping amount of 0 to 0.15,the saturation magnetization decreases from 85.5 emu/g to 79.3 emu/g. This can be due to the fact that the magnetic moment of original Fe2+ions(4μB)is bigger than Co2+ions(3μB).In addition,the M-H data measured at 10 K also shows a consistent trend of change,in which the saturation magnetization decreases from 94.2 emu/g to 87.5 emu/g with doping amount from 0 to 0.15. The coercivity (Hc) of the samples increases from 262 Oe to 3500 Oe with the increase of the amount of Co2+ions in the data measured at 10 K, which shows that the doping of traditional hard magnetic Co2+ions can effectively increase the magnetic anisotropy of the samples. The law of coercivity change at 300 K is different from that at 10 K, showing a magnetic phase transition process.The coercivity of the samples remains about 5 Oe with the increase of Co2+ion content from 0 to 0.05,showing a plateau region where the coercivity does not increase with the doping amount. This is normally contributed to superparamagnetism in samples. From the M-T curves shown in Figs.5(e)and 5(f), it can be seen that the blocking temperature (TB)of Zn0.5Fe2.5O4and Zn0.5Co0.05Fe2.45O4is less than 300 K.Therefore,the results also confirm that the samples have superparamagnetism at room temperature. On the other hand, the coercivity increases to about 11 Oe when the doping amount of Co2+ion is 0.1,and reaches 17 Oe with doping amount of 0.15.

    Fig.5. M-H curves of Zn0.5CoxFe2.5?xO4 (x=0, 0.05, 0.1, 0.15) NPs at (a) 300 K and (b) 10 K; Co content dependence of (c) saturation magnetization Ms and(d)coercivity Hc for Zn0.5CoxFe2.5?xO4 NPs,measured at 300 K and 10 K;M-T curves of(e)Zn0.5Fe2.5O4 NPs and(f)Zn0.5Co0.05Fe2.45O4NPs. The curves are normalized to the values at T =10 K.

    According to the above phenomenon, the change of the whole magnetic phase can be divided into two sections. It can be inferred that the transition point from superparamagnetism to ferrimagnetism is x ~0.1 in this study. In addition,we can clearly see from the M-H curves that there is obvious magnetic phase separation when doping amount is 0.15, which is normally classify as the co-existence of soft and hard magnetic phases. According to the experimental results in the literature,this may be related to the large amount of ion doping in the sample.[15]

    The magnetic hyperthermia properties of Zn0.5CoxFe2.5?xO4/SiO2(x=0,0.05,0.1,0.15)serial samples were measured at a concentration of 1 mg/mL,as shown in Fig.6. The heating performance of the four samples increases monotonously with the increase of AC field amplitude, when the frequency of AC field is maintained at 430 kHz. This is consistent with the description of Rosensweig’s theoretical equation[22]

    where μ0is the the vacuum permeability, χ0is the equilibrium susceptibility, H is the amplitude of the AC field, f is the frequency of the AC field (f =ω/2π), and τ is the total relaxation time of the magnetic NPs in the AC field.

    Fig.6. Heating curves of Zn0.5CoxFe2.5?xO4/SiO2 under different magnetic field amplitudes, with the AC field of 430 kHz: (a) x=0, (b)x=0.05,(c)x=0.1,(d)x=0.15.

    Using the heating curves of each sample under the highest AC field(31 kA/m,430 kHz),the corresponding SLP value can be calculated. It can be seen from Fig.7(a) that the SLP value shows a trend of first increasing and then decreasing with the increase of Co2+ion doping, and reaches the peak value with 1974 W/gmetalwhen x=0.1. It can be concluded that the magnetic hyperthermia properties of Zn0.5Fe2.5O4samples can be improved by Co2+doping. The earlier literature reported that SLP value does not always monotonously rise,and the best position is near the transition point of magnetic NPs from superparamagnetism to ferrimagnetism.[23-25]In our research,the peak SLP value emerges at x=0.1,consistent with the magnetic measurement data and the explanation in the earlier report.

    The magnetic anisotropy continues to increase and the magnetic NPs enter the ferrimagnetic region when the Co2+ions are further increased (x=0.15), which makes the magnetic moment of the sample unable to be effectively reversed by the AC field. On the other hand,the saturation magnetization of the sample has dropped to 79.3 emu/g when the doping amount is x=0.15. According to the research results of the literature,the loss power will also be significantly reduced.[12]Finally,it can be seen from the change diagram of SLP value with Co2+doping amount that the SLP value will be significantly decreased at this time.

    On the other hand,the total relaxation time,which is composed of Brown relaxation time and N′eel relaxation time,will affect the loss power,from the formula of linear response theory. In this paper, the N′eel relaxation time will be mainly affected by adjusting the magnetic anisotropy of the sample,which is expressed as

    where τ0is the time constant(τ0~10?9s),K is the anisotropy constant,V is the volume of nanoparticle,and kBis the Boltzmann constant. In the literature, a theoretical simulation is made based on the linear response theory. From the simulation results,it can be clearly seen that there is a non-monotonic response relationship between the anisotropy constant K and the SLP value of the magnetic NPs. That is,with the increase of the anisotropy constant, the SLP value presents a process of increasing first and then decreasing. This means that under a certain AC field,magnetic NPs need to have an appropriate K value to obtain the maximum SLP value. In our work, the variation of SLP with the anisotropic constant K is in good agreement with the theoretical simulation in the literature. An optimal K value under the AC field is achieved when the Co2+ion doping amount is 0.1. Therefore, it has the highest SLP value in the series of samples.[12,22,26,27]

    The change chart of ILP with the amount of Co2+ion doping is obtained by removing the influence of AC field amplitude and frequency from the SLP value. As shown in Fig.7(b), it can be seen from the chart that the trend of ILP values is consistent with the change of SLP values with the amount of Co2+ion doping, with a peak value of 4.77 nHm2/kgmetalwith Co2+ion doping amount is 0.1.

    Fig.7.(a)SLP and(b)ILP for Zn0.5CoxFe2.5?xO4/SiO2 composite NPs under the AC field of 430 kHz and 31 kA/m.

    Cytotoxicity of Zn0.5CoxFe2.5?xO4/SiO2composite NPs to MEF cells was measured and studied. The different concentrations of Zn0.5CoxFe2.5?xO4/SiO2composite NPs ranging from 25 to 1000μg/mL were incubated with the cells for 24 h. After the incubation period, the viability of the MEF cells was assessed by CCK-8. Cells without NPs were used as control groups. Compared to the group without NPs, as shown in Fig.8,the group containing different concentrations of Zn0.5CoxFe2.5?xO4/SiO2composite NPs shows no significant difference in cell viability at the incubation time of up to 24 h. Though at 1000μg/mL after incubation for 24 h,viability of MEF cells with NPs is nearly 100%,which suggests that the materials are biocompatible.

    Fig.8. The viability of the MEF cells determined by CCK-8 assay after incubation in NP solutions with various concentrations for 24 h.

    4. Conclusion

    In summary, a series of high-quality Zn0.5CoxFe2.5?xO4(x = 0, 0.05, 0.1, 0.15) samples were synthesized by the modified thermal decomposition method. The saturation magnetization of the sample is improved and the magnetic anisotropy of the sample is controlled by doping Zn2+and Co2+ions into Fe3O4. A transition point from superparamagnetism to ferrimagnetism is found with Co2+content of 0.1. A peak SLP value of 1974 W/gmetalhas been found in Zn0.5Co0.1Fe2.4O4/SiO2, which corresponds to the magnetic properties. In addition, the NPs show excellent biocompatibility in vitro. The composite NPs are expected to be a good candidate material in applications of magnetic hyperthermia.

    猜你喜歡
    迪安
    Inversion techniques to obtain local rotation velocity and ion temperature profiles for the x-ray crystal spectrometer on EAST
    助瀾冷戰(zhàn)——迪安·艾奇遜與戰(zhàn)后美蘇原子能合作的破產(chǎn)
    公交站里的背影
    中外文摘(2021年22期)2021-12-30 02:17:18
    Effects of dipolar interactions on the magnetic hyperthermia of Zn0.3Fe2.7O4 nanoparticles with different sizes*
    阿維迪安黃金公司簡(jiǎn)介
    “彗星”成明星,拯救兩條人命的竟是一條小金魚
    朝鮮戰(zhàn)爭(zhēng)中頭號(hào)美軍戰(zhàn)俘迪安少將
    對(duì)不起,我愛(ài)你
    新青年(2017年11期)2017-11-23 18:30:47
    光榮的神槍手
    他鄉(xiāng)
    文學(xué)港(2016年3期)2016-03-17 15:28:41
    www.自偷自拍.com| 亚洲欧洲国产日韩| 免费在线观看日本一区| 国产成人a∨麻豆精品| 韩国高清视频一区二区三区| av在线老鸭窝| 成人亚洲精品一区在线观看| 大陆偷拍与自拍| 视频区欧美日本亚洲| 后天国语完整版免费观看| 国产男人的电影天堂91| 我要看黄色一级片免费的| 亚洲精品第二区| 少妇粗大呻吟视频| 不卡av一区二区三区| 超碰成人久久| 秋霞在线观看毛片| 悠悠久久av| 午夜老司机福利片| 满18在线观看网站| 中国美女看黄片| 超色免费av| 婷婷色综合大香蕉| 少妇的丰满在线观看| 欧美国产精品一级二级三级| 精品一区二区三区av网在线观看 | 亚洲专区国产一区二区| 热re99久久精品国产66热6| av天堂在线播放| 午夜福利乱码中文字幕| 纵有疾风起免费观看全集完整版| 亚洲国产欧美在线一区| 曰老女人黄片| 久久久欧美国产精品| 天天操日日干夜夜撸| 久久久久久亚洲精品国产蜜桃av| 老司机深夜福利视频在线观看 | 久久精品人人爽人人爽视色| 亚洲av男天堂| 一级片'在线观看视频| 热re99久久国产66热| 飞空精品影院首页| 视频区欧美日本亚洲| 国产极品粉嫩免费观看在线| 一区二区三区四区激情视频| www.自偷自拍.com| 天堂中文最新版在线下载| 国产97色在线日韩免费| 在现免费观看毛片| 亚洲欧美色中文字幕在线| 中文字幕另类日韩欧美亚洲嫩草| 久久久国产一区二区| 在线 av 中文字幕| kizo精华| 免费观看a级毛片全部| 人人澡人人妻人| 在线观看www视频免费| 久久亚洲国产成人精品v| 免费人妻精品一区二区三区视频| 免费在线观看日本一区| 97在线人人人人妻| 国产女主播在线喷水免费视频网站| 国产一区亚洲一区在线观看| 午夜激情av网站| avwww免费| 交换朋友夫妻互换小说| 久久ye,这里只有精品| 又紧又爽又黄一区二区| 亚洲成av片中文字幕在线观看| 色精品久久人妻99蜜桃| 欧美 日韩 精品 国产| 大片免费播放器 马上看| 国产精品一区二区精品视频观看| 亚洲欧美中文字幕日韩二区| 国产野战对白在线观看| 大型av网站在线播放| 2018国产大陆天天弄谢| a 毛片基地| 一区二区日韩欧美中文字幕| 国产精品偷伦视频观看了| 国产日韩一区二区三区精品不卡| 久久人人97超碰香蕉20202| 久久久国产精品麻豆| 日韩制服骚丝袜av| 亚洲一区中文字幕在线| 国产欧美日韩一区二区三 | 免费观看a级毛片全部| 中文字幕av电影在线播放| 韩国精品一区二区三区| 69av精品久久久久久| 一卡2卡三卡四卡精品乱码亚洲| 美女国产高潮福利片在线看| 不卡一级毛片| 久久亚洲精品不卡| 亚洲国产精品成人综合色| 高清在线国产一区| 妹子高潮喷水视频| 亚洲无线在线观看| 亚洲精品国产一区二区精华液| 黄色成人免费大全| 99在线人妻在线中文字幕| 国产成人av教育| 在线观看舔阴道视频| 搡老岳熟女国产| 一级片免费观看大全| 天堂影院成人在线观看| 韩国精品一区二区三区| 大型av网站在线播放| 亚洲第一电影网av| 妹子高潮喷水视频| 免费看美女性在线毛片视频| 午夜久久久久精精品| 精品一区二区三区视频在线观看免费| 亚洲性夜色夜夜综合| 欧美色欧美亚洲另类二区| 韩国av一区二区三区四区| 午夜免费成人在线视频| 亚洲欧美一区二区三区黑人| 国产又黄又爽又无遮挡在线| 国内少妇人妻偷人精品xxx网站 | 99在线人妻在线中文字幕| 非洲黑人性xxxx精品又粗又长| 亚洲午夜理论影院| 日韩 欧美 亚洲 中文字幕| 欧美成人一区二区免费高清观看 | 午夜久久久在线观看| 少妇 在线观看| 99精品欧美一区二区三区四区| 午夜精品久久久久久毛片777| 91在线观看av| 亚洲成人国产一区在线观看| 国产区一区二久久| 日本成人三级电影网站| 亚洲狠狠婷婷综合久久图片| 久久久久精品国产欧美久久久| 国产一级毛片七仙女欲春2 | 黄色成人免费大全| 亚洲av电影在线进入| 成年女人毛片免费观看观看9| 亚洲色图av天堂| 亚洲精品色激情综合| 午夜精品久久久久久毛片777| 国产成人av教育| 日本熟妇午夜| 亚洲精品美女久久av网站| 亚洲人成伊人成综合网2020| 午夜两性在线视频| 久久中文字幕人妻熟女| 久久久久久久久免费视频了| 97人妻精品一区二区三区麻豆 | 亚洲自偷自拍图片 自拍| av在线播放免费不卡| 大香蕉久久成人网| 欧美乱色亚洲激情| 亚洲,欧美精品.| 一进一出抽搐动态| 亚洲av五月六月丁香网| 久久久久久大精品| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品国产区一区二| 欧美性猛交╳xxx乱大交人| 亚洲avbb在线观看| 亚洲 国产 在线| 亚洲av第一区精品v没综合| 制服人妻中文乱码| 一区二区三区激情视频| 欧美日韩乱码在线| 精品第一国产精品| 国产又爽黄色视频| 中文字幕人妻熟女乱码| 久热爱精品视频在线9| 久久精品影院6| 亚洲成国产人片在线观看| 又紧又爽又黄一区二区| 少妇裸体淫交视频免费看高清 | svipshipincom国产片| 国产在线观看jvid| 又黄又爽又免费观看的视频| 在线观看午夜福利视频| 狠狠狠狠99中文字幕| 国产精品香港三级国产av潘金莲| 丝袜在线中文字幕| 不卡av一区二区三区| 精品久久蜜臀av无| a在线观看视频网站| 久久久久久久精品吃奶| 91成年电影在线观看| 国产三级黄色录像| www.999成人在线观看| 黄片小视频在线播放| 亚洲精品色激情综合| av在线天堂中文字幕| 999久久久国产精品视频| 悠悠久久av| 日韩精品青青久久久久久| 男人舔奶头视频| 亚洲欧美日韩无卡精品| 久久国产精品男人的天堂亚洲| 美女大奶头视频| 国产高清激情床上av| 久久婷婷人人爽人人干人人爱| 在线观看一区二区三区| 两个人免费观看高清视频| 亚洲全国av大片| 少妇粗大呻吟视频| 午夜视频精品福利| 日韩欧美国产一区二区入口| 日韩免费av在线播放| 男人舔奶头视频| 午夜福利欧美成人| 搡老岳熟女国产| 久热这里只有精品99| 欧美黄色片欧美黄色片| 女性生殖器流出的白浆| 成人午夜高清在线视频 | 国产aⅴ精品一区二区三区波| 精品久久久久久久久久久久久 | 高潮久久久久久久久久久不卡| 日日夜夜操网爽| 成人18禁高潮啪啪吃奶动态图| 91麻豆av在线| 哪里可以看免费的av片| 深夜精品福利| 日韩视频一区二区在线观看| 久久精品国产亚洲av高清一级| 欧美黑人巨大hd| 国产成人影院久久av| 欧美成狂野欧美在线观看| 午夜激情福利司机影院| 99久久综合精品五月天人人| 成人亚洲精品av一区二区| 成人18禁高潮啪啪吃奶动态图| 午夜福利成人在线免费观看| 亚洲av电影不卡..在线观看| 国产精品 欧美亚洲| 夜夜夜夜夜久久久久| www国产在线视频色| 一本精品99久久精品77| 成人欧美大片| 欧美绝顶高潮抽搐喷水| 亚洲中文字幕日韩| 一进一出抽搐gif免费好疼| 91成人精品电影| avwww免费| 99精品欧美一区二区三区四区| 99在线人妻在线中文字幕| 久久人人精品亚洲av| 国产精品亚洲一级av第二区| 精品国产亚洲在线| 伊人久久大香线蕉亚洲五| 大型黄色视频在线免费观看| 亚洲成人久久性| 精品不卡国产一区二区三区| 亚洲午夜精品一区,二区,三区| 国产在线精品亚洲第一网站| 美女扒开内裤让男人捅视频| 欧美久久黑人一区二区| 无限看片的www在线观看| 又紧又爽又黄一区二区| 久久中文看片网| 免费在线观看亚洲国产| 麻豆久久精品国产亚洲av| 亚洲av第一区精品v没综合| 欧美最黄视频在线播放免费| 国产一卡二卡三卡精品| 老司机福利观看| 91字幕亚洲| 免费看十八禁软件| 色老头精品视频在线观看| av有码第一页| 淫妇啪啪啪对白视频| 巨乳人妻的诱惑在线观看| 久久香蕉激情| 欧美日韩黄片免| 国产成人精品无人区| 国产1区2区3区精品| 国产高清激情床上av| 亚洲免费av在线视频| 国产精品亚洲一级av第二区| 亚洲精华国产精华精| av电影中文网址| 亚洲精品美女久久久久99蜜臀| 久久草成人影院| 日韩欧美 国产精品| 欧美zozozo另类| 成人精品一区二区免费| 亚洲精品国产精品久久久不卡| 精品午夜福利视频在线观看一区| 久久久国产欧美日韩av| 无人区码免费观看不卡| 精品电影一区二区在线| 欧美在线一区亚洲| 一本大道久久a久久精品| 变态另类丝袜制服| 男女那种视频在线观看| 男女做爰动态图高潮gif福利片| 麻豆成人午夜福利视频| 动漫黄色视频在线观看| 精品久久久久久久末码| 亚洲午夜精品一区,二区,三区| 天天添夜夜摸| netflix在线观看网站| 99精品欧美一区二区三区四区| 日韩欧美在线二视频| 国产三级在线视频| 两人在一起打扑克的视频| 99国产精品一区二区三区| 国产高清激情床上av| tocl精华| 国产成人av激情在线播放| 日韩精品免费视频一区二区三区| 日韩视频一区二区在线观看| 亚洲成国产人片在线观看| 久久国产亚洲av麻豆专区| 日本免费一区二区三区高清不卡| 成人免费观看视频高清| 免费在线观看黄色视频的| 在线国产一区二区在线| 亚洲国产精品999在线| 大型av网站在线播放| 国产久久久一区二区三区| 侵犯人妻中文字幕一二三四区| 亚洲成人国产一区在线观看| 好男人在线观看高清免费视频 | 12—13女人毛片做爰片一| 免费在线观看完整版高清| 精品一区二区三区四区五区乱码| 色av中文字幕| 久久久久久人人人人人| 制服丝袜大香蕉在线| 别揉我奶头~嗯~啊~动态视频| 亚洲一区二区三区不卡视频| 午夜a级毛片| 国产欧美日韩一区二区精品| 一本大道久久a久久精品| 亚洲美女黄片视频| 高清毛片免费观看视频网站| 久久久久精品国产欧美久久久| 免费在线观看亚洲国产| 国产精品 欧美亚洲| 97碰自拍视频| av在线天堂中文字幕| 在线播放国产精品三级| 欧美又色又爽又黄视频| 性色av乱码一区二区三区2| 九色国产91popny在线| 999精品在线视频| 一级a爱片免费观看的视频| 欧美成人性av电影在线观看| 女人被狂操c到高潮| av免费在线观看网站| 国产av一区二区精品久久| 国产麻豆成人av免费视频| 国产精品乱码一区二三区的特点| 18禁国产床啪视频网站| 好男人在线观看高清免费视频 | 婷婷精品国产亚洲av在线| 麻豆av在线久日| 中文字幕最新亚洲高清| 午夜福利18| 中国美女看黄片| 亚洲欧美日韩高清在线视频| 老汉色∧v一级毛片| 精品免费久久久久久久清纯| 日日夜夜操网爽| 婷婷六月久久综合丁香| 欧美乱妇无乱码| 亚洲av五月六月丁香网| 90打野战视频偷拍视频| 亚洲欧洲精品一区二区精品久久久| 丝袜在线中文字幕| 色播亚洲综合网| 久久青草综合色| 日韩精品免费视频一区二区三区| xxxwww97欧美| 动漫黄色视频在线观看| 欧美成人性av电影在线观看| 久久热在线av| 国产高清激情床上av| 日本在线视频免费播放| 亚洲,欧美精品.| 最近最新中文字幕大全电影3 | 国产亚洲欧美98| 好男人电影高清在线观看| 最近在线观看免费完整版| 身体一侧抽搐| 欧美人与性动交α欧美精品济南到| 欧美 亚洲 国产 日韩一| 久久久久久国产a免费观看| 亚洲男人的天堂狠狠| 色老头精品视频在线观看| 欧美一级a爱片免费观看看 | 国产免费男女视频| 亚洲无线在线观看| 精品国产乱子伦一区二区三区| 亚洲国产看品久久| 欧美日韩福利视频一区二区| 婷婷丁香在线五月| 亚洲一区二区三区色噜噜| 亚洲一码二码三码区别大吗| 日日摸夜夜添夜夜添小说| 色综合亚洲欧美另类图片| 欧美日韩亚洲国产一区二区在线观看| 美女大奶头视频| 两性夫妻黄色片| 国产精品亚洲一级av第二区| 免费人成视频x8x8入口观看| 亚洲av电影不卡..在线观看| 亚洲精品在线观看二区| 欧美色视频一区免费| 亚洲三区欧美一区| 中亚洲国语对白在线视频| 成人精品一区二区免费| 十八禁网站免费在线| 伦理电影免费视频| 日本 av在线| 亚洲成国产人片在线观看| 午夜福利18| 亚洲一区高清亚洲精品| 欧美日本亚洲视频在线播放| 国产精品美女特级片免费视频播放器 | 中文资源天堂在线| 在线免费观看的www视频| 国产久久久一区二区三区| 国产一区在线观看成人免费| 欧美丝袜亚洲另类 | 村上凉子中文字幕在线| 99在线视频只有这里精品首页| 熟女电影av网| 成人午夜高清在线视频 | 一夜夜www| 色综合婷婷激情| 黄色视频不卡| 国产成人av激情在线播放| 久久婷婷人人爽人人干人人爱| 国产97色在线日韩免费| 国产精品影院久久| 人人妻人人澡人人看| 18禁观看日本| 久久性视频一级片| 在线观看舔阴道视频| 欧美性猛交黑人性爽| 91老司机精品| 亚洲激情在线av| 久久伊人香网站| 一区二区日韩欧美中文字幕| 国产v大片淫在线免费观看| 人人妻,人人澡人人爽秒播| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜视频精品福利| 99精品久久久久人妻精品| 一区二区三区高清视频在线| 别揉我奶头~嗯~啊~动态视频| 夜夜看夜夜爽夜夜摸| 欧美在线一区亚洲| 色婷婷久久久亚洲欧美| 中文字幕久久专区| 一本综合久久免费| 久久久国产精品麻豆| 精品卡一卡二卡四卡免费| 精品免费久久久久久久清纯| 亚洲中文字幕日韩| 亚洲人成伊人成综合网2020| 在线观看一区二区三区| 国产在线精品亚洲第一网站| 成在线人永久免费视频| 色老头精品视频在线观看| 男人的好看免费观看在线视频 | 在线永久观看黄色视频| 啦啦啦韩国在线观看视频| 亚洲av日韩精品久久久久久密| 免费在线观看视频国产中文字幕亚洲| 在线观看午夜福利视频| 好男人电影高清在线观看| 婷婷丁香在线五月| 亚洲成av片中文字幕在线观看| 99久久99久久久精品蜜桃| 搡老妇女老女人老熟妇| 日韩中文字幕欧美一区二区| 久久久精品国产亚洲av高清涩受| 亚洲国产精品999在线| 欧美大码av| 日韩三级视频一区二区三区| 在线观看舔阴道视频| 亚洲国产欧美一区二区综合| ponron亚洲| 久久草成人影院| 黄片小视频在线播放| 人人妻人人看人人澡| 男女之事视频高清在线观看| 精品国产超薄肉色丝袜足j| 免费在线观看成人毛片| 国内揄拍国产精品人妻在线 | 午夜免费观看网址| 亚洲av中文字字幕乱码综合 | 亚洲一区二区三区色噜噜| e午夜精品久久久久久久| 国内揄拍国产精品人妻在线 | 91麻豆精品激情在线观看国产| 国产精品电影一区二区三区| 免费女性裸体啪啪无遮挡网站| 少妇 在线观看| 精品熟女少妇八av免费久了| 男人舔女人下体高潮全视频| 欧美一级a爱片免费观看看 | 亚洲男人的天堂狠狠| 哪里可以看免费的av片| 欧美 亚洲 国产 日韩一| 亚洲五月婷婷丁香| 午夜福利18| 久久国产精品人妻蜜桃| 精品国产乱码久久久久久男人| 精品少妇一区二区三区视频日本电影| 亚洲成人久久爱视频| 午夜福利欧美成人| 日日爽夜夜爽网站| 啪啪无遮挡十八禁网站| 老熟妇仑乱视频hdxx| 欧美成人免费av一区二区三区| 波多野结衣高清作品| 欧美绝顶高潮抽搐喷水| 亚洲色图 男人天堂 中文字幕| 在线视频色国产色| 欧美久久黑人一区二区| 丝袜美腿诱惑在线| 国产视频一区二区在线看| 很黄的视频免费| 久久99热这里只有精品18| 亚洲av中文字字幕乱码综合 | 午夜视频精品福利| 美女扒开内裤让男人捅视频| 国产三级黄色录像| 美女国产高潮福利片在线看| 国产精品美女特级片免费视频播放器 | 亚洲专区字幕在线| 桃红色精品国产亚洲av| 免费看a级黄色片| 最近最新中文字幕大全电影3 | 久久国产亚洲av麻豆专区| 亚洲黑人精品在线| 国产爱豆传媒在线观看 | 亚洲五月色婷婷综合| 国产成人av教育| 日本 av在线| 国产成人精品久久二区二区免费| 久久天躁狠狠躁夜夜2o2o| 久久久久亚洲av毛片大全| 精品久久久久久久久久久久久 | 看免费av毛片| 色播亚洲综合网| 成人国产一区最新在线观看| 欧美另类亚洲清纯唯美| 亚洲无线在线观看| 亚洲人成网站在线播放欧美日韩| 日本撒尿小便嘘嘘汇集6| 国产私拍福利视频在线观看| 精品久久久久久久人妻蜜臀av| 久久精品91无色码中文字幕| 人人妻人人澡欧美一区二区| 国产片内射在线| 亚洲熟妇中文字幕五十中出| 日日爽夜夜爽网站| 亚洲精品中文字幕一二三四区| 一区二区三区高清视频在线| 色av中文字幕| 精品乱码久久久久久99久播| 亚洲av中文字字幕乱码综合 | 国产成人欧美| 亚洲av电影不卡..在线观看| 欧美性猛交黑人性爽| 国产视频一区二区在线看| 久久久国产成人精品二区| 亚洲熟妇中文字幕五十中出| 亚洲av五月六月丁香网| 亚洲欧美激情综合另类| 深夜精品福利| 亚洲av五月六月丁香网| 日韩一卡2卡3卡4卡2021年| 久久久久久久久久黄片| 两性午夜刺激爽爽歪歪视频在线观看 | 日韩一卡2卡3卡4卡2021年| 99热只有精品国产| 天天一区二区日本电影三级| 国产极品粉嫩免费观看在线| 国产一卡二卡三卡精品| 亚洲专区字幕在线| 久99久视频精品免费| 国产精品久久久人人做人人爽| 亚洲国产日韩欧美精品在线观看 | 久久国产乱子伦精品免费另类| 欧美最黄视频在线播放免费| 久久天躁狠狠躁夜夜2o2o| 午夜福利18| 一级毛片精品| 高清毛片免费观看视频网站| 美女午夜性视频免费| 一区二区三区国产精品乱码| 高清毛片免费观看视频网站| 国产一区在线观看成人免费| 亚洲国产欧美网| 后天国语完整版免费观看| 久久亚洲精品不卡| 国产亚洲精品综合一区在线观看 | 国产v大片淫在线免费观看| 国产黄a三级三级三级人| 欧美日韩瑟瑟在线播放| 欧美日韩福利视频一区二区| 午夜福利一区二区在线看| 精品国产国语对白av| 久久性视频一级片| 国产精品久久久av美女十八| 国产99久久九九免费精品| 99久久无色码亚洲精品果冻| 韩国精品一区二区三区| 国产片内射在线|