• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Discontinuous event-trigger scheme for global stabilization of state-dependent switching neural networks with communication delay?

    2021-03-19 03:19:38YingjieFan樊英杰ZhenWang王震JianweiXia夏建偉andHaoShen沈浩
    Chinese Physics B 2021年3期
    關(guān)鍵詞:沈浩王震英杰

    Yingjie Fan(樊英杰), Zhen Wang(王震), Jianwei Xia(夏建偉), and Hao Shen(沈浩)

    1College of Electrical Engineering and Automation,Shandong University of Science and Technology,Qingdao 266590,China

    2College of Mathematics and Systems Science,Shandong University of Science and Technology,Qingdao 266590,China

    3School of Mathematical Science,Liaocheng University,Liaocheng 252059,China

    4College of Electrical and Information Engineering,Anhui University of Technology,Ma’anshan 243032,China

    Keywords: global stabilization, state-dependent switching neural networks, discontinuous event-trigger scheme,communication delay

    1. Introduction

    The last decade has displayed an ever-increasing research topic on state-dependent switching neural networks(SDSNNs), such as memristive neural networks, since it has some outstanding superiorities in multi-value storage,[1]and unsupervised learning,[2]etc. Compared with traditional neural networks,some experiment results have demonstrated that SDSNNs can imitate the synaptic activity better in the brain emulation. Accordingly, an enormous interest has been attracted to the investigation of SDSNNs and many pioneering works have been presented,such as synchronization,[3-10]state estimation.[11-14]It is noteworthy that stability is a prerequisite for ensuring SDSNNs steadily operation. As such,various control schemes have been developed to investigate the stabilization problem of SDSNNs.[15-18]Nevertheless,all the above published results are on the basis of an assumption that there are no communication delay and any constraints on the digital transmission channel. From a resource conservation of view,these traditional control schemes in Refs.[3-19]will lead to transmission burdens and increase control cost.With the increasing demand of digital technology in industry,a rich synthesis of energy-saving networked control schemes,such as impulsive control,[20-22]sampled-data control,[23-26]and event-triggered control,[27-40]compose a popular research issue in relevant applications domains. Clearly,it is necessary and reasonable to settle the stabilization problem of SDSNNs under networked control schemes.

    As we know, the sampling information is sent out at a series of transmission instants. It can be found that the time-dependent mechanism is easy to realize by using a clock generator. However, the redundant sampling information is still transmitted to the controller if some desirable targets are satisfied. Hence, it will lead to a waste of energy resources and communication bandwidth. To this end, several event-trigger schemes have been established to reduce the unnecessary sampling times, such as continuous event-trigger(CET),[27-29]sampled-data-based event-trigger,[30-36]and discontinuous event-trigger(DET).[37-41]For example,the global synchronization problem of SDSNNs with parameters mismatch has been investigated via continuous event-triggered control in Ref.[29]. Also,theoretical analysis has proved that the Zeno behavior can be avoided. However, the derived results in Ref.[42]demonstrate that the Zeno behavior may be still exist under the influence of arbitrary small measurement noise or external disturbances. To overcome this shortcoming,the global stabilization of SDSNNs has been discussed under sampled-data-based event-triggered control in Ref. [34].Unfortunately, this kind of trigger scheme does not take advantage of the available state information. In view of the above considerations,the DET scheme consisting of two work modes has been proposed in Ref.[37]for the first time,which can not only avoid Zeno behavior but also reduce the triggering times. For instance, the global stabilization of SDSNNs has been achieved based on an exponential-attenuation-based DET scheme and the simulation results have demonstrated that the triggering times can be effectively reduced in Ref.[38]. It is, therefore, meaningful to investigate the stabilization problem of SDSNNs by using DET scheme.

    On the other hand, an ineluctable issue is that the sampling information transmitted from the controller to actuator is usually influenced by network-induced communication delay.[43,44]Under the effect of communication delay, it is difficult to achieve a satisfactory performance. Accordingly,how to ensure the stability of networked control systems with communication delay is an important and necessary problem. To this end, the global stabilization problem of networked T-S fuzzy control systems has been investigated under adaptive event-triggered control with communication delay in Ref.[35]. In addition,a class of event-trigger predictive control scheme, to compensate communication delays, has been proposed for networked control systems(NCSs)in Ref.[36].Nevertheless,there are no published results to study the analysis and synthesis of SDSNNs under discontinuous eventtriggered control under the framework of communication delay. The main reason lies in that the proposed analysis techniques in Refs. [38,40,41] cannot be applied to deal with the stability of SDSNNs under discontinuous event-triggered control subject to communication delay.This naturally touches off the following important problems. What is the impact of communication delay on data transmission? Furthermore, what is the effect of communication delay on the trigger times and stability performance? To the best of our knowledge, these difficulties have not been solved for SDSNNs with communication delay by employing DET scheme. Therefore, how to well settle these problems motivates the present investigation of this paper.

    Summarizing the above discussions, this paper investigates the global stabilization of SDSNNs under discontinuous event-triggered control with communication delay. The main contributions are listed as follows.

    (i)Considering the effect of communication delay,a fictitious delay function is proposed by utilizing the convex combination technique. Then, the SDSNNs and trigger condition are respectively transformed into two tractable models,which contributes to the current theoretical analysis.

    (ii) A unified framework is proposed that has the ability to deal with the simultaneous existence of the properties of discontinuous event-trigger scheme,communication delay,as well as feedback controller design. First, a novel Lyapunov-Krasovskii functional is constructed to investigate the stability of the resulting closed-loop SDSNNs. Then, by employing the extended reciprocally convex combination method and some inequality estimation techniques,two novel globally asymptotically stability criteria are respectively established for the resulting closed-loop SDSNNs under discontinuous eventtriggered control with communication delay.

    Notations:Throughout this paper, N, Rn×ndenote the set of nonnegative integers, n×n real matrices, respectively.diag(···)and A(i)respectively denote a block diagonal matrix and the i-th row of matrix A. AT(A?1) stands for transpose(inverse) of matrix A. A >0 (A ≥0) means that A is a symmetric and positive definite (semi-definite) matrix. col{···}is a column vector. λmax(A) denotes the maximal eigenvalue of matrix A. ||·||p, p=1,2,∞and I (0) are the p-norm of a vector or a matrix and identity (zero) matrices of appropriate dimensions.

    2. Preliminaries and problem formulation

    Consider the following dynamical system for n-neurons SDSNNs:

    where x(t)∈Rnand u(t)∈Rndenote the state vector and controller, respectively. D=diag{d1,d2,...,dn}>0, A(x(t))=(aij(xj(t)))n×n,and B(x(t))=(bij(xj(t)))n×nrespectively denote the self-feedback matrix,state-dependent switching connection weight matrix,and delayed connection weight matrix.τ(t)denotes the time-varying delay satisfying 0 ≤τ(t)≤τ and ˙τ(t)≤μ <1. The neuron activation function f(x(t))∈Rnis assumed to be monotonically nondecreasing and satisfies 0 ≤fj(u)?fj(ν)/(u?ν)≤Lj, u, ν, u/=ν, Lj∈R, i,j =1,2,...,n. The state-dependent switching connection weights satisfy the following conditions:

    Also,one can see that equation(1)is the characteristic of differential dynamical systems with discontinuous right-hand sides. In this case, we consider the trivial solutions of system (1) in Filippov’s sense and the following Definition 1 is introduced.

    Definition 1[45]Consider the system ˙y(t)=g(y),y ∈Rnwith discontinuous right-hand sides, a set-valued map is described as

    where B(y,δ)={z:‖z ?y‖≤δ},co[E]is the closure of the convex hull of set E, and μ(N) is the Lebesgue measure of set N. A solution in Filippov’s sense of the Cauchy problem,for the system with initial value y(0)=y0, is an absolutely continuous function y(t),t ∈[0,T]. It satisfies y(0)=y0and differential inclusion

    ˙y(t)∈φ(y)

    for a.e.t ∈[0,T].

    Define

    Based on Definition 1,system(1)is equivalent to

    where

    such that

    In this paper, we consider the stabilization problem of SDSNNs via discontinuous event-triggered control. As displayed in Fig.1,a discontinuous event-trigger(DET)scheme is positioned between the controller and the sensor. The corresponding trigger condition is formulated as

    where the waiting time h >0, λ ≥0, and trigger matrix Θ ≥0. It should be mentioned that the main feature of this DET scheme lies in that the operation pattern consists of rest interval and work interval. The principle is as follows. Suppose that the k-th event is activated on the basis of trigger condition (3). Then, the sampling information x(sk)is transmitted from the event generator to the controller.Meanwhile, the trigger scheme rests for h seconds. At time sk+h, the DET scheme begins to work. Once the trigger condition (3) is violated, the next (k+1)-th event satisfying (x(t)?x(sk+1))TΘ(x(t)?x(sk+1))>λxT(t)Θx(t) is activated. Repeating the above reasoning, it is easy to see that the Zeno phenomenon can be avoided by using DET scheme since the inner-event interval is not less than h seconds.

    Fig.1. Schematic diagram of an event-triggered control SDSNNs.

    The control law in system(2)is designed as

    u(t)=Kx(sk),

    where K is the control gain matrix to be determined.

    Taking the network-induced delay into account,denote by δk∈[0,δM]over all communication delay from the controller to the actuator. From Fig.1,one can see that the communication delay δkaffects the transmission of sampling information x(sk). Here, we set tk=sk+δkas the ZOH updating time,which is satisfied

    tk=sk+δk≤sk+1+δk+1=tk+1.

    Then,the closed-loop system(2),for[tk,tk+1),has the resulting form

    Remark 1According to the characteristics of DET scheme,we would like to transform the closed-loop SDSNNs(4) into a system which switches between the rest interval t ∈[tk,tk+h)and work interval t ∈[tk+h,tk+1).However,owing to the effect of the communication delay δk,such a switching case will not happen if tk+h=sk+δk+h ≥sk+1+δk+1=tk+1. Accordingly, the trigger condition (3) and closed-loop system(4)should be reconsidered.

    In view of the foregoing discussions, rewrite system (4)as follows:

    where

    ε(t)=t ?sk≤h+δM=εM, t ∈[tk,min{tk+h,tk+1}),

    e(t)=x(sk)?x(t ?δ(t)), t ∈[min{tk+h,tk+1},tk+1).

    Fig.2. The illustration of the sampling and transmission sequence whentk+h <tk+1.

    Here, δ(t) ∈[0,δM] is a fictitious delay function. As shown in Fig.2,owing to t ?δ(t)∈[sk+h,sk+1),δ(t)can be presented as a simple convex combination with δ(tk+1)=δk+1and δ(tk+h)=δk,i.e.,

    Therefore,the trigger condition(3)can be written as

    Before deriving the main results,the following lemma is introduced.

    4. Related work

    Considering the effect of communication delay,the main difficulties and contributions will be discussed in this section.

    (i)Proof of Theorem 1

    It should be mentioned that,for ε(t)∈[0,δM]and κ(t)=1, the closed-loop system (5) can be described by itself with κ(t)=0 and e(t)=0. Clearly,the trigger scheme(6)can be guaranteed. In this case, the condition (7) in Theorem 1 ensures ˙V(t)≤0 for system (5) with ε(t)∈[0,δM], κ(t)=1.As such,we,here,just consider the dynamic behavior of system(5)with ε(t)∈(δM,εM]and κ(t)=1.

    (ii)Robustness to communication delay

    In this paper, the main difficulty is how to analyze the stability of the trivial solutions of closed-loop system(5)under discontinuous event-triggered control subject to network-induced communication delay. Unlike the previous works,[38,40]the closed-loop systems switching between the rest interval and work interval may not occur if sk+δk+h ≥sk+1+δk+1. Accordingly, the developed system models and analysis approaches in Refs. [38,40] cannot be applied in this paper. To overcome these difficulties, a fictitious delay function δ(t) is designed by utilizing the convex combination method. Then, a novel closed-loop system (5) and the related trigger condition (6) are respectively established with the aid of δ(t). In addition, the other challenge is how to investigate the stability of system (5). To this end, the proof of Theorem 1 is divided into two steps, i.e., κ(t)=1,δ(t)∈[0,δM] and κ(t)=0, ε(t)∈(δM,εM]. Meanwhile, by using the constructed Lyapunov-Krasovskii functional and extended reciprocally convex inequality technique, a new globally asymptotically stability criterion is derived for closedloop SDSNNs(5)with communication delay under discontinuous event-triggered control. As such,a unified framework,to reflect the engineering practice, is proposed that aims to handle the problem of simultaneous existence of the communication delay,discontinuous event-triggered control,and feedback controller design. It can not only make full use of the advantage of the DET but also guarantee enough resilience requirement and satisfactory performance influenced by communication delay and limited network resources.

    5. Numerical simulation

    Example 1Taken from Refs.[50], a chaotic SDSNN is proposed and the related system parameters are described by

    and f(x(t))=tanh(x(t)), τ(t)= et/(1+et), D=diag(1,1).Thus,we can obtain L=diag(1,1),τ =1,μ =0.25,

    Using the above parameters, figure 3 demonstrates that the global stabilization of the closed-loop SDSNNs (5) with communication delay can be achieved under discontinuous event-triggered control. In the following, the influence of the waiting time h and communication delay δMon the number of triggering times are respectively discussed.

    Case 1 To depict the effect of h on the triggering times,choose ξ =1, λ =0.01, δM=0.01, and some calculations are shown in Figs.4 and 5. Figure 4 displays the release times with the different values of waiting time h over[0 s,5 s].From Fig.5,we can conclude that the triggering times will decrease when h increases. That is to say,the average period arwill become large. Accordingly,it is clear that the limited bandwidth and computational resources can be effectively saved with the increasing of h.

    Fig.3. Evolutions of xi(t),xi(tk),i=1,2 under DET scheme(6).

    Fig.4. Event release instants with different h for ξ =1,λ =0.01,δM =0.01.

    Fig.5. Triggering times tr for different waiting time h.

    Fig.6. Triggering times tr for different communication delay δM.

    Case 2For fixed ξ =1, λ =0.01, h=0.01, set δM=0.005l,l=1,2,3,4,5,6,figure 6 and Table 1 display the evolution of triggering times tr. From Fig.6 and Table 1, it can be seen that only 135 data signals are transmitted when δM= 0.005. However, it is noteworthy that the amount of triggering times will increase if the communication delay δMbecomes large, which means that the output fluctuation of closed-loop system is large. Namely,the increasing of δMcan aggravate the computational cost and transmission burden of networked control systems.

    Table 1. For fixed ξ =1, λ =0.01, h=0.01, the triggering times tr,average period pr with different communication delay δM over[0 s,5 s].

    From above analyses,it is clear that a larger waiting time h and a smaller communication delay δMcontribute to a better performance of triggering times.

    Example 2Consider a 2-neurons SDSNN(1)with τ(t)=et/(1+et), f(x(t))=tanh(x(t)),D=diag(1,1),and

    then,one has L=diag(1,1),τ =1,μ =0.25,

    Take h=0.04, ξ =1, λ =0.01, δM=0.01, εM=h+δM=0.05,x(s)=(?0.8,1.3)T,s ∈[?1,0]. As well,combining with Theorem 2, one can obtain the trigger matrix Θ and feedback gain K:

    As shown in Fig.7(a), it can be seen that the state responses xi(t) and xi(tk) (i=1,2) of system (6) converge to origin. Furthermore,figure 7(b)displays the event release instants over[0 s,12 s].One can obtain the trigger times tr=187 and average period ar=0.0642 s. It implies that the global stabilization of system (6) can be achieved via discontinuous event-triggered control with communication delay.

    Fig.7. (a)Evolutions of xi(t),xi(tk),i=1,2;(b)event release instants over[0 s,12 s]under DET scheme(6).

    It should be mentioned that when λ = 0 and h = 0 in system (6), the DET control will degenerate into periodic sampled-data (PS) control and CET control, respectively. In order to display the advantage of DET, some comparisons are illustrated as follows. Set the initial value as x(s) =(?0.8,1.3)T,s ∈[?1,0],h=0.01,ξ=1,λ=0.1,and δM=0.In terms of Theorem 2,the triggering times for different control schemes are displayed in Table 2. Compared with the PS and CET,it is easy to see that the number of triggering times,based on DET(3),is respectively reduced more than 91%and 86%. It means that the limited network resources can be effectively saved by using DET control.

    Table 2. Comparisons of the average release period ar,triggering times tr,and data transmission rates o for h=0.01,ξ=1,λ=0.1,and δM=0 over[0 s,8 s].

    6. Conclusion

    The global stabilization problem of SDSNNs is developed under discontinuous event-triggered control with communication delay. Considering the influence of communication delay, the trigger condition and SDSNNs are transformed into two tractable models by introducing a fictitious delay function.Then, a Lyapunov-Krasovskii functional is designed for the resulting closed-loop SDSNNs. Meanwhile, some inequality estimation techniques and extended reciprocally convex combination method are employed to guarantee the stability of the closed-loop SDSNNs. A unified framework is established that is capable of handling the simultaneous existence of the properties of discontinuous event-trigger scheme, feedback controller design, as well as communication delay. Lastly, two examples are given to illustrate the validity of the obtained results. In our future work,the networked privacy problems will be considered in the presence of DET control.In addition,how to extend the developed framework to consider the privacy issues with DET control will be another interesting topic.

    猜你喜歡
    沈浩王震英杰
    拜謁沈浩墓
    Probability density and oscillating period of magnetopolaron in parabolic quantum dot in the presence of Rashba effect and temperature*
    其實我很想哭
    其實我很想哭
    ?∞state estimation for Markov jump neural networks with transition probabilities subject to the persistent dwell-time switching rule?
    Observe modern design works and taste traditional Chinese culture
    “要是”的作用
    搶著去邊疆的王震
    “辦”“為”和解
    Special Property of Group Velocity for Temporal Dark Soliton?
    国产大屁股一区二区在线视频| 丝袜喷水一区| 成人无遮挡网站| 精品久久久久久久久av| 日韩av不卡免费在线播放| 亚洲经典国产精华液单| 一级毛片aaaaaa免费看小| 中文在线观看免费www的网站| 亚洲精品成人av观看孕妇| 精品少妇久久久久久888优播| 精品一区二区免费观看| 日日啪夜夜撸| 永久网站在线| 久久久久久久久久久免费av| 91精品一卡2卡3卡4卡| 亚洲人成网站高清观看| 久久精品久久久久久久性| 丝袜脚勾引网站| 性色avwww在线观看| 欧美一区二区亚洲| 99久久精品热视频| 亚洲欧美日韩无卡精品| 中文字幕av成人在线电影| 国产av码专区亚洲av| 国产黄片美女视频| 人人妻人人看人人澡| 国产综合懂色| 欧美成人午夜免费资源| 亚洲欧美一区二区三区国产| 18禁裸乳无遮挡免费网站照片| 亚洲精品久久午夜乱码| 大码成人一级视频| 纵有疾风起免费观看全集完整版| 精品久久久噜噜| 免费看日本二区| 水蜜桃什么品种好| 亚洲精品国产av成人精品| 深爱激情五月婷婷| 日韩强制内射视频| 久久ye,这里只有精品| 麻豆国产97在线/欧美| 亚洲av福利一区| 精品午夜福利在线看| 自拍欧美九色日韩亚洲蝌蚪91 | 噜噜噜噜噜久久久久久91| 久久久久精品久久久久真实原创| 九九在线视频观看精品| 内射极品少妇av片p| 中文天堂在线官网| 国产成人a区在线观看| 91精品国产九色| 欧美3d第一页| 色婷婷久久久亚洲欧美| 啦啦啦中文免费视频观看日本| 精品久久国产蜜桃| 国产精品国产三级国产av玫瑰| 日本wwww免费看| 街头女战士在线观看网站| 亚洲av中文av极速乱| 日韩av不卡免费在线播放| 人人妻人人澡人人爽人人夜夜| 国产精品不卡视频一区二区| 免费av观看视频| 黄色欧美视频在线观看| 精品视频人人做人人爽| 在线观看一区二区三区激情| 国产成人a区在线观看| 国产成人精品一,二区| 亚洲av不卡在线观看| 麻豆乱淫一区二区| 成年人午夜在线观看视频| 一个人观看的视频www高清免费观看| 欧美性感艳星| 亚洲精品乱久久久久久| www.色视频.com| 美女主播在线视频| 亚洲欧美精品专区久久| 欧美亚洲 丝袜 人妻 在线| 亚洲精品久久久久久婷婷小说| 国产黄色免费在线视频| 日韩欧美 国产精品| 九九在线视频观看精品| 精品国产露脸久久av麻豆| av福利片在线观看| 欧美精品人与动牲交sv欧美| 欧美激情国产日韩精品一区| 秋霞伦理黄片| 97超碰精品成人国产| 欧美变态另类bdsm刘玥| 午夜视频国产福利| 中文资源天堂在线| 18+在线观看网站| 午夜视频国产福利| 少妇的逼水好多| 97超碰精品成人国产| av在线亚洲专区| 人妻制服诱惑在线中文字幕| 亚洲av二区三区四区| 老司机影院毛片| 国产熟女欧美一区二区| 亚洲欧美精品自产自拍| 亚洲av欧美aⅴ国产| 91aial.com中文字幕在线观看| 欧美bdsm另类| 最新中文字幕久久久久| 成人黄色视频免费在线看| 亚洲精品日韩av片在线观看| 搡女人真爽免费视频火全软件| 亚洲综合色惰| 国产黄a三级三级三级人| 久久久精品94久久精品| 啦啦啦中文免费视频观看日本| 18禁在线无遮挡免费观看视频| 亚洲国产精品成人综合色| 精品久久久精品久久久| 日韩亚洲欧美综合| 亚洲欧美一区二区三区国产| 91精品国产九色| 极品少妇高潮喷水抽搐| 老女人水多毛片| 国产伦精品一区二区三区四那| 18+在线观看网站| 精品少妇黑人巨大在线播放| 国产黄片美女视频| 国产精品久久久久久久电影| 日韩人妻高清精品专区| 欧美日韩在线观看h| 成人国产麻豆网| 日日撸夜夜添| 18禁裸乳无遮挡动漫免费视频 | 99热全是精品| 91精品国产九色| 中文字幕制服av| 国产爽快片一区二区三区| 免费黄网站久久成人精品| 观看免费一级毛片| 波多野结衣巨乳人妻| 久久鲁丝午夜福利片| 天天一区二区日本电影三级| 久久久久国产网址| av福利片在线观看| 午夜福利网站1000一区二区三区| 午夜日本视频在线| 男女下面进入的视频免费午夜| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲国产欧美人成| 精品一区在线观看国产| 国产精品女同一区二区软件| 久久久久久伊人网av| 草草在线视频免费看| 成人国产av品久久久| 亚洲精品自拍成人| 久久久久久九九精品二区国产| 免费高清在线观看视频在线观看| 黄片wwwwww| 国产精品人妻久久久影院| 国产视频首页在线观看| 精品少妇久久久久久888优播| 色播亚洲综合网| 春色校园在线视频观看| 久久精品国产亚洲网站| 国产久久久一区二区三区| 日韩欧美一区视频在线观看 | 一级片'在线观看视频| 偷拍熟女少妇极品色| 日日摸夜夜添夜夜爱| 美女cb高潮喷水在线观看| 黄色视频在线播放观看不卡| 成人鲁丝片一二三区免费| 亚洲av不卡在线观看| 国产大屁股一区二区在线视频| 成人一区二区视频在线观看| 熟女av电影| 久久久久久久久久久免费av| 国产免费福利视频在线观看| av在线观看视频网站免费| 日本wwww免费看| 色哟哟·www| 日本av手机在线免费观看| 99久久精品国产国产毛片| 亚洲精品456在线播放app| 在线观看人妻少妇| 另类亚洲欧美激情| 欧美+日韩+精品| 人妻夜夜爽99麻豆av| 97人妻精品一区二区三区麻豆| 亚洲内射少妇av| 91在线精品国自产拍蜜月| 99久久精品国产国产毛片| 性色av一级| 成人鲁丝片一二三区免费| 99久久人妻综合| 国产色爽女视频免费观看| 亚洲人成网站在线观看播放| 国产老妇女一区| 亚洲av中文av极速乱| 国产精品久久久久久精品电影| 男女国产视频网站| 校园人妻丝袜中文字幕| 能在线免费看毛片的网站| 秋霞在线观看毛片| 国产日韩欧美亚洲二区| 欧美变态另类bdsm刘玥| 看十八女毛片水多多多| 久久热精品热| 黄片无遮挡物在线观看| 一本色道久久久久久精品综合| 欧美日韩视频高清一区二区三区二| 欧美日韩国产mv在线观看视频 | 午夜福利视频1000在线观看| 韩国av在线不卡| 国产一区有黄有色的免费视频| 国产精品一区二区三区四区免费观看| 大话2 男鬼变身卡| eeuss影院久久| 国国产精品蜜臀av免费| 一个人观看的视频www高清免费观看| 久久国内精品自在自线图片| 国产成人aa在线观看| 国产乱人偷精品视频| 成人午夜精彩视频在线观看| 亚洲成人av在线免费| 精品久久久久久久久亚洲| 国产精品人妻久久久影院| 国产高清有码在线观看视频| 春色校园在线视频观看| a级毛色黄片| 国产91av在线免费观看| 国产在线男女| www.av在线官网国产| 亚洲一区二区三区欧美精品 | 中文字幕亚洲精品专区| 尾随美女入室| 欧美日韩综合久久久久久| 国产极品天堂在线| 少妇被粗大猛烈的视频| 亚洲欧洲日产国产| 亚洲精品国产av成人精品| 欧美成人精品欧美一级黄| 18+在线观看网站| 欧美区成人在线视频| 欧美日韩精品成人综合77777| 国产精品三级大全| 欧美成人a在线观看| 久久99热6这里只有精品| 亚洲精品一区蜜桃| 熟女av电影| 1000部很黄的大片| 少妇被粗大猛烈的视频| 少妇的逼好多水| 精品人妻偷拍中文字幕| 亚洲成人精品中文字幕电影| 久久人人爽人人爽人人片va| 高清欧美精品videossex| 免费看av在线观看网站| 久热这里只有精品99| 高清午夜精品一区二区三区| 精品国产乱码久久久久久小说| 少妇裸体淫交视频免费看高清| 亚洲精品国产av成人精品| 色视频www国产| 联通29元200g的流量卡| 亚洲经典国产精华液单| 日本色播在线视频| 激情 狠狠 欧美| 精品一区二区三区视频在线| 高清在线视频一区二区三区| 十八禁网站网址无遮挡 | 欧美成人一区二区免费高清观看| 午夜激情福利司机影院| av在线老鸭窝| 色综合色国产| 国产真实伦视频高清在线观看| 狂野欧美激情性xxxx在线观看| 亚洲精品国产av成人精品| 亚洲精品国产av蜜桃| 搞女人的毛片| 久久久亚洲精品成人影院| 自拍欧美九色日韩亚洲蝌蚪91 | 波多野结衣巨乳人妻| 午夜福利在线观看免费完整高清在| 欧美bdsm另类| 国产精品人妻久久久影院| 九色成人免费人妻av| 午夜福利网站1000一区二区三区| 亚洲国产色片| 18+在线观看网站| 国产精品人妻久久久影院| 国产精品国产三级国产av玫瑰| 美女国产视频在线观看| 男男h啪啪无遮挡| 日韩 亚洲 欧美在线| 中文在线观看免费www的网站| 欧美人与善性xxx| 日日啪夜夜撸| 嫩草影院精品99| 久久久久九九精品影院| 亚洲精品乱码久久久v下载方式| 人妻一区二区av| 欧美xxⅹ黑人| 日日撸夜夜添| 嫩草影院入口| 亚洲久久久久久中文字幕| 十八禁网站网址无遮挡 | 欧美成人一区二区免费高清观看| 欧美 日韩 精品 国产| 十八禁网站网址无遮挡 | 久久精品久久久久久久性| 免费看不卡的av| 久久99精品国语久久久| 国产精品三级大全| 日本欧美国产在线视频| 在线观看一区二区三区激情| 一级毛片黄色毛片免费观看视频| 亚洲av免费在线观看| 一区二区三区乱码不卡18| 成人一区二区视频在线观看| 国内精品美女久久久久久| 亚洲内射少妇av| 狂野欧美激情性bbbbbb| 亚洲丝袜综合中文字幕| 亚洲一区二区三区欧美精品 | av在线老鸭窝| 国产男女超爽视频在线观看| 你懂的网址亚洲精品在线观看| 国产真实伦视频高清在线观看| 在线观看一区二区三区| 精品久久久久久久久av| 国产片特级美女逼逼视频| 免费人成在线观看视频色| 永久免费av网站大全| 亚洲国产欧美在线一区| 亚洲四区av| 高清在线视频一区二区三区| 波野结衣二区三区在线| 亚洲欧洲国产日韩| 欧美xxxx黑人xx丫x性爽| 在线观看人妻少妇| 日本黄大片高清| 久久精品综合一区二区三区| 亚洲欧美一区二区三区国产| 欧美老熟妇乱子伦牲交| 亚洲欧美精品专区久久| 欧美激情在线99| 久久精品国产a三级三级三级| 三级男女做爰猛烈吃奶摸视频| av又黄又爽大尺度在线免费看| 国产片特级美女逼逼视频| 成人美女网站在线观看视频| 欧美xxⅹ黑人| 一边亲一边摸免费视频| 丝袜脚勾引网站| 久热这里只有精品99| 亚洲欧美精品专区久久| 午夜免费鲁丝| 别揉我奶头 嗯啊视频| 岛国毛片在线播放| 精品一区二区免费观看| 最近手机中文字幕大全| 日韩欧美一区视频在线观看 | 国内精品宾馆在线| 成年女人在线观看亚洲视频 | 日产精品乱码卡一卡2卡三| 亚洲国产欧美在线一区| 国产精品99久久99久久久不卡 | 国产精品女同一区二区软件| 欧美xxxx性猛交bbbb| 波多野结衣巨乳人妻| 国产精品偷伦视频观看了| 69人妻影院| 亚洲美女搞黄在线观看| 精品国产一区二区三区久久久樱花 | 国产男女内射视频| 久久精品夜色国产| 久久亚洲国产成人精品v| 亚洲自拍偷在线| 久久午夜福利片| 99热这里只有是精品50| 免费高清在线观看视频在线观看| 亚洲,一卡二卡三卡| 乱码一卡2卡4卡精品| 男女边摸边吃奶| 亚洲欧美日韩卡通动漫| 国产一区有黄有色的免费视频| 神马国产精品三级电影在线观看| 校园人妻丝袜中文字幕| 亚洲图色成人| 大话2 男鬼变身卡| 舔av片在线| 熟妇人妻不卡中文字幕| 天堂中文最新版在线下载 | 插阴视频在线观看视频| 日韩欧美一区视频在线观看 | 色视频www国产| 国产老妇女一区| 91久久精品国产一区二区三区| 亚洲国产成人一精品久久久| 全区人妻精品视频| 七月丁香在线播放| 麻豆成人午夜福利视频| 伦精品一区二区三区| 国产成人91sexporn| 最近的中文字幕免费完整| 91狼人影院| 成人国产麻豆网| 三级国产精品片| 99久久九九国产精品国产免费| 国产一区亚洲一区在线观看| 三级国产精品片| 国产精品一区二区在线观看99| 国产精品人妻久久久影院| 久久精品久久久久久久性| 黄色日韩在线| 91久久精品国产一区二区三区| 中文字幕制服av| 成人毛片60女人毛片免费| 深爱激情五月婷婷| 欧美高清性xxxxhd video| 欧美精品人与动牲交sv欧美| 一区二区三区四区激情视频| 欧美一级a爱片免费观看看| 亚洲天堂av无毛| 99久久精品国产国产毛片| 亚洲,欧美,日韩| 亚洲综合色惰| 最近2019中文字幕mv第一页| 成人亚洲精品一区在线观看 | 美女脱内裤让男人舔精品视频| 精品久久国产蜜桃| 欧美 日韩 精品 国产| 亚洲电影在线观看av| 欧美国产精品一级二级三级 | eeuss影院久久| 亚洲国产精品成人久久小说| 国产伦在线观看视频一区| 菩萨蛮人人尽说江南好唐韦庄| 午夜激情福利司机影院| h日本视频在线播放| 一本色道久久久久久精品综合| 热re99久久精品国产66热6| 熟女电影av网| 舔av片在线| 国产精品麻豆人妻色哟哟久久| 国产极品天堂在线| 一个人观看的视频www高清免费观看| 久久久a久久爽久久v久久| 亚洲伊人久久精品综合| 久久久久久久大尺度免费视频| 欧美日韩在线观看h| 99热6这里只有精品| 91久久精品电影网| 好男人在线观看高清免费视频| 高清午夜精品一区二区三区| 亚洲,一卡二卡三卡| 久久精品国产亚洲av涩爱| 国产成年人精品一区二区| 国产精品久久久久久久久免| 国产精品一区二区性色av| 国产乱人偷精品视频| 久热这里只有精品99| 国产精品秋霞免费鲁丝片| 国产 精品1| h日本视频在线播放| 国产精品爽爽va在线观看网站| 日本一本二区三区精品| 亚洲av欧美aⅴ国产| av国产久精品久网站免费入址| 欧美日本视频| 国产精品人妻久久久影院| 欧美日韩亚洲高清精品| 国产永久视频网站| 免费观看无遮挡的男女| 日韩视频在线欧美| 日韩伦理黄色片| 美女高潮的动态| av在线蜜桃| 天天躁日日操中文字幕| 赤兔流量卡办理| 爱豆传媒免费全集在线观看| 蜜桃久久精品国产亚洲av| 亚洲av欧美aⅴ国产| 99久久精品国产国产毛片| 五月开心婷婷网| 青春草亚洲视频在线观看| 成人综合一区亚洲| 日本wwww免费看| 91精品国产九色| 中文精品一卡2卡3卡4更新| 成年免费大片在线观看| av网站免费在线观看视频| 亚洲综合精品二区| 国产欧美亚洲国产| 国产精品人妻久久久影院| 极品教师在线视频| 只有这里有精品99| 狂野欧美白嫩少妇大欣赏| 熟女电影av网| 亚洲色图综合在线观看| 久久这里有精品视频免费| 爱豆传媒免费全集在线观看| 涩涩av久久男人的天堂| 男女下面进入的视频免费午夜| 国产69精品久久久久777片| 午夜日本视频在线| 久久久色成人| 最近中文字幕2019免费版| 色播亚洲综合网| 日韩国内少妇激情av| 欧美少妇被猛烈插入视频| 欧美97在线视频| 一本色道久久久久久精品综合| 国产乱人偷精品视频| 免费看a级黄色片| 国产精品99久久99久久久不卡 | 欧美97在线视频| 日日撸夜夜添| 国产爽快片一区二区三区| 欧美日韩在线观看h| 日韩一区二区三区影片| 国内少妇人妻偷人精品xxx网站| 插阴视频在线观看视频| 色综合色国产| av在线播放精品| 天天一区二区日本电影三级| 99九九线精品视频在线观看视频| 秋霞伦理黄片| 国产精品三级大全| 青春草视频在线免费观看| 亚州av有码| 亚洲人成网站高清观看| 亚洲一级一片aⅴ在线观看| 欧美成人午夜免费资源| 亚洲熟女精品中文字幕| 啦啦啦啦在线视频资源| 自拍偷自拍亚洲精品老妇| 麻豆精品久久久久久蜜桃| 国产极品天堂在线| 国产视频内射| 久久99蜜桃精品久久| 久久久久性生活片| 国产永久视频网站| 在线免费十八禁| 午夜福利高清视频| 好男人在线观看高清免费视频| 亚洲欧美一区二区三区黑人 | 国产精品蜜桃在线观看| 日产精品乱码卡一卡2卡三| 亚洲欧美一区二区三区国产| 22中文网久久字幕| 亚洲国产色片| 在线观看av片永久免费下载| 成年人午夜在线观看视频| 熟女电影av网| 免费观看的影片在线观看| 精品国产露脸久久av麻豆| 国语对白做爰xxxⅹ性视频网站| 亚洲成人av在线免费| 国产成人a∨麻豆精品| 一个人看的www免费观看视频| 性插视频无遮挡在线免费观看| 岛国毛片在线播放| 国产免费视频播放在线视频| 亚洲经典国产精华液单| 国产免费一区二区三区四区乱码| 天天一区二区日本电影三级| 久久97久久精品| 日本熟妇午夜| 色视频在线一区二区三区| 欧美+日韩+精品| 一区二区三区四区激情视频| 伦理电影大哥的女人| 日日摸夜夜添夜夜爱| 在线精品无人区一区二区三 | 一级毛片久久久久久久久女| 91狼人影院| 色视频在线一区二区三区| 国产探花极品一区二区| 国产免费视频播放在线视频| 久久久久久久久久久免费av| 好男人视频免费观看在线| 99精国产麻豆久久婷婷| 六月丁香七月| 人体艺术视频欧美日本| 国内精品宾馆在线| 两个人的视频大全免费| 国产 精品1| 亚洲真实伦在线观看| 国产精品国产三级国产专区5o| 日韩欧美精品v在线| 成人亚洲精品av一区二区| 亚洲怡红院男人天堂| 国产大屁股一区二区在线视频| 各种免费的搞黄视频| 日韩电影二区| 搡老乐熟女国产| 亚洲最大成人中文| 女人十人毛片免费观看3o分钟| 欧美最新免费一区二区三区| 国产精品久久久久久av不卡| 日本免费在线观看一区| 一级毛片我不卡| 亚洲欧美精品自产自拍| 亚洲精品第二区| 亚洲熟女精品中文字幕| 99久久人妻综合| 日韩制服骚丝袜av| 国产一区有黄有色的免费视频| 精品久久国产蜜桃| 久久久久久久久久成人| 在线观看免费高清a一片| 在线天堂最新版资源| 男人和女人高潮做爰伦理| 成人毛片60女人毛片免费| 韩国av在线不卡| 国产一区二区在线观看日韩|