• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ?∞state estimation for Markov jump neural networks with transition probabilities subject to the persistent dwell-time switching rule?

    2021-06-26 03:03:06HaoShen沈浩JiaChengWu吳佳成JianWeiXia夏建偉andZhenWang王震
    Chinese Physics B 2021年6期
    關(guān)鍵詞:沈浩王震

    Hao Shen(沈浩) Jia-Cheng Wu(吳佳成) Jian-Wei Xia(夏建偉) and Zhen Wang(王震)

    1College of Electrical and Information Engineering,Anhui University of Technology,Ma’anshan 243032,China

    2School of Mathematical Sciences,Liaocheng University,Liaocheng 252059,China

    3College of Electrical Engineering and Automation,Shandong University of Science and Technology,Qingdao 266590,China

    Keywords: Markov jump neural networks, persistent dwell-time switching rule, ?∞state estimation, meansquare exponential stability

    1. Introduction

    Over the past few decades, neural networks (NNs) have drawn considerable interest of many researchers, mainly owing to its significant potential applications in many domains,such as image restoration,fault detection,and classification of patterns.[1–7]In the study of NNs,it has been realized that the parameters of NNs may stochastically switch due to external or internal changes,such as random component faults and unexpected environment variations.[8–15]As is well-known, the Markov chain has been extensively utilized to character the jumping behavior that displays the stochastic feature.[16–18]Thus,Markov jump NNs(MJNNs)are quite suitable for modeling the randomly jumping NNs with multi-modes. The studies about MJNNs are becoming more and more pervasive,and there are many remarkable results on MJNNs that have been made,see in Refs.[19–21],and the references therein.

    In fact, much current work on MJNNs depends on the hypothesis that the transition probabilities (TPs) are timeinvariant. However, this hypothesis may be inapplicable to many practical applications where TPs are time-variant because of the diverse changes in the external environment.Therefore, researchers have turned to a more general kind of TPs in the Markov chain that can better describe the random phenomenon. Typically, a reasonable way is to introduce the nonhomogeneous TPs. By virtue of the piecewise constant TPs, we are going to make efforts on it. Then, in one study in Ref. [14], the authors obtained some sufficient conditions for the stability of Markov jump linear systems whose TPs satisfy a dwell-time (DT) constraint. Then, the DT switching rule(DTSR)demands that the all switching interval must be no less than a positive constantτDT,which is unable to describe the situation where activation times of some subsystems are less thanτDT. Moreover, the average dwell-time switching rule (ADTSR) was used to characterize the variation of TPs for MJNNs in Ref.[22]. The ADTSR allows that the duration between two sequential switching instants can be less than a positive constantτADT,which relieves the restriction of the DTSR to a certain degree. Persistent dwell-time (PDT)switching, which displays more general switching characteristics, includes the fast and slow switchings, simultaneously.There is still little research about the issue of TPs subject to the PDTSR, although the PDTSR is regarded to be more general than the DTSR and ADTSR in some degree.[23,24]In practice, due to the influence of some external environment,the Markov chain may exhibit a characteristic,that is,TPs are time-varying but invariant in some segments. Thus,introducing a Markov chain with piecewise constant TPs is of great significance, which has not been fully studied. In addition,the PDTSR,as a more general switching rule,can be changed into the DTSR and ADTSR by selecting the corresponding parameters. This motivates us to use the PDTSR to describe the piecewise constant TPs for MJNNs.

    In practice,the obtained state information is not complete in most of the research about MJNNs mainly because the states of systems are unmeasurable,or there is a large error between the measured and the actual signals. Therefore,it is necessary to construct a state estimator to obtain complete information about system states. Moreover,there are fruitful results focusing on this issue in Refs.[25,26]. To name a few,the authors have studied the issue of the non-fragile state estimation for discrete-time NNs with Markov jump parameters and time delays in Ref. [27]. The?∞asynchronous state estimation for fuzzy MJNNs with uncertain measurements has been investigated in Ref. [28]. Furthermore, the problem of the exponential state estimation for MJNNs with time-varying discrete and distributed delays has been discussed in Ref.[29]. As for discrete-time MJNNs with TPs subject to the PDTSR,the corresponding results on the state estimation issue are quite few.This motivates our great interest in coping with this issue.

    Motivated by the above discussions, we mainly concentrate on the design of the state estimator for MJNNs. Distinct from the existing state estimation methods in Refs. [22,27],we make the first attempt to deal with the?∞state estimation issues for discrete-time MJNNs with TPs subject to the PDTSR, where the mode-dependent estimator is considered.In order to model a more general scenario, we introduce the PDTSR to characterize the time-varying TPs, rather than the DT and ADTSR frequently studied previously. Moreover,through the Lyapunov stability theory and stochastic analysis method,some sufficient conditions that ensure the stability and the desired property of the estimation error system(EES)are proposed in this paper.

    The undermentioned content of this paper is arranged as follows. The system modeling and PDTSR are elaborated in detail in Section 2. Some criteria are obtained in Section 3 on the mean-square exponentially stability with an?∞performance attenuation level for the EES.In addition,a numerical example is presented to show the correctness of the developed method in Section 4. Finally, the summary of this paper is given in Section 5.

    Notations: The notations used in this work are standards in Ref.[22].

    2. Preliminaries and problem formulation

    2.1. System model

    Considering probability space(?,?,Pr)in this study,the discrete-time MJNNs are depicted by the following equalities:

    Remark 1 It is worth pointing that MJNNs consist of finite modes, which switch due to the external uncertainty change,[30]and the parameters of the estimator are modedependent,whose mode is in line with the underlying system.In this study,the PDTSR is adopted to characterize the change of the piecewise time-varying TPs. In addition,the switching signal?(m)andδ(m)are two different switching signals,which obey different switching rules,but they affect EES(3)simultaneously.

    To present further,the following definitions and a lemma are provided.

    Definition 1[31]If there exist scalarsρ >0, 0<ζ <1,such that for??(0)∈Rn,δ(0)∈?,and?(0)∈J,the following inequality

    holds forw(m)≡0,then,EES(3)is mean-square exponentially stable(MSES).

    Definition 2[32]Given constantγ >0, if EES (3) is MSES,and under zero-initial conditions

    satisfy for nonzero?w(t)∈l2[0,∞), then, EES (3) is MSES and meets a desired?∞performance indexγ.

    Lemma 1[33]Assume that the neuron activation functiongi(·),i={1,2,...,n}, is continuous and bounded,gi(0)=0,and satisfies

    whereu1,u2∈Rn,andι?i,ι+iare known constants,then,for positive mode-dependent matricesΓi,there exist the following inequalities:

    2.2. PDT switching and Markov jump mechanism

    In this paper, the variation of system parameters is governed by Markov chain whose TPs are assumed to be nonhomogeneous, and the PDTSR is employed to characterize the alteration feature of TPs. The element of the transition probability matrix(TPM)can be expressed as

    To facilitate the subsequent analysis,the definition of the PDTSR is provided.

    Definition 3[31]For two positive integersτPandTP,the switching signal?(m)complies with the PDTSR if the following two constraints are satisfied

    (i) There are a set of inconsecutive intervals, and the length of each interstice is not smaller thanτP,where the positive scalarτPis called the persistent dwell-time. This type of interval is called theτ-portion, where the switching signal?(m)is constant.

    (ii)The above-mentioned interstices in(i)are divided by intervals whose length is no longer thanTP,where the positive scalarTPis called the period of persistence. This interstice is calledT-portion,on which signal?(m)can take different values.

    Remark 3 The state estimator was designed for discretetime MJNNs with TPs subject to the ADTSR in Ref. [22].Compared with the DT and ADTSR, the PDTSR is more general. However, when it comes to TPs complied with the PDTSR,some researcher have studied this issue.As well summarized in one study in Ref.[34],we can obtain

    with?τD>0,?N0≥1,ξ ∈(0,1) andT?ξτD(N0?ξ)/(1?ξ). Then,TDT(τD),TADT(τD,N0) andTPDT(ξτD,T) represent the sets of switching signals with DT, ADT and PDT properties, respectively. Then, the DT and ADTSR can be regarded as special cases of the PDTSR.Therefore,the PDTSR is more flexible.

    From Fig.1,there are two portions in thedth stage of the PDT switching signal:T-portion andτ-portion. Inτ-portion,the actual lengthτ(d)satisfiesτ(d)≥τP,and inT-portion,the actual length can be represented as T(d)=T(m)+···+T(o)+T(r)and meets T(d)≤TP. Heremqd,mqd+1,...,mqd+1?1,mqd+1denote the switching instants. For switching signal?(m)and an aleatoric section[l,k),the following inequality can be derived from Ref.[31]:

    where?(l,k)denotes the switching number within the interval[l,k).

    Fig.1. The possible variations of the Lyapunov function under the consideration of the Markov chain with TPs subject to the PDTSR.

    Remark 4 As the illustration in Fig.1,the Markov chain with piecewise constant TPs is used to depict the stochastic jumping of system modes. As for the PDTSR, inτ-portion,switching signal?(m)takes the same value, which is called slow switching. In T-portion, switching signal?(m)can arbitrarily switch among subsystems called fast switching. Thus,the PDTSR can effectively model switched systems with fast and slow switching characteristics. Then,mqdandmqd+1represent the sample and switching instants, respectively. In addition,the value of the Lyapunov function can increase or decrease at switching instants, but it is required to attenuate at sampling instants.

    3. Main results

    In this part,the goal is to study the stability for EES(3)in?∞sense. The following two theorems will provide some sufficient conditions,such that EES(3)is MSES with an?∞performance attenuation level. Then,the desired estimator gains can be obtained based on the proposed conditions.

    3.1. Stability and performance analysis

    Theorem 1 Given scalarsTP>0,τP>0,σ >0, 0<κ1<κ2, the change ratesr1∈(0,1),r2∈(1,∞), if there exists the Lyapunov functionV(?(m),δ(m),?(m)), such that for?δ(m)∈?,??(m)∈J,the following inequalities hold:

    then EES (3) is MSES with an?∞performance attenuation level.

    Proof

    Step 1 The following relationship can be obtained from Eq.(12)in the case ofw(m)≡0:

    Case 2: If 0<r1r2<1,one can deduce 0<? <1.

    Therefore,inequality 0<? <1 hold for anyr2∈(1,∞)andr1∈(0,1).

    It follows Eq.(17)that

    Denotingm0?mq1,it is deduced that

    Step 2 Settingm ∈[mqd,mqd+1), from inequality (10),one can obtain the following inequality according to Eqs.(12)and(13):

    Considering zero-initial conditions,we can deduce that

    Thus, it can be seen from Eq. (5) that EES (3) is MSES with an?∞performance attenuation level.

    Remark 5 Note that we consider that 0<r1<1 andr2>1 are the changing rates at the sampling instants and the switching instants, respectively. Here 0<r1<1 means that the Lyapunov function is attenuated at sampling instants;r2>1 denotes that the Lyapunov function can rise at switching instants. Different from the limitation that the Lyapunov function is attenuating over the entire period.In this study,the Lyapunov function is permitted to increase at switching instants as long as the overall function value represents a declining trend.There is still huge research potential to investigate the change of Lyapunov function,which can guarantee the stability of the systems along with less conservatism.

    3.2. Estimator design

    Based on Theorem 1,the parameters of the state estimator are developed below.

    Theorem 2 Considering EES (3), for given scalarsr2∈(1,∞),r1∈(0,1),σ >0, andυ ∈(0,∞), if there existΓi >0(?i ∈?) and symmetric positive definite matricesPθi(?i ∈?,θ ∈J) satisfying Eq. (14), and the following conditions hold for?i ∈?,?θ ∈J:

    then, EES (3) is MSES with an?∞performance attenuation level. Furthermore, the desired estimation gains can be obtained asKi.

    Proof Settingδ(m)?i,?(m)?θ,i ∈?,θ ∈J, the Lyapunov function for EES(3)is constructed as

    one can derive that

    where

    Then,criterion(11)is guaranteed.

    For?υ ∈(0,∞),the following derivation is satisfied,

    It can be obtained from Eq.(12)that

    Furthermore,it follows from Eq.(29)that

    where

    Then, by using Schur complement, it can be obtained from Eq.(27)thatΘ <0. Therefore,formula(12)is satisfied.

    On the other hand,from condition(27),and for?i ∈?,?θ1,θ2∈J,we have

    Therefore,based on Eq.(31),inequality(13)is satisfied.This ends the proof.

    4. Numerical simulation

    In this section, MJNNs with TPs subject to the PDTSR are presented to substantiate the validity of the proposed state estimator.

    We consider the discrete-time MJNNs with two modes.

    Mode 1

    whereg1(x1(m))=tanh(x1(m)),g2(x2(m))=tanh(x2(m)). According to Lemma 1, we get matricesΦ?= 0, andΦ+=diag{0.5,0.5}, and the exogenous disturbancew(m)=10exp(?0.06m)sin(0.5m).

    Fig.2. The evolution sequence of the switching signal ?(m).

    Fig.3. The evolution sequence of the jumping signal δ(m).

    The parameters of the Markov chain are given as follows:

    Moreover,the parameters related to the PDTSR are given as

    Then,based on Theorem 2,σ=1.2,andυ=1,the state estimator gains can be presented as follows:

    Fig.4. The state responses of system state and estimate state.

    Fig.5. The responses of the estimation error.

    Fig.6. Optimal values of min with different r1 and r2.

    Consider that the initial states are selected asx(0)=[1.48 1.6]T,(0)= [0 0]T. Then, the state responses of the researched system and the estimator are presented in Fig. 4.Then,the responses of the EES are drawn in Fig.5. The goal of this study is to construct a mode-dependent state estimator for MJNNs with TPs subject to the PDTSR,such that EES(3) is mean-square exponentially stable and has a prescribed?∞performance index. Firstly, the evolution of TPs satisfying the PDTSR is displayed in Fig. 2, and the Markov chain used is in Fig. 3, respectively. Then, Fig. 5 shows that the state responses of EES(3),from which it can be seen that the proposed mode-depended state estimator is indeed effective.By applying the obtained estimator gains, the state responses of the researched system and the estimator are presented in Fig.4,which demonstrates that the designed estimator can effectively track the states of discrete-time MJNNs in the case that the time-varying TPs are subject to the PDTSR.Furthermore,the relationship betweenminandr1,r2can be obtained through the dichotomy method. As shown in Table 1,and the trend of the above relationship is presented in Fig.6. We can find that the decay rater1at sampling instants and the change rater2at switching instants have impact on the system performance index to some degree. Thus, choosing an appropriate Lyapunov function change rate to sure the prescribed performance index of the desired system is important.

    Table 1. Optimal H∞performance index min for different values of r1 and r2.

    Table 1. Optimal H∞performance index min for different values of r1 and r2.

    ˉσmin r2=1.12 r2=1.14 r2=1.16 r2=1.18 r2=1.2 r2=1.22 r1=0.74 0.3109 0.3464 0.3858 0.4295 0.4780 0.5319 r1=0.78 0.3203 0.3598 0.4042 0.4543 0.5112 0.5760 r1=0.82 0.3370 0.3838 0.4382 0.5021 0.5780 0.6696 r1=0.86 0.3714 0.4364 0.5189 0.6276 0.7802 1.0190

    5. Conclusion

    In this work, the issue of?∞state estimation has been discussed for a set of discrete-time Markov jump neural networks. In this framework, the change of the piecewise timevarying transition probabilities of the Markov chain, which governs the evolution of TPs, is subject to the switching signal with the persistent dwell-time switching property. Moreover, some sufficient conditions have been established such that the error estimation system is stable with an?∞performance index. Finally, an illustrated example has been provided to show the effectiveness of the designed state estimator and the feasibility of the proposed method. As for piecewise time-varying transition probabilities subject to the persistent dwell-time switching rule, future work may extend the obtained results to more complex Markov jump neural networks.

    猜你喜歡
    沈浩王震
    拜謁沈浩墓
    其實我很想哭
    其實我很想哭
    Discontinuous event-trigger scheme for global stabilization of state-dependent switching neural networks with communication delay?
    攔喜
    故事會(2020年18期)2020-09-17 13:35:44
    復(fù)韻母歌
    “要是”的作用
    什么是“羊雜粹”?
    搶著去邊疆的王震
    “辦”“為”和解
    99riav亚洲国产免费| 免费在线观看影片大全网站| 免费搜索国产男女视频| 欧美午夜高清在线| 亚洲自拍偷在线| 两个人的视频大全免费| 天堂影院成人在线观看| 自拍偷自拍亚洲精品老妇| 国产精品综合久久久久久久免费| 又粗又爽又猛毛片免费看| 波多野结衣高清无吗| 成人特级黄色片久久久久久久| 日韩 亚洲 欧美在线| 黄片小视频在线播放| av欧美777| 国产野战对白在线观看| 日本黄大片高清| 国产黄片美女视频| 日韩精品中文字幕看吧| 欧美乱色亚洲激情| 韩国av一区二区三区四区| 欧美最黄视频在线播放免费| 日韩大尺度精品在线看网址| 国产在视频线在精品| 99热这里只有精品一区| 18禁黄网站禁片午夜丰满| 男人和女人高潮做爰伦理| 日日干狠狠操夜夜爽| 51午夜福利影视在线观看| 免费观看人在逋| 嫩草影院新地址| 色哟哟·www| 91狼人影院| 蜜桃久久精品国产亚洲av| 国内精品久久久久久久电影| 免费搜索国产男女视频| 欧美性感艳星| 国产精品一区二区三区四区久久| 国产精品久久久久久亚洲av鲁大| 亚洲国产精品合色在线| 一个人看视频在线观看www免费| 极品教师在线视频| 日韩有码中文字幕| 桃红色精品国产亚洲av| 亚洲av一区综合| 久久精品影院6| 最新中文字幕久久久久| 我的老师免费观看完整版| 在线a可以看的网站| 熟妇人妻久久中文字幕3abv| 久久久精品大字幕| 人妻久久中文字幕网| 美女 人体艺术 gogo| 午夜精品在线福利| av视频在线观看入口| 最近视频中文字幕2019在线8| 国产私拍福利视频在线观看| 久久国产乱子伦精品免费另类| 12—13女人毛片做爰片一| 成人特级黄色片久久久久久久| h日本视频在线播放| 亚洲成av人片在线播放无| 十八禁国产超污无遮挡网站| 又爽又黄无遮挡网站| 两个人视频免费观看高清| 日韩欧美精品v在线| 久久久久国产精品人妻aⅴ院| 老女人水多毛片| 舔av片在线| 男女做爰动态图高潮gif福利片| 一区二区三区激情视频| 在线观看舔阴道视频| 日韩大尺度精品在线看网址| 欧美日本亚洲视频在线播放| 国产亚洲精品久久久久久毛片| 国产成+人综合+亚洲专区| av黄色大香蕉| 可以在线观看的亚洲视频| 桃红色精品国产亚洲av| 午夜亚洲福利在线播放| 一a级毛片在线观看| 999久久久精品免费观看国产| 一个人看的www免费观看视频| 中文资源天堂在线| 直男gayav资源| 亚洲国产精品成人综合色| www日本黄色视频网| 老熟妇乱子伦视频在线观看| 日韩大尺度精品在线看网址| 亚洲第一欧美日韩一区二区三区| 日韩有码中文字幕| 欧美成狂野欧美在线观看| 亚洲精品久久国产高清桃花| 一级毛片久久久久久久久女| 日韩欧美精品v在线| 99久久久亚洲精品蜜臀av| 人人妻人人看人人澡| 欧美最黄视频在线播放免费| 亚洲天堂国产精品一区在线| 一卡2卡三卡四卡精品乱码亚洲| 欧美日韩福利视频一区二区| 99久久无色码亚洲精品果冻| 欧美性猛交黑人性爽| 国产欧美日韩一区二区三| 精品人妻1区二区| 亚洲美女黄片视频| 日韩欧美精品v在线| 1000部很黄的大片| 亚洲精品一卡2卡三卡4卡5卡| 一区二区三区激情视频| 一区二区三区高清视频在线| 国产亚洲精品久久久久久毛片| 免费看光身美女| 中文字幕免费在线视频6| 一边摸一边抽搐一进一小说| 麻豆国产97在线/欧美| 久久精品影院6| 亚洲av日韩精品久久久久久密| 亚洲精品色激情综合| 日韩免费av在线播放| 成人国产一区最新在线观看| 久久国产乱子伦精品免费另类| 热99在线观看视频| 日韩欧美三级三区| 3wmmmm亚洲av在线观看| 久久精品夜夜夜夜夜久久蜜豆| 一级a爱片免费观看的视频| av国产免费在线观看| 欧美bdsm另类| 亚洲av成人不卡在线观看播放网| 神马国产精品三级电影在线观看| 国产乱人视频| 国产免费一级a男人的天堂| 亚洲一区二区三区色噜噜| 精品一区二区三区人妻视频| 麻豆久久精品国产亚洲av| 国产极品精品免费视频能看的| 91久久精品电影网| 每晚都被弄得嗷嗷叫到高潮| 欧美一区二区精品小视频在线| av中文乱码字幕在线| 亚洲精品日韩av片在线观看| 亚洲av.av天堂| 搡女人真爽免费视频火全软件 | av天堂中文字幕网| 亚洲一区二区三区不卡视频| 午夜日韩欧美国产| 欧美日韩亚洲国产一区二区在线观看| 欧美xxxx性猛交bbbb| 51国产日韩欧美| 最近在线观看免费完整版| 亚洲人成伊人成综合网2020| 很黄的视频免费| 性欧美人与动物交配| 久久99热6这里只有精品| 中出人妻视频一区二区| 99热6这里只有精品| 国产精品嫩草影院av在线观看 | 欧美成人a在线观看| 女同久久另类99精品国产91| 麻豆成人午夜福利视频| 中文字幕熟女人妻在线| 精品乱码久久久久久99久播| 日本精品一区二区三区蜜桃| 欧美黄色片欧美黄色片| 哪里可以看免费的av片| 免费在线观看影片大全网站| 小说图片视频综合网站| 亚洲不卡免费看| 日韩有码中文字幕| 亚洲精品久久国产高清桃花| 亚洲五月天丁香| 1024手机看黄色片| 亚洲人与动物交配视频| 亚洲人成网站在线播| 国产伦精品一区二区三区四那| 日韩欧美在线二视频| 亚洲天堂国产精品一区在线| 一个人看视频在线观看www免费| 日韩中文字幕欧美一区二区| 日韩人妻高清精品专区| 国内揄拍国产精品人妻在线| 免费av毛片视频| 亚洲av一区综合| 一本久久中文字幕| 极品教师在线视频| 亚洲在线观看片| 午夜精品一区二区三区免费看| 国产精品野战在线观看| 欧美国产日韩亚洲一区| 中文字幕高清在线视频| 精品福利观看| 大型黄色视频在线免费观看| 免费av毛片视频| 亚洲内射少妇av| 欧美zozozo另类| 日韩亚洲欧美综合| 三级毛片av免费| 成人鲁丝片一二三区免费| 精品久久久久久久久久免费视频| 精品久久久久久久人妻蜜臀av| 成人高潮视频无遮挡免费网站| 亚洲va日本ⅴa欧美va伊人久久| 永久网站在线| 丁香欧美五月| 亚洲狠狠婷婷综合久久图片| 狠狠狠狠99中文字幕| 69人妻影院| 此物有八面人人有两片| 国产蜜桃级精品一区二区三区| 一区二区三区四区激情视频 | 神马国产精品三级电影在线观看| 少妇丰满av| 成年女人永久免费观看视频| 别揉我奶头~嗯~啊~动态视频| 老女人水多毛片| 99视频精品全部免费 在线| 一进一出好大好爽视频| 舔av片在线| 国产精品久久视频播放| 免费看a级黄色片| 内射极品少妇av片p| 亚洲经典国产精华液单 | 国产三级黄色录像| 51午夜福利影视在线观看| 精品无人区乱码1区二区| 夜夜躁狠狠躁天天躁| 亚洲av五月六月丁香网| 亚洲av成人不卡在线观看播放网| 3wmmmm亚洲av在线观看| 九色成人免费人妻av| 岛国在线免费视频观看| 色精品久久人妻99蜜桃| 欧美日韩福利视频一区二区| aaaaa片日本免费| 国产高清三级在线| 少妇熟女aⅴ在线视频| 亚洲第一区二区三区不卡| 亚洲国产精品999在线| АⅤ资源中文在线天堂| 欧美成人a在线观看| 日韩欧美在线二视频| .国产精品久久| 97人妻精品一区二区三区麻豆| 亚洲内射少妇av| 午夜精品久久久久久毛片777| 欧美日韩亚洲国产一区二区在线观看| 国产精品不卡视频一区二区 | 男女之事视频高清在线观看| 成人av在线播放网站| 亚洲不卡免费看| 99热精品在线国产| 国产伦一二天堂av在线观看| 日韩人妻高清精品专区| 国产成人福利小说| 国产欧美日韩一区二区精品| 桃色一区二区三区在线观看| 国产精品永久免费网站| 国产熟女xx| 久久久久久九九精品二区国产| 一区福利在线观看| 亚洲av免费在线观看| 欧美性感艳星| 午夜福利视频1000在线观看| 色哟哟·www| 俄罗斯特黄特色一大片| 毛片一级片免费看久久久久 | 深爱激情五月婷婷| 好男人在线观看高清免费视频| 欧美黄色淫秽网站| 成人欧美大片| 999久久久精品免费观看国产| 亚洲成人精品中文字幕电影| 听说在线观看完整版免费高清| 国产人妻一区二区三区在| 精品久久久久久久久久免费视频| 亚洲 欧美 日韩 在线 免费| 免费电影在线观看免费观看| 狠狠狠狠99中文字幕| 91麻豆av在线| av天堂中文字幕网| 男女下面进入的视频免费午夜| 一个人免费在线观看电影| 桃色一区二区三区在线观看| 在线国产一区二区在线| 国内少妇人妻偷人精品xxx网站| 国产精品日韩av在线免费观看| 午夜精品久久久久久毛片777| 十八禁国产超污无遮挡网站| 麻豆久久精品国产亚洲av| 国产黄a三级三级三级人| 一进一出抽搐动态| 一本精品99久久精品77| 国产午夜精品论理片| 97人妻精品一区二区三区麻豆| 国产精品久久视频播放| 中文在线观看免费www的网站| 人妻丰满熟妇av一区二区三区| 亚洲成人久久爱视频| 真实男女啪啪啪动态图| 2021天堂中文幕一二区在线观| 日韩av在线大香蕉| 午夜久久久久精精品| 亚洲真实伦在线观看| 亚洲av第一区精品v没综合| 国内精品久久久久精免费| 亚洲三级黄色毛片| 精品人妻1区二区| 国产亚洲av嫩草精品影院| 看黄色毛片网站| 久久99热这里只有精品18| 日本撒尿小便嘘嘘汇集6| 在线观看免费视频日本深夜| 制服丝袜大香蕉在线| 日本一本二区三区精品| 国产乱人视频| 波多野结衣高清作品| 成年免费大片在线观看| 欧美最新免费一区二区三区 | 亚洲色图av天堂| 老熟妇仑乱视频hdxx| 十八禁国产超污无遮挡网站| 激情在线观看视频在线高清| 精品一区二区免费观看| 亚洲人成网站在线播| 欧美一区二区亚洲| or卡值多少钱| 免费搜索国产男女视频| 别揉我奶头~嗯~啊~动态视频| 一卡2卡三卡四卡精品乱码亚洲| 高潮久久久久久久久久久不卡| 伦理电影大哥的女人| 成人毛片a级毛片在线播放| 国产一区二区在线观看日韩| 亚洲国产欧洲综合997久久,| 岛国在线免费视频观看| 精品一区二区三区视频在线| 欧洲精品卡2卡3卡4卡5卡区| 欧美最黄视频在线播放免费| 免费无遮挡裸体视频| 日韩免费av在线播放| 美女大奶头视频| 女生性感内裤真人,穿戴方法视频| 69av精品久久久久久| 最近在线观看免费完整版| 亚洲久久久久久中文字幕| 亚洲欧美日韩高清在线视频| 天天一区二区日本电影三级| 欧美精品啪啪一区二区三区| 999久久久精品免费观看国产| 一区福利在线观看| 我要搜黄色片| 中出人妻视频一区二区| 黄色配什么色好看| 精品久久久久久久久亚洲 | 男女床上黄色一级片免费看| 99热6这里只有精品| 熟妇人妻久久中文字幕3abv| 男女下面进入的视频免费午夜| 在线观看午夜福利视频| 久久国产精品人妻蜜桃| 男人舔奶头视频| 日韩av在线大香蕉| 人妻丰满熟妇av一区二区三区| 午夜影院日韩av| 亚洲黑人精品在线| 精品久久久久久久久久久久久| 欧美区成人在线视频| 中文字幕熟女人妻在线| 亚洲男人的天堂狠狠| 三级国产精品欧美在线观看| 欧美精品国产亚洲| 可以在线观看的亚洲视频| 久久久久免费精品人妻一区二区| 3wmmmm亚洲av在线观看| 日本一二三区视频观看| 欧美潮喷喷水| 最好的美女福利视频网| 久久6这里有精品| 在线播放国产精品三级| av在线蜜桃| 国产精品日韩av在线免费观看| xxxwww97欧美| 三级男女做爰猛烈吃奶摸视频| 亚洲精品一区av在线观看| 欧美最新免费一区二区三区 | 天美传媒精品一区二区| 亚洲在线自拍视频| 2021天堂中文幕一二区在线观| 久久天躁狠狠躁夜夜2o2o| 真人做人爱边吃奶动态| 亚州av有码| 亚洲不卡免费看| 亚洲国产精品999在线| 精品一区二区三区视频在线| 亚洲成人免费电影在线观看| 国产高清有码在线观看视频| 少妇的逼水好多| 波多野结衣高清作品| 国产av一区在线观看免费| 日韩欧美精品v在线| 日韩高清综合在线| 中文字幕av在线有码专区| 国产午夜精品久久久久久一区二区三区 | 日本免费一区二区三区高清不卡| 伦理电影大哥的女人| 一级a爱片免费观看的视频| 欧美黑人巨大hd| 日韩欧美国产在线观看| 中文字幕av成人在线电影| 深爱激情五月婷婷| 麻豆成人午夜福利视频| 国产精品乱码一区二三区的特点| 婷婷六月久久综合丁香| 午夜精品在线福利| 欧美激情国产日韩精品一区| 国产91精品成人一区二区三区| 国产麻豆成人av免费视频| h日本视频在线播放| 国产成年人精品一区二区| 99久久精品国产亚洲精品| 免费无遮挡裸体视频| 国产成人福利小说| 免费黄网站久久成人精品 | 男人舔女人下体高潮全视频| 美女cb高潮喷水在线观看| 国产探花在线观看一区二区| 神马国产精品三级电影在线观看| 亚洲精华国产精华精| 国产精品野战在线观看| 一区福利在线观看| 亚洲人与动物交配视频| 亚洲av五月六月丁香网| 精品久久久久久久久av| 99国产极品粉嫩在线观看| 色精品久久人妻99蜜桃| 小蜜桃在线观看免费完整版高清| 欧美一区二区亚洲| 国产精品久久久久久久久免 | 国产一区二区在线观看日韩| 欧美日韩福利视频一区二区| 精品福利观看| 国产精品爽爽va在线观看网站| 国产精品永久免费网站| 国产黄片美女视频| 午夜a级毛片| 午夜激情欧美在线| 一个人看的www免费观看视频| 色综合站精品国产| 欧美国产日韩亚洲一区| 精品人妻1区二区| 久久久久九九精品影院| 成人永久免费在线观看视频| 国产av不卡久久| 一个人免费在线观看的高清视频| 日韩有码中文字幕| 欧美+日韩+精品| 深夜精品福利| 久久草成人影院| 麻豆久久精品国产亚洲av| 69av精品久久久久久| 国产在线男女| 他把我摸到了高潮在线观看| 久久99热6这里只有精品| 在线天堂最新版资源| 欧美性猛交╳xxx乱大交人| 又黄又爽又刺激的免费视频.| 午夜免费成人在线视频| 亚洲五月婷婷丁香| 欧美日韩瑟瑟在线播放| 黄片小视频在线播放| 蜜桃亚洲精品一区二区三区| 12—13女人毛片做爰片一| 久久6这里有精品| 午夜免费男女啪啪视频观看 | 成年女人毛片免费观看观看9| 中文字幕av成人在线电影| 听说在线观看完整版免费高清| 最近最新中文字幕大全电影3| 国产三级在线视频| 成年人黄色毛片网站| 黄色日韩在线| 久久精品国产清高在天天线| 日本一二三区视频观看| 国产高清三级在线| 又粗又爽又猛毛片免费看| 欧美日韩中文字幕国产精品一区二区三区| 无人区码免费观看不卡| 成人精品一区二区免费| 欧美日本亚洲视频在线播放| 一夜夜www| 内地一区二区视频在线| 又紧又爽又黄一区二区| 国产精品,欧美在线| 18美女黄网站色大片免费观看| 十八禁国产超污无遮挡网站| 国产午夜福利久久久久久| 精品久久久久久久久av| 99热6这里只有精品| 日韩国内少妇激情av| 他把我摸到了高潮在线观看| 欧美色视频一区免费| 国产伦在线观看视频一区| 99久久精品热视频| 亚洲国产色片| 久久精品国产亚洲av涩爱 | 久久久久免费精品人妻一区二区| 女生性感内裤真人,穿戴方法视频| 国产久久久一区二区三区| 精品久久久久久久久亚洲 | 在线免费观看不下载黄p国产 | 无遮挡黄片免费观看| 午夜激情欧美在线| 亚洲一区二区三区色噜噜| www.www免费av| 国产黄片美女视频| 成人午夜高清在线视频| 欧美+日韩+精品| 一个人免费在线观看电影| 国产精品99久久久久久久久| 俄罗斯特黄特色一大片| 成人欧美大片| 国产av不卡久久| 国产成人a区在线观看| 美女黄网站色视频| 亚洲第一电影网av| 久久久成人免费电影| www.熟女人妻精品国产| 草草在线视频免费看| 欧美国产日韩亚洲一区| 丰满的人妻完整版| www.熟女人妻精品国产| 国产精品av视频在线免费观看| 久久草成人影院| 婷婷色综合大香蕉| 首页视频小说图片口味搜索| 人人妻人人澡欧美一区二区| 热99re8久久精品国产| 91午夜精品亚洲一区二区三区 | 桃色一区二区三区在线观看| 欧美又色又爽又黄视频| 热99re8久久精品国产| 久久欧美精品欧美久久欧美| 狂野欧美白嫩少妇大欣赏| 一进一出抽搐gif免费好疼| 可以在线观看的亚洲视频| 日韩精品青青久久久久久| 99在线视频只有这里精品首页| 99久久久亚洲精品蜜臀av| 1024手机看黄色片| 成人av一区二区三区在线看| 日韩亚洲欧美综合| 三级国产精品欧美在线观看| 一本一本综合久久| 成人av一区二区三区在线看| bbb黄色大片| 此物有八面人人有两片| xxxwww97欧美| 成人毛片a级毛片在线播放| 日韩中字成人| 极品教师在线视频| 国产不卡一卡二| 日本在线视频免费播放| 最新中文字幕久久久久| 国产精品永久免费网站| 亚洲av免费在线观看| 中文在线观看免费www的网站| 无遮挡黄片免费观看| 国产精品美女特级片免费视频播放器| 日本成人三级电影网站| 午夜亚洲福利在线播放| 观看免费一级毛片| 欧美在线黄色| 久久久久性生活片| 身体一侧抽搐| 中亚洲国语对白在线视频| 色5月婷婷丁香| АⅤ资源中文在线天堂| 在线播放国产精品三级| 亚洲欧美日韩无卡精品| 成人av在线播放网站| av福利片在线观看| 免费大片18禁| 99久久精品一区二区三区| 久久久久久久久大av| 亚洲成a人片在线一区二区| 一区二区三区激情视频| 国产高清有码在线观看视频| 人人妻人人看人人澡| 一二三四社区在线视频社区8| 亚洲美女搞黄在线观看 | 听说在线观看完整版免费高清| 亚洲在线观看片| 久久久成人免费电影| 免费看日本二区| 国产野战对白在线观看| 1024手机看黄色片| 亚洲国产高清在线一区二区三| 亚洲av熟女| 夜夜躁狠狠躁天天躁| 国产伦精品一区二区三区视频9| 婷婷六月久久综合丁香| 一二三四社区在线视频社区8| 久久人人爽人人爽人人片va | 2021天堂中文幕一二区在线观| 制服丝袜大香蕉在线| 伦理电影大哥的女人| 久久精品国产清高在天天线| 亚洲午夜理论影院| 嫩草影院入口| 久久精品国产亚洲av涩爱 | 亚洲五月婷婷丁香| 每晚都被弄得嗷嗷叫到高潮| 亚洲久久久久久中文字幕| 亚洲第一区二区三区不卡|