薛鑫 周心智 決登偉
摘 ?要:WRKY轉(zhuǎn)錄因子在植物的生長發(fā)育和逆境脅迫響應中起著重要作用。前期研究發(fā)現(xiàn),部分WRKY基因(比如DlWRKY52)參與了龍眼的成花誘導和逆境脅迫響應過程。為進一步研究龍眼WRKY基因的功能,以‘四季蜜龍眼葉片cDNA為模板克隆得到DlWRKY52基因,并對其序列特征、組織表達模式、花果發(fā)育過程表達模式及亞細胞定位進行研究。結(jié)果表明:DlWRKY52基因的開放閱讀框(open reading frame, ORF)全長為918 bp,編碼306個氨基酸,具有典型的WRKY結(jié)構(gòu)域和鋅指結(jié)構(gòu),屬于Ⅱc型WRKY蛋白。qRT-PCR結(jié)果表明,DlWRKY52基因在葉片、莖和果實器官中高表達;在花后80 d的果肉中顯著上調(diào)表達;特異在‘四季蜜成花誘導中下調(diào)表達。擬南芥原生質(zhì)體瞬時表達結(jié)果顯示,熒光信號主要集中在細胞核。上述結(jié)果表明,作為典型的轉(zhuǎn)錄因子,DlWRKY52編碼的蛋白定位于細胞核。DlWRKY52可能參與了龍眼成花誘導及果實早期發(fā)育調(diào)控。
關(guān)鍵詞:龍眼;WRKY;轉(zhuǎn)錄因子;表達分析;蛋白亞細胞定位
中圖分類號:S188 ? ? ?文獻標識碼:A
Abstract: WRKY transcription factors plays an important role in plant growth, development and stress response. Based on a previous study, we found several WRKY genes, such as DlWRKY52, were participated in the process of floral induction and stress response. To further reveal the function of longan WRKY genes, DlWRKY52 was cloned using the leave cDNA of ‘Sijimi longan as the template. Meanwhile, the sequence characteristics, tissue expression patterns, flower and fruit development process expression patterns and subcellular localization were also studied. Bioinformatics analysis indicated that the complete open reading frame (ORF) box of DlWRKY52 was 918 bp, encoding 305 amino acid residues. The amino acid sequence alignment analysis showed that DlWRKY52 contained a typical WRKY domain and a zinc finger structure, belonging to Group Ⅱc. The result of qRT-PCR showed that DlWRKY52 was highly expressed in leave, stem and fruit organs, significantly up-regualted in the pulp 80 days post-anthesis. The transient expression of Arabidopsis protoplasts demonstrated that DlWRKY52 protein was localized to the nucleus, indicating that DlWRKY52, as a typical transcription factor, is localized to the nucleus, and might participate in the regulating of longan floral induction and early fruit development.
Keywords: Dimocarpus longan; WRKY; transcription factor; expression analysis; protein subcellular localization
DOI: 10.3969/j.issn.1000-2561.2020.04.014
龍眼(Dimocarpus longan Lour.)原產(chǎn)于中國華南地區(qū),是無患子科(Sapindaceae)一種重要的熱帶經(jīng)濟果樹。世界上許多熱帶和亞熱帶國家均有龍眼的種植和生產(chǎn),比如澳大利亞及越南、泰國等東南亞國家[1]。中國龍眼的栽培面積和產(chǎn)量一直穩(wěn)居世界首位,并且在整個世界龍眼產(chǎn)業(yè)經(jīng)濟中占有極重要的地位。
龍眼在中國已有2000年以上的栽培歷史,我國擁有豐富的龍眼種質(zhì)資源,同時也積累了先進的栽培、管理技術(shù)[2]。然而,實際生產(chǎn)中仍然有很多問題限制著龍眼產(chǎn)業(yè)的發(fā)展。其中,成花難所導致的產(chǎn)量不穩(wěn)定是最主要的問題[3]。龍眼成花誘導需要合適的外界環(huán)境條件,比如一段時間的低溫(春化作用),合適的土壤鹽度及干燥條件等。若成花誘導關(guān)鍵時期出現(xiàn)高溫,即便花原基已經(jīng)形成,龍眼花芽也會轉(zhuǎn)變成為葉芽,即“成花逆轉(zhuǎn)”,從而造成減產(chǎn),出現(xiàn)龍眼生產(chǎn)的“大小年”現(xiàn)象,嚴重打擊果農(nóng)的生產(chǎn)積極性和龍眼產(chǎn)業(yè)的健康發(fā)展。在實際生產(chǎn)中,人們常利用一些化學試劑(比如KClO3)來實現(xiàn)龍眼花期調(diào)控。然而,這些化學試劑的效果因施用地區(qū)和品種的不同而差異很大[4-5]。因此,解析龍眼成花調(diào)控分子機制才是解決該問題的根本途徑。前人對不斷成花的‘四季蜜和正常開花的‘石硤龍眼進行了對比轉(zhuǎn)錄組測序,初步解析了‘四季蜜龍眼特異成花誘導機制,同時發(fā)現(xiàn)一些轉(zhuǎn)錄因子特異參與該過程,比如WRKY等[6]。
1.4 ?亞細胞定位分析
根據(jù)克隆所得的DlWRKY52基因序列設(shè)計引物(去除終止子)(表1),擴增帶有酶切位點(E?co-RⅠ)的DlWRKY52的ORF全長,PCR反應程序如上。PCR產(chǎn)物經(jīng)1%瓊脂糖凝膠電泳檢測、純化后連接pMD18-T載體上,轉(zhuǎn)化DH5α。挑取單菌落,經(jīng)PCR檢測后提質(zhì)粒測序。然后分別對pBWA(V)HS-osgfp DlWRKY52質(zhì)粒用EcoRⅠ進行酶切,回收后進行酶連。將酶連后的質(zhì)粒轉(zhuǎn)入大腸桿菌DH5α,陽性檢測后挑選正確的菌株測序,然后提取得到pBWA(V)HS-DlW?RK?Y52-osgfp質(zhì)粒。接著通過PEG介導法轉(zhuǎn)入擬南芥的原生質(zhì)體中[20]。28 ℃暗培養(yǎng)24~48 h用激光共聚焦顯微鏡觀察。同時以pBWA(V)HS-osgfp空載作為對照。
2 ?結(jié)果與分析
2.1 ?DlWRKY52基因的克隆及生物信息學分析
以龍眼cDNA為模板,用W52-S/W52-A(表1)引物擴增出1000 bp左右的片段(圖1)。測序結(jié)果顯示。該片段與龍眼(‘紅核子)基因組數(shù)據(jù)庫中的目的序列(Dlo_001658.1)完全一致,大小為918 bp,編碼305個氨基酸,其分子量為33.96 kDa,理論等電點為6.26。根據(jù)龍眼WRKY家族基因組的定位信息,命名為DlWRKY?52。氨基酸序列分析表明,DlWRKY52含有1個WRKY結(jié)構(gòu)域及C2H2型鋅指結(jié)構(gòu)(C–X4–C–X23– H–X–H),屬于WRKY家族中的 Group IIc(圖2)。
利用BLASTp對DlWRKY52的氨基酸序列進行同源性檢索,然后利用MEGA 6.0軟件構(gòu)建系統(tǒng)進化樹(圖3)。結(jié)果表明,DlWRKY52與雙子葉植物的WRKY聚類到一起,其中與柑橘(Citrus sinensis)的CsWRKY23(XP_00649235?9.1)親緣關(guān)系最近,而與單子葉植物的WRKY親緣關(guān)系較遠,比如水稻(Oryza sativa)的OsWR?KY23 (DAA-05088.1)。
2.2 ?DlWRKY52基因組織表達特性分析
qRT-PCR結(jié)果表明DlWRKY52基因在被檢測的9種龍眼組織中都有表達,其中在葉片中表達量最高,在幼果、莖和果皮中的表達次之(圖4)。
2.3 ?DlWRKY52基因在花、果發(fā)育過程中的表達模式
利用qRT-PCR技術(shù),本研究分析了DlWR?K?Y52在‘四季蜜和‘石硤龍眼3個成花階段的表達。結(jié)果表明,DlWRKY52在‘四季蜜龍眼成花誘導早期呈下調(diào)表達,T2時期僅為T1時期的1/5。而在‘石硤龍眼成花誘導過程中DlWR?KY52的表達水平未出現(xiàn)顯著性差異表達(圖5)。
同時,本研究也分析了DlWRKY52在‘四季蜜龍眼中與果實發(fā)育的關(guān)系?;ê?0~80 d的2個取樣時間段果肉的重量呈顯著上升趨勢,而80~100 d果肉重量未出現(xiàn)顯著性變化(圖6A)。與果肉重量變化相似,DlWRKY52的表達量在花后70 d和80 d分別上調(diào)了1.77倍和4.35倍。花后90 d和100 d DlWRKY52的表達水平?jīng)]有再出現(xiàn)顯著變化(圖6B)。該結(jié)果表明,DlWRKY52可能在早期階段正調(diào)控果肉器官發(fā)育。
2.4 ?DlWRKY52亞細胞定位分析
為檢測DlWRKY52蛋白在細胞中的定位,本研究構(gòu)建了含有增強型綠色熒光蛋白(GFP)的融合蛋白表達載體(35S:DlWRKY52-GFP),通過PEG介導法轉(zhuǎn)入擬南芥葉肉原生質(zhì)體細胞里,并用激光共聚焦顯微鏡進行觀察。如圖7所示,在480 nm波長的激化下,35S:DlWRKY52- GFP只在細胞核里有熒光信號,細胞質(zhì)和細胞膜中均無GFP信號,而35S:GFP對照組則在整個細胞中都能觀察到GFP信號,沒有明確的定位。該結(jié)果表明,DlWRKY52蛋白可能定位于細胞核上。
3 ?討論
成花是植物生命進程中的一個重要事件,直接決定著作物的種子或果實產(chǎn)量[21]。研究成花誘導的遺傳機制、挖掘成花相關(guān)基因,對于果樹的花期調(diào)控和增產(chǎn)具有重要意義。
目前,植物的成花分子遺傳機制研究多集中在模式植物上,而在果樹中還未取得突破性進展。擬南芥中至少存在5條主要的成花通路,包括光信號途徑、春化途徑、自花途徑、赤霉素途徑及年齡途徑[22]。通過FT(FLOWERING LOCUS T)、FLC(FLOWERING LOCUS C)和CO (CO?NS?TANS)等成花相關(guān)基因以及MADS-domain、NACs、MYBs等轉(zhuǎn)錄因子的介導,這些通路形成一個復雜的調(diào)控網(wǎng)絡(luò),最終實現(xiàn)對成花轉(zhuǎn)變的激活或抑制。作為成花植物的一類重要轉(zhuǎn)錄因子,WRKY可以通過保守結(jié)構(gòu)域(WRKYGQK)結(jié)合下游基因啟動子中的W-box核心序列(T)TGACC(A/T)特異性結(jié)合來激活或者抑制植物的成花[6]。比如,AtWRKY71可通過直接與FT、LFY和AP1啟動子區(qū)域的W-boxes結(jié)合來影響植物的成花[9]。AtWRKY12和AtWRKY13則通過調(diào)控FUL表達在短日照下調(diào)控擬南芥開花[12]。AtWRKY75也是通過直接激活FT來促進擬南芥開花[23]。有趣的是,這些模式植物的基因均屬于WRKY轉(zhuǎn)錄因子的Group IIc。本研究的DlWRKY52含有典型的WRKY結(jié)構(gòu)域及C2H2型鋅指結(jié)構(gòu),與AtWRKY71等基因一樣也屬于Group IIc。表達分析表明,DlWRKY52只在‘四季蜜龍眼成花誘導早期呈下調(diào)表達,而在‘石硤龍眼成花誘導過程中未出現(xiàn)顯著性表達差異,說明DlWRKY52特異參與了‘四季蜜龍眼成花誘導早期調(diào)控過程,并起到負調(diào)控的作用。與其他WRKY轉(zhuǎn)錄因子一樣[24-27],DlWRKY52蛋白定位于細胞核上,說明DlWR?KY52蛋白對龍眼成花誘導調(diào)控發(fā)生在細胞上。但DlWRKY52究竟是通過與哪些成花基因互作及哪些成花通路來調(diào)控‘四季蜜的成花誘導?還需要進一步研究。
果實是果樹最重要的器官,高產(chǎn)、穩(wěn)產(chǎn)是果樹育種家的一個最要選育目標。篩選、鑒定與果實發(fā)育相關(guān)的基因具有重要意義。本研究中,D?l??W?R?KY52在幼果中呈高表達水平,同時該基因在發(fā)育早期階段的龍眼果肉中呈上調(diào)表達模式,與果實發(fā)育模式呈正相關(guān)。該結(jié)果表明,DlWR?KY52基因可能參與了龍眼果實的早期發(fā)育,并起正調(diào)控作用。與本研究的結(jié)果類似,野草莓(Fragaria vesca)的59個FvWRKY基因中,8個在果實發(fā)育和成熟過程中上調(diào)表達[28]。過表達OsWRKY47和GsWRKY20都會增加轉(zhuǎn)基因植株的產(chǎn)量和干旱脅迫的耐受性[18, 29]。
參考文獻
[1] Matsumoto T K. Genes uniquely expressed in vegetative and potassium chlorate induced floral buds of Dimocarpus longan[J]. Plant Science, 2006, 170(3): 500-510.
[2] Wang B, Tan H W, Fang W, et al. Developing single nucleotide polymorphism (SNP) markers from transcriptome sequences for identification of longan (Dimocarpus longan) germplasm[J]. Horticulture Research, 2015, 2: 14065.
[3] You X, Wang L, Liang W, et al. Floral reversion mechanism in longan (Dimocarpus longan Lour.) revealed by proteomic and anatomic analyses[J]. Journal of Proteomics, 2012, 75(4): 1099-1118.
[4] Jia T, Wei D, Meng S, et al. Identification of regulatory genes implicated in continuous flowering of longan (Dimocarpus longan L.)[J]. PLoS One, 2014, 9(12): e114568.
[5] Zhang H N, Shi S Y, Li W C, et al. Transcriptome analysis of ‘Sijihua longan (Dimocarpus longan L.) based on next-generation sequencing technology[J]. The Journal of Horticultural Science and Biotechnology, 2016, 91(2): 180-188.
[6] Jue D, Sang X, Liu L, et al. Identification of WRKY Gene Family from Dimocarpus longan and its expression analysis during flower induction and abiotic stress responses[J]. International Journal of Molecular Sciences, 2018, 19(8): 2169.
[7] Chen F, Hu Y, Vannozzi A, et al. The WRKY transcription factor family in model plants and crops[J]. Critical Reviews in Plant Sciences, 2017, 36(5-6): 311-335.
[8] Eulgem T, Rushton P J, Robatzek S, et al. The WRKY superfamily of plant transcription factors[J]. Trends in Plant Science, 2000, 5(5): 199-206.
[9] Yu Y, Liu Z, Wang L, et al. WRKY 71 accelerates flowering via the direct activation of FLOWERING LOCUS T and LEAFY in Arabidopsis thaliana[J]. The Plant Journal, 2016, 85(1): 96-106.
[10] Cai Y, Chen X, Xie K, et al. Dlf1, a WRKY transcription factor, is involved in the control of flowering time and plant height in rice[J]. PLoS One, 2014, 9(7): e102529.
[11] Yu Y, Hu R, Wang H, et al. MlWRKY12, a novel Miscanthus transcription factor, participates in pith secondary cell wall formation and promotes flowering[J]. Plant Science, 2013, 212: 1-9.
[12] Li W, Wang H, Yu D. Arabidopsis WRKY transcription factors WRKY12 and WRKY13 oppositely regulate flowering under short-day conditions[J]. Molecular Plant, 2016, 9(11): 1492-1503.
[13] Li S, Fu Q, Chen L, et al. Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance[J]. Planta, 2011, 233(6):1237-1252.
[14] Han C, Lai Z, Shi J, et al. Roles of Arabidopsis WRKY18,WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress[J]. BMC Plant Biology, 2010, 10(1): 281.
[15] Kilian J, Whitehead D J, Wanke D, et al. The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses[J]. The Plant Journal, 2007, 50(2): 347-363.
[16] Seki M, Narusaka M, Ishida J, et al. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full‐length cDNA microarray[J]. The Plant Journal, 2002, 31(3): 279-292.
[17] Qiu Y, Jing S, Fu J, et al. Cloning and analysis of expression profile of 13 WRKY genes in rice[J]. Chinese Science Bulletin, 2004, 49(20): 2159-2168.
[18] Raineri J, Wang S, Peleg Z, et al. The rice transcription factor OsWRKY47 is a positive regulator of the response to water deficit stress[J]. Plant Molecular Biology, 2015, 88(4-5): 401-413.
[19] Jue D, Sang X, Liu L, et al. Comprehensive analysis of the longan transcriptome reveals distinct regulatory programs during the floral transition[J]. BMC Genomics, 2019, 20(1): 126.
[20] Yoo S D, Cho Y H, Sheen J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis[J]. Nature Protocols, 2007, 2(7): 1565.
[21] Shabala S, Bose J, Hedrich R. Salt bladders: do they matter?[J]. Trends in Plant Science, 2014, 19(11): 687-691.
[22] Turnbull C. Long-distance regulation of flowering time[J]. Journal of Experimental Botany, 2011, 62(13): 4399-4413.
[23] Zhang L, Chen L, Yu D. Transcription factor WRKY75 interacts with DELLA proteins to affect flowering[J]. Plant Physiology, 2018, 176(1): 790-803.
[24] 張遠嬿. 蘋果MdWRKY33基因的克隆與功能分析[D]. 沈陽: 沈陽農(nóng)業(yè)大學, 2018.
[25] 張 ?旭, 凌 ?輝, 劉 ?峰, 等. 一個甘蔗Ⅱd類WRKY轉(zhuǎn)錄因子基因的克隆和表達分析[J]. 中國農(nóng)業(yè)科學, 2018, 51(23): 4409-4423.
[26] 陳彩慧, 伍艷芳, 肖 ?蓉, 等. 樟樹WRKY轉(zhuǎn)錄因子的克隆與表達分析[J]. 分子植物育種, 2018, 16(15): 4872-4879.
[27] Zhu D, Hou L, Xiao P, et al. VvWRKY30, a grape WRKY transcription factor, plays a positive regulatory role under salinity stress[J]. Plant Science, 2019, 280: 132-142.
[28] Zhou H, Li Y, Zhang Q, et al. Genome-wide analysis of the expression of WRKY family genes in different developmental stages of wild strawberry (Fragaria vesca) fruit[J]. PloS One, 2016, 11(5): e0154312.
[29] Ning W, Zhai H, Yu J, et al. Overexpression of Glycine soja WRKY20 enhances drought tolerance and improves plant yields under drought stress in transgenic soybean[J]. Molecular Breeding, 2017, 37(2): 19.