• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pressure-induced phase transition in transition metal trifluorides

    2022-10-26 09:47:10PengLiu劉鵬MeilingXu徐美玲JianLv呂健PengyueGao高朋越ChengxiHuang黃呈熙YinweiLi李印威JianyunWang王建云YanchaoWang王彥超andMiZhou周密
    Chinese Physics B 2022年10期
    關(guān)鍵詞:周密劉鵬美玲

    Peng Liu(劉鵬) Meiling Xu(徐美玲) Jian Lv(呂健) Pengyue Gao(高朋越) Chengxi Huang(黃呈熙)Yinwei Li(李印威) Jianyun Wang(王建云) Yanchao Wang(王彥超) and Mi Zhou(周密)

    1State Key Laboratory of Superhard Materials&International Center for Computational Method and Software,College of Physics,Jilin University,Changchun 130012,China

    2Laboratory of Quantum Functional Materials Design and Application,School of Physics and Electronic Engineering,Jiangsu Normal University,Xuzhou 221116,China

    3MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing,Nanjing University of Science and Technology,Nanjing 210094,China

    Keywords: high-pressure structure transition,crystal structure prediction,high-pressure x-ray diffraction experiments,transition metal

    1. Introduction

    Transition metal trifluorides,a class of materials with the chemical formulaMF3(M=Sc, Ti, V,Cr, Mn, and so forth)have attracted considerable attentions owing to their versatile applications in negative thermal expansion materials,[1–4]batteries,[5–7]and hydrogen storage materials.[8–12]More importantly, they have been demonstrated to be ideal materials to study the Jahn–Teller and spin–orbit coupling effects.[13,14]Under ambient conditions,MF3usually adopts a simple perovskite-like structure with a completely vacant A site,[15–19]in which the metal atom is surrounded by a tilted octahedron of corner-shared fluorine atoms. Moreover, the tilting angle of the octahedron decreases with increasing temperature, causing a high-temperature phase transition to the cubic ReO3-type structure.[17,20]It is essential to note that the physical and chemical properties ofMF3are generally associated with structural parameters, such as polyhedral volume and octahedral tilt.[21–28]Therefore, investigating the structural changes inMF3will provide new insights for designing functional materials.

    It is well known that pressure is a key thermodynamic variable that modifies the crystal structure and effectively controls material properties. For example, high-pressure experiments have led to the discovery of novel materials with unique properties (e.g., high-temperature superconductors such as H3S,[29,30]LaH10,[31,32]and C–S–H[33]). The high pressure thus offers exciting opportunities for discovering new materials that do not exist under ambient conditions.[34–40]Highpressure does not necessitate the destruction of theMF6octahedron inMF3systems. In practice, the pressure-induced structural evolution is only the cooperative tilting of theMF6octahedra,[41–43]which can be summarized as follows: (i) an elongation of theMF6octahedra along thecaxis leads to a small octahedral strain, (ii) theMF6octahedral strain disappears, and(iii)MF6octahedral elongation occurs along theaaxis.

    In this work,we adopted a combination of first-principle calculations and experiments to explore the high-pressure phase of TiF3. Our results suggest that TiF3transforms from the rhombohedral (R–3c) phase to an orthorhombic (Pnma)phase at high pressure,accompanied by the destruction of the TiF6octahedra and formation of TiF8square antiprismatic units. The high-pressurePnmaphase of TiF3is confirmed by the laser-heated diamond-anvil-cell experiment and shows semiconducting character with a band gap of 2.65 eV.We further confirmed that the pressure-induced transition fromR–3ctoPnmaphase is a general trend in transition metal trifluorides,such as ScF3,VF3,CrF3,and MnF3.

    2. Methods

    Ab initiocalculations The search for TiF3structures(1–4 formula units) was performed at pressures of 20 GPa and 50 GPa via an unbiased swarm intelligence based method,Crystal structure AnaLYsis by Particle Swarm Optimization(CALYPSO),[44–46]which is designed to search for the most stable or metastable structures of given compounds.[47–57]Our first-principle calculations were based on density functional theory,[58]as implemented in the VASP package.[59]The core electrons were treated by the projector-augmented wave approximation,[60]and the exchange–correlation functional was given by the generalized gradient approximation parameterized by Perdew, Burke, and Ernzerhof.[61]The planewave cutoff energy was set to 800 eV, and Monkhorst–Packkmeshes with a spacing of 2π×0.03 ?A-1were chosen for Brillouin zone sampling to ensure that all the energy calculations converged well to~1 meV/atom. The Heyd–Scuseria–Ernzerhof(HSE)hybrid functional[62]was employed to accurately evaluate the electronic properties.The dynamic stability of the predicted structure was verified by phonon dispersion analysis using the direct supercell method,as implemented in the PHONOPY code.[63]

    Experimental procedures TiF3was obtained from Alfa Aesar and verified by powder x-ray diffraction (XRD).[16]TiF3powder, together with a ruby ball, was loaded into a symmetric diamond-anvil-cell (DAC) with a culet size of 320 μm with no pressure transmitting medium, and the pressure was determined by ruby fluorescence.[64]The sample was first compressed to 20 GPa and then heated to approximately 2000 K using a laser heating system with a diode-pumped CW ytterbium fiber laser(central wavelength of 1080 nm and maximum power of 100 W).Synchrotron XRD patterns were recorded at beamline BL10XU of Spring-8 (Japan) with a wavelength of 0.414 ?A,and the refinement was fitted using the GSAS software[65]and EXPGUI interface.[66]In situelectrical conductivity measurements, under high pressure and low temperature, were conducted in a DAC equipped with a van der Pauw-type microcircuit.[67]

    3. Results and discussion

    TiF3usually adopts a VF3-type structure with a space group ofR–3cat ambient pressure,[16,68]in which Ti is surrounded by a tilted octahedron of corner-shared fluorine atoms. The tilting angle of the octahedra decreases with an increase in temperature,leading to a phase transformation from rhombohedral to cubic at 370 K.[20]The cubic structure with thePm-3mspace group is isostructural in ReO3, consisting of the TiF6octahedra without tilt fluctuations. To determine the high-pressure structure of TiF3, we performed extensive structural searches at pressures of 20 GPa and 50 GPa. In our structural searches, all the experimental structures of the TiF3,R–3c,andPm-3mphases were successfully reproduced using the CALYPSO method, validating the reliability of our structure-searching method. In addition to the known experimental structures, an orthorhombic structure with the space group ofPnmawas successfully observed at 20 GPa.

    Enthalpy as a function of pressure for thePnmaphase relative to theR-3cphase is shown in Fig. 1(a). It is apparent that the ambient-pressure phase ofR–3ctransforms to thePnmaphase at 12 GPa, where the F atoms are in square antiprismatic coordination of the Ti atoms (Fig. 1(b)), which is isostructural to YF3at ambient pressure.[69]It is generally accepted that high-pressure phases of lighter elements or compounds in the periodic table are expected to be identical to the ambient structures of the corresponding heavier elements or compounds.[70]At 20 GPa,the largest and average Ti–F bond lengths in thePnmaphase are 2.12 ?A and 2.05 ?A,respectively,while all the bond lengths of Ti–F are equal to 1.93 ?A in theR–3cphase. Furthermore, the coordination number of Ti increases from 6 to 8,weakening individual Ti–F bonds and inducing longer Ti–F bond lengths.Interestingly,compared with theR–3cphase of TiF3,in which the A-cation site of the perovskite structure is unoccupied,the newly found high-pressurePnmaphase of TiF3can be considered a variant perovskite structure with a completely vacant B site. Thus,under certain circumstances,increasing the pressure has demonstrated to be an efficient strategy to tune the vacant coordination sites of cations in perovskites.

    We calculated the phonon dispersions of the predictedPnmaphase of TiF3at 20 GPa (Fig. 1(c)) and observed no imaginary frequencies, indicating that the predicted structure is dynamically stable. Our systematic assessment of energetic and dynamic stabilities suggests that thePnmaphase of TiF3could be realized experimentally. To verify our theoretical predictions,we performed high-pressure measurements on TiF3. The synchrotron XRD pattern of TiF3was obtained at 20 GPa after laser heating to approximately 2000 K,with Rietveld fitting as shown in Fig.1(d). The obtained peaks agree well with the predicted orthorhombicPnmastructure. The refined lattice parameters of the orthorhombicPnmastructure area=5.14 ?A,b=6.25 ?A, andc=4.38 ?A, which are in excellent agreement with our theoretical results.

    After the successful synthesis of thePnmaphase in TiF3,we investigated its bonding characteristics and electronic properties. To determine the nature of the bonding,we examined the electron localization function. A less localized charge distribution is observed in the Ti–F bonds(Fig.2(a)),indicating a significant degree of ionicity between the F anions and Ti cations. Furthermore, from Bader charge analysis,[71]the charge values on Ti and F were calculated at 20 GPa. There is a charge transfer of 1.89efrom Ti to F,comparable to that of typical ionic compounds of NaCl.[72]Moreover,the electronic band structure calculations at the HSE hybrid functional level demonstrated that thePnmaphase of TiF3is a semiconductor with a band gap of 2.65 eV(Fig.2(b)). To verify the electrical characteristics of the newly foundPnmaTiF3,anin situhigh pressure electrical conductivity measurement was conducted,based on the van der Pauw-type microcircuit technique.[73]As shown in Fig.2(c),the electrical resistance monotonically increases with decreasing temperature,confirming the semiconductor characteristics ofPnmaTiF3.

    Fig.1. (a)Enthalpy vs. pressure curves for Pnma phase of TiF3 relative to the R–3c phase. (b)Crystal structure of the Pnma phase formed by TiF8 square antiprismatic units. The Pnma structure contains 16 atoms/cell,wherein Ti atoms occupy the 4c(0.13,0.75,0.47)positions and the F atoms occupy the 8d (0.17, 0.06, 0.65) and 4c (0.03, 0.25, 0.13) positions. At 20 GPa, the optimized structural parameters are a=5.30 ?A, b=6.24 ?A,and c=4.40 ?A.(c)Phonon dispersion relations of the Pnma phase at 20 GPa. Here,the fractional coordinates of high-symmetry k points are given as follows:Γ(0,0,0),X(1/2,0,0),Y(0,1/2,0),Z(0,0,1/2),R(1/2,1/2,1/2),S(1/2,1/2,0),T(0,1/2,1/2),U(1/2,0,1/2). (d)Measured powder x-ray diffraction(XRD)pattern of TiF3 at 20 GPa with Le Bail method(XRD 2D image is given on the top).Vertical ticks correspond to Bragg peaks of the Pnma structure(pink). The refined lattice parameters of the orthorhombic Pnma structure from the XRD data are a=5.14 ?A,b=6.25 ?A,and c=4.38 ?A.The x-ray wavelength is 0.414 ?A.

    Fig. 2. (a) Calculated ELF of the Pnma phase on the (0 1 0) plane at 20 GPa, in which the bond lengths (in units of ?A) of the Ti–F bonds are shown. (b) Band structures of the Pnma structures at 20 GPa. The red and green colors denote the spin-up and spin-down bands, respectively.The energy of the topmost valence band state is set to 0 eV.Here,the high-symmetry k points are the same as those in Fig.1(c). (c)Experimental resistance–temperature curve of TiF3 at 20 GPa.

    Considering that theR–3cphase is a prototype structure of transition metal trifluorides under ambient conditions and the discovery of the high-pressure phase ofPnmain TiF3,we deliberated whether this pressure-induced phase transition is a common phenomenon in transition metal trifluorides. Thus,the neighboring metal elements Sc, V, Cr, and Mn were chosen. The enthalpies of thePmnaphase as a function of pressure with respect to theR-3cphase for ScF3, VF3, CrF3, and MnF3were calculated and shown in Fig. 3. The phase transition fromR–3ctoPnmais a general trend in those metal trifluorides,and the corresponding pressures are calculated to be 5 GPa,33 GPa,112 GPa,and 40 GPa for ScF3,VF3,CrF3,and MnF3,respectively. Therefore,the predictedPnmaphase could be a prototype structure widely adopted by transition metal trifluorides at high pressure.

    Fig. 3. Calculated enthalpies of Pmna phase as functions of pressure with respect to R–3c phase for ScF3(a),VF3(b),MnF3(c),and CrF3(d)systems.

    4. Conclusion

    In summary, by combining structure-searching methods with first-principle calculations, a pressure-inducedR-3ctoPnmaphase transition was predicted in TiF3, which was further confirmed by high-pressure experimental synthesis.The first-principle calculations and electrical measurements demonstrated that the high-pressurePnmaphase of TiF3exhibits semiconducting characteristics. Further,since theR–3cphase of TiF3is a prototype structure for transition metal trifluorides at ambient pressure, it was shown that the pressureinduced phase transition fromR-3ctoPnmais a general trend in transition metal trifluorides.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant Nos. 12034009, 91961204, and 11974134). Part of the calculation was performed in the high-performance computing center of Jilin University and the School of Physics and Electronic Engineering of Jiangsu Normal University.

    猜你喜歡
    周密劉鵬美玲
    Rotational manipulation of massive particles in a 2D acoustofluidic chamber constituted by multiple nonlinear vibration sources
    《公園創(chuàng)意拼貼》
    照應(yīng)周密,行文流暢
    美玲:我的幸福是與萌貨親密接觸
    金色年華(2017年10期)2017-06-21 09:46:49
    趙美玲
    Cyclic strength of sand under a nonstandard elliptical rotation stress path induced by wave loading*
    春天的早晨
    夏天的風(fēng)秋天的霧
    梅花綻放 滿園春香
    国产三级黄色录像| 级片在线观看| 90打野战视频偷拍视频| 高清毛片免费观看视频网站| 亚洲片人在线观看| 91午夜精品亚洲一区二区三区 | 长腿黑丝高跟| 成年女人看的毛片在线观看| 欧美日韩瑟瑟在线播放| 日韩欧美精品免费久久 | 久久久色成人| 国产精品久久久久久精品电影| 美女免费视频网站| 亚洲成人中文字幕在线播放| 国产欧美日韩精品一区二区| 特大巨黑吊av在线直播| 亚洲无线在线观看| 久久精品国产自在天天线| 亚洲自拍偷在线| 国产视频一区二区在线看| 性插视频无遮挡在线免费观看| 999久久久精品免费观看国产| 一卡2卡三卡四卡精品乱码亚洲| 日本免费a在线| 亚洲真实伦在线观看| 国产成+人综合+亚洲专区| 蜜桃久久精品国产亚洲av| 最近最新免费中文字幕在线| 丰满乱子伦码专区| 91午夜精品亚洲一区二区三区 | 99久久成人亚洲精品观看| 欧美在线一区亚洲| 在线免费观看的www视频| 日本黄大片高清| 久久久久国产精品人妻aⅴ院| 老司机福利观看| 亚洲aⅴ乱码一区二区在线播放| 波多野结衣高清作品| 亚洲精品一区av在线观看| 亚洲国产日韩欧美精品在线观看| 成人亚洲精品av一区二区| 欧美xxxx性猛交bbbb| 欧美一级a爱片免费观看看| 嫩草影院新地址| 午夜亚洲福利在线播放| 国产野战对白在线观看| 757午夜福利合集在线观看| 国产探花在线观看一区二区| 一本一本综合久久| 色吧在线观看| 国产精品久久久久久精品电影| 精品国产亚洲在线| 在线观看舔阴道视频| 免费在线观看成人毛片| 一个人免费在线观看电影| 国产精品久久久久久精品电影| .国产精品久久| 久久精品国产99精品国产亚洲性色| 亚洲精品影视一区二区三区av| 欧美日韩中文字幕国产精品一区二区三区| 午夜福利在线在线| 少妇高潮的动态图| 国产精品国产高清国产av| 色综合欧美亚洲国产小说| 国产美女午夜福利| 熟女人妻精品中文字幕| 国产精品久久久久久人妻精品电影| 可以在线观看毛片的网站| 国产aⅴ精品一区二区三区波| 熟女人妻精品中文字幕| 成人av在线播放网站| 欧美一区二区亚洲| 真实男女啪啪啪动态图| 97超视频在线观看视频| 日韩欧美一区二区三区在线观看| 无遮挡黄片免费观看| 999久久久精品免费观看国产| 国产伦精品一区二区三区四那| 亚洲久久久久久中文字幕| 桃红色精品国产亚洲av| 亚洲国产欧美人成| 淫秽高清视频在线观看| 十八禁网站免费在线| 99国产极品粉嫩在线观看| 伦理电影大哥的女人| 成人鲁丝片一二三区免费| АⅤ资源中文在线天堂| 亚洲电影在线观看av| 欧美国产日韩亚洲一区| 中文字幕免费在线视频6| 亚洲人成电影免费在线| 色播亚洲综合网| 一二三四社区在线视频社区8| 3wmmmm亚洲av在线观看| 日韩成人在线观看一区二区三区| 一区二区三区激情视频| 日日摸夜夜添夜夜添小说| 精品久久久久久成人av| 老司机午夜十八禁免费视频| 日本 欧美在线| 99国产精品一区二区蜜桃av| 久久久精品欧美日韩精品| 国产精品免费一区二区三区在线| 国产真实伦视频高清在线观看 | 日韩欧美在线二视频| 成人av在线播放网站| 亚洲内射少妇av| 宅男免费午夜| 欧美黄色片欧美黄色片| 黄色日韩在线| av福利片在线观看| 欧美日本视频| 国模一区二区三区四区视频| 免费观看人在逋| 亚洲av美国av| 国产精品一区二区三区四区久久| 国产成人福利小说| 日本精品一区二区三区蜜桃| 中文资源天堂在线| 99久久无色码亚洲精品果冻| 国产亚洲av嫩草精品影院| 国产精品嫩草影院av在线观看 | 丁香六月欧美| 欧美日本视频| 欧美精品啪啪一区二区三区| 少妇高潮的动态图| 搡老熟女国产l中国老女人| 99热这里只有是精品50| 看免费av毛片| 直男gayav资源| 极品教师在线视频| 国产69精品久久久久777片| 国产单亲对白刺激| 欧美色欧美亚洲另类二区| 国产日本99.免费观看| 一边摸一边抽搐一进一小说| 国产精品爽爽va在线观看网站| 色吧在线观看| 亚洲精品粉嫩美女一区| 搡女人真爽免费视频火全软件 | 一级a爱片免费观看的视频| 热99在线观看视频| 亚洲精品日韩av片在线观看| 动漫黄色视频在线观看| 免费av不卡在线播放| 成人特级黄色片久久久久久久| 国产乱人视频| 999久久久精品免费观看国产| 亚洲av五月六月丁香网| a级一级毛片免费在线观看| 日日夜夜操网爽| 国产成+人综合+亚洲专区| 久久久精品大字幕| 欧美乱色亚洲激情| 久久久久久久亚洲中文字幕 | 亚洲中文字幕日韩| 亚洲乱码一区二区免费版| 我的女老师完整版在线观看| 国产伦精品一区二区三区视频9| 三级毛片av免费| av女优亚洲男人天堂| 欧美xxxx性猛交bbbb| 国产精华一区二区三区| 69av精品久久久久久| 窝窝影院91人妻| 亚洲avbb在线观看| 一卡2卡三卡四卡精品乱码亚洲| 99热这里只有精品一区| 国产精品久久电影中文字幕| 色尼玛亚洲综合影院| 直男gayav资源| 丰满人妻熟妇乱又伦精品不卡| 最近最新中文字幕大全电影3| 欧美最黄视频在线播放免费| 看片在线看免费视频| 两性午夜刺激爽爽歪歪视频在线观看| 国产免费一级a男人的天堂| 在线天堂最新版资源| 成年版毛片免费区| 一区二区三区激情视频| 亚洲国产高清在线一区二区三| 久久久久久久久久成人| 国产毛片a区久久久久| 欧美+日韩+精品| 熟女电影av网| 亚洲专区国产一区二区| 亚洲成人免费电影在线观看| 亚洲 欧美 日韩 在线 免费| 在线观看免费视频日本深夜| 99久久久亚洲精品蜜臀av| 悠悠久久av| eeuss影院久久| 国产乱人视频| 黄色日韩在线| 国产精品亚洲一级av第二区| 男人舔奶头视频| 国产乱人视频| av中文乱码字幕在线| 男女下面进入的视频免费午夜| 一级a爱片免费观看的视频| 床上黄色一级片| 亚洲无线在线观看| 两个人视频免费观看高清| 欧美激情在线99| 毛片一级片免费看久久久久 | 在线观看66精品国产| 变态另类成人亚洲欧美熟女| 亚洲经典国产精华液单 | 给我免费播放毛片高清在线观看| 国产成人影院久久av| av女优亚洲男人天堂| 日本撒尿小便嘘嘘汇集6| www.熟女人妻精品国产| 观看免费一级毛片| 精品久久久久久久人妻蜜臀av| 麻豆一二三区av精品| 亚洲成av人片在线播放无| 亚洲成人免费电影在线观看| 精品人妻偷拍中文字幕| 亚洲成人中文字幕在线播放| 亚洲av.av天堂| av在线天堂中文字幕| 亚洲精华国产精华精| 欧美乱妇无乱码| 99热这里只有是精品在线观看 | 国内少妇人妻偷人精品xxx网站| 亚洲片人在线观看| 久久久久久国产a免费观看| 天美传媒精品一区二区| 久久性视频一级片| 亚洲天堂国产精品一区在线| 99久久99久久久精品蜜桃| 欧美精品啪啪一区二区三区| 欧美最新免费一区二区三区 | 国产蜜桃级精品一区二区三区| 长腿黑丝高跟| 18禁在线播放成人免费| 亚洲成av人片免费观看| 一本精品99久久精品77| 老熟妇乱子伦视频在线观看| 12—13女人毛片做爰片一| 我的女老师完整版在线观看| av在线天堂中文字幕| 最近中文字幕高清免费大全6 | 深夜a级毛片| 亚洲精品粉嫩美女一区| 九色成人免费人妻av| 精品免费久久久久久久清纯| 97热精品久久久久久| 午夜激情福利司机影院| 国产视频内射| 亚洲精品乱码久久久v下载方式| av专区在线播放| 久久国产精品影院| 午夜福利在线观看免费完整高清在 | a级毛片免费高清观看在线播放| 久久久精品欧美日韩精品| 久久午夜亚洲精品久久| 蜜桃久久精品国产亚洲av| 乱码一卡2卡4卡精品| 欧美日韩国产亚洲二区| 亚洲精品在线美女| 国产精品久久久久久亚洲av鲁大| 精品国产三级普通话版| 国产精品一及| 久久精品综合一区二区三区| 中亚洲国语对白在线视频| 麻豆国产av国片精品| 国产色爽女视频免费观看| 一进一出抽搐动态| 日日夜夜操网爽| av在线蜜桃| 亚州av有码| 麻豆成人午夜福利视频| 免费在线观看日本一区| 小说图片视频综合网站| 一区二区三区高清视频在线| 最新中文字幕久久久久| 亚洲av第一区精品v没综合| 日本 欧美在线| 嫩草影视91久久| 人人妻,人人澡人人爽秒播| 免费av毛片视频| 国产精品久久视频播放| 色尼玛亚洲综合影院| 国产探花极品一区二区| 一区二区三区高清视频在线| 村上凉子中文字幕在线| 精品一区二区免费观看| 亚洲av.av天堂| 制服丝袜大香蕉在线| 久久久国产成人免费| 国产淫片久久久久久久久 | 看十八女毛片水多多多| 91av网一区二区| 长腿黑丝高跟| 99久久精品国产亚洲精品| 丁香六月欧美| 亚洲中文字幕一区二区三区有码在线看| 久久精品国产自在天天线| 亚洲av电影在线进入| 两人在一起打扑克的视频| 特级一级黄色大片| 美女大奶头视频| 一区二区三区四区激情视频 | 成人美女网站在线观看视频| 悠悠久久av| 国产成人福利小说| 99热6这里只有精品| 特级一级黄色大片| 最新中文字幕久久久久| 亚洲精华国产精华精| 观看免费一级毛片| 国产精品一区二区性色av| 久久久精品欧美日韩精品| 国产精品一区二区免费欧美| 一进一出好大好爽视频| 亚洲男人的天堂狠狠| 国产男靠女视频免费网站| 国产欧美日韩一区二区精品| 欧美三级亚洲精品| 日韩欧美精品免费久久 | 十八禁人妻一区二区| 757午夜福利合集在线观看| 久久久久久大精品| 真人做人爱边吃奶动态| 亚洲内射少妇av| 国产又黄又爽又无遮挡在线| 亚洲自拍偷在线| 国产成人aa在线观看| 全区人妻精品视频| 一边摸一边抽搐一进一小说| .国产精品久久| 69人妻影院| netflix在线观看网站| 99在线人妻在线中文字幕| 丰满人妻熟妇乱又伦精品不卡| 亚洲国产精品999在线| 国产精品美女特级片免费视频播放器| 国产免费一级a男人的天堂| 欧美成人一区二区免费高清观看| 国产白丝娇喘喷水9色精品| 亚洲精品粉嫩美女一区| 国产精品亚洲av一区麻豆| 特级一级黄色大片| 午夜免费成人在线视频| 免费高清视频大片| 久久99热6这里只有精品| 亚洲成人免费电影在线观看| 午夜亚洲福利在线播放| 久久国产精品人妻蜜桃| 一级a爱片免费观看的视频| 青草久久国产| 怎么达到女性高潮| 亚洲电影在线观看av| 国产高清激情床上av| 啪啪无遮挡十八禁网站| 最近最新中文字幕大全电影3| 国产高清视频在线播放一区| 日韩欧美免费精品| 91麻豆av在线| 麻豆久久精品国产亚洲av| 舔av片在线| 亚洲精品乱码久久久v下载方式| 午夜福利在线观看免费完整高清在 | 久久久久亚洲av毛片大全| 啪啪无遮挡十八禁网站| 欧美一级a爱片免费观看看| 午夜免费成人在线视频| 亚洲精华国产精华精| 美女被艹到高潮喷水动态| 欧美黑人欧美精品刺激| 99久久成人亚洲精品观看| 日本 av在线| 如何舔出高潮| 欧美bdsm另类| 亚洲avbb在线观看| 日韩中字成人| 亚洲avbb在线观看| 久久亚洲精品不卡| 国内久久婷婷六月综合欲色啪| 久久精品久久久久久噜噜老黄 | 天堂av国产一区二区熟女人妻| 十八禁网站免费在线| 真实男女啪啪啪动态图| 久久中文看片网| 级片在线观看| 精品乱码久久久久久99久播| 直男gayav资源| 国产高清激情床上av| 成人亚洲精品av一区二区| 搡老岳熟女国产| 蜜桃亚洲精品一区二区三区| 18禁黄网站禁片免费观看直播| 性欧美人与动物交配| 国产野战对白在线观看| 免费看日本二区| 深夜a级毛片| 国产成人欧美在线观看| 国产一区二区在线观看日韩| 99热这里只有精品一区| www.色视频.com| 内地一区二区视频在线| 欧美午夜高清在线| 老司机午夜福利在线观看视频| 九九在线视频观看精品| 亚洲最大成人手机在线| 91久久精品电影网| 亚洲成人久久爱视频| 日韩人妻高清精品专区| 国产日本99.免费观看| 日韩欧美国产一区二区入口| 欧美潮喷喷水| 精品久久久久久久久av| 成人精品一区二区免费| 亚洲狠狠婷婷综合久久图片| 欧美激情国产日韩精品一区| av视频在线观看入口| 日韩精品中文字幕看吧| 嫩草影院入口| 在线观看免费视频日本深夜| 久久午夜亚洲精品久久| 国产乱人视频| 夜夜夜夜夜久久久久| 日本与韩国留学比较| 久久久国产成人精品二区| 亚洲美女黄片视频| 亚洲av不卡在线观看| av欧美777| 亚洲不卡免费看| 久久婷婷人人爽人人干人人爱| 亚洲第一电影网av| 亚洲,欧美精品.| 亚洲欧美日韩高清在线视频| 国产一区二区激情短视频| 99久久精品一区二区三区| 90打野战视频偷拍视频| 内射极品少妇av片p| 岛国在线免费视频观看| 欧美日韩综合久久久久久 | av女优亚洲男人天堂| 大型黄色视频在线免费观看| 亚洲一区高清亚洲精品| av欧美777| av黄色大香蕉| 十八禁网站免费在线| 天堂av国产一区二区熟女人妻| 国产精品爽爽va在线观看网站| 色5月婷婷丁香| 欧美日韩乱码在线| 亚洲av二区三区四区| 十八禁人妻一区二区| 精品一区二区三区人妻视频| 一进一出抽搐动态| 精品久久久久久,| 欧美成人免费av一区二区三区| 久久亚洲精品不卡| 亚洲在线自拍视频| 成人特级av手机在线观看| 国产亚洲精品综合一区在线观看| 亚洲av日韩精品久久久久久密| 91av网一区二区| 欧美成狂野欧美在线观看| 国语自产精品视频在线第100页| 极品教师在线免费播放| 美女被艹到高潮喷水动态| 免费电影在线观看免费观看| 精品午夜福利视频在线观看一区| 欧美一区二区精品小视频在线| www.www免费av| 免费无遮挡裸体视频| 最近视频中文字幕2019在线8| 免费人成在线观看视频色| 久久中文看片网| 久久伊人香网站| 一级a爱片免费观看的视频| 很黄的视频免费| 亚洲成人久久性| 欧美成狂野欧美在线观看| 中文亚洲av片在线观看爽| 亚洲精华国产精华精| 国产毛片a区久久久久| 制服丝袜大香蕉在线| 中文资源天堂在线| 最近视频中文字幕2019在线8| 麻豆一二三区av精品| АⅤ资源中文在线天堂| 国产精品一区二区免费欧美| 亚洲激情在线av| 国产精品永久免费网站| 日韩中字成人| 欧美中文日本在线观看视频| 嫩草影视91久久| 简卡轻食公司| 可以在线观看毛片的网站| 久久精品91蜜桃| 欧美又色又爽又黄视频| www.www免费av| 一区二区三区激情视频| 性插视频无遮挡在线免费观看| 少妇熟女aⅴ在线视频| 国产精品女同一区二区软件 | 青草久久国产| 久久久久久久久久成人| 免费看美女性在线毛片视频| 亚洲成av人片在线播放无| 成人特级av手机在线观看| 高清在线国产一区| 美女大奶头视频| 欧美丝袜亚洲另类 | 亚洲精品亚洲一区二区| 久99久视频精品免费| 成年女人看的毛片在线观看| 久久久久九九精品影院| 久久国产精品影院| 欧美黑人巨大hd| 伊人久久精品亚洲午夜| 免费看美女性在线毛片视频| 在线播放无遮挡| 国产亚洲欧美在线一区二区| 免费观看精品视频网站| 亚洲自偷自拍三级| 天堂影院成人在线观看| 国产免费av片在线观看野外av| 亚洲男人的天堂狠狠| 中文字幕人成人乱码亚洲影| 老司机午夜福利在线观看视频| 亚洲自拍偷在线| 成人鲁丝片一二三区免费| 色在线成人网| 欧美丝袜亚洲另类 | 最好的美女福利视频网| 亚洲人成伊人成综合网2020| 日韩免费av在线播放| 别揉我奶头~嗯~啊~动态视频| 亚洲一区二区三区色噜噜| 亚洲成av人片免费观看| 国产一区二区三区视频了| 国产亚洲av嫩草精品影院| 国内精品美女久久久久久| 简卡轻食公司| 久久久久亚洲av毛片大全| 国产日本99.免费观看| 精品人妻视频免费看| 亚洲一区高清亚洲精品| 最好的美女福利视频网| 直男gayav资源| 欧美日韩中文字幕国产精品一区二区三区| 亚洲av五月六月丁香网| 亚洲人成电影免费在线| 少妇丰满av| 国产色婷婷99| 51午夜福利影视在线观看| 久久精品91蜜桃| 成人鲁丝片一二三区免费| 亚洲,欧美精品.| 91狼人影院| 午夜免费激情av| 亚洲真实伦在线观看| 在线播放国产精品三级| 色综合站精品国产| 国产乱人伦免费视频| 国产精品美女特级片免费视频播放器| 久久精品夜夜夜夜夜久久蜜豆| 免费人成在线观看视频色| 99国产精品一区二区蜜桃av| 一进一出抽搐gif免费好疼| 成熟少妇高潮喷水视频| 亚洲精品粉嫩美女一区| 国产白丝娇喘喷水9色精品| 国产精品美女特级片免费视频播放器| 亚洲精品亚洲一区二区| 一进一出抽搐动态| 久久伊人香网站| 久久精品久久久久久噜噜老黄 | 国产真实伦视频高清在线观看 | 国产精品久久久久久久久免 | 欧美激情在线99| 欧美不卡视频在线免费观看| 最后的刺客免费高清国语| 亚洲电影在线观看av| 久久性视频一级片| av在线蜜桃| 美女 人体艺术 gogo| 亚洲精品一区av在线观看| 麻豆av噜噜一区二区三区| 91av网一区二区| 一卡2卡三卡四卡精品乱码亚洲| 国内揄拍国产精品人妻在线| 十八禁国产超污无遮挡网站| 五月玫瑰六月丁香| 99久久精品一区二区三区| 亚洲性夜色夜夜综合| 日本熟妇午夜| 欧美黑人巨大hd| 欧美极品一区二区三区四区| 日本五十路高清| 老司机午夜福利在线观看视频| 最新中文字幕久久久久| 亚洲天堂国产精品一区在线| 免费高清视频大片| 看片在线看免费视频| 欧美一区二区亚洲| 国产精品乱码一区二三区的特点| 欧美zozozo另类| 国产伦一二天堂av在线观看| 亚洲熟妇熟女久久| 国产精品电影一区二区三区| 欧美日韩中文字幕国产精品一区二区三区| 看片在线看免费视频| 90打野战视频偷拍视频| 老熟妇乱子伦视频在线观看| 欧美色视频一区免费| 亚洲真实伦在线观看| 中文字幕免费在线视频6|