摘 要:隨著環(huán)境問題和全球能源危機(jī)的日益加劇,開發(fā)新型的效率高、成本低的材料用于污水降解,過濾凈化以及能量?jī)?chǔ)存和轉(zhuǎn)化等變得更加迫切。層狀氫氧化物由于種類豐富,具有獨(dú)特的層狀結(jié)構(gòu)以及簡(jiǎn)易的合成方法而倍受青睞。本文綜述了具有類水滑石結(jié)構(gòu)的層狀氫氧化物的晶體結(jié)構(gòu),合成制備的方法以及在光學(xué)、環(huán)境和能源領(lǐng)域的應(yīng)用現(xiàn)狀及進(jìn)展。
關(guān)鍵詞:層狀氫氧化物;結(jié)構(gòu);制備;應(yīng)用
中圖分類號(hào):TB34
文獻(xiàn)標(biāo)識(shí)碼: A
1842年,天然水滑石礦在瑞典首次被發(fā)現(xiàn)。1915年,水滑石的組成被Manasse準(zhǔn)確地確定下來,為[Mg6Al2(OH)16]CO3·4H2O。20世紀(jì)60年代,ALLMANN和TAYLOR通過單晶X射線衍射法測(cè)定了水滑石的結(jié)構(gòu)[1-3]。層狀雙氫氧化物(LDH)由于結(jié)構(gòu)與水滑石結(jié)構(gòu)相似,因此被稱為水滑類化合物或者陰離子黏土[4-5]。此外,一系列的具有類水滑石結(jié)構(gòu)的層狀氫氧化物均具有主板層陽(yáng)離子類型可改變,層間陰離子可調(diào)控等特點(diǎn),使得種類豐富,功能多樣的層狀氫氧化物廣泛用于解決污染與能源危機(jī)等問題[6-10]。本文作者課題組長(zhǎng)期以來一直從事層狀氫氧化物的可控制備合成以及性能應(yīng)用開發(fā)的研究。在此基礎(chǔ)上結(jié)合近年來國(guó)內(nèi)外研究的相關(guān)報(bào)道,本文對(duì)層狀氫氧化物的晶體結(jié)構(gòu)、合成手段以及在環(huán)境與能源等領(lǐng)域的應(yīng)用做出分析、總結(jié)和展望。
1 層狀氫氧化物的組分與結(jié)構(gòu)
2 層狀氫氧化物的合成方法
2.1 水熱法
水熱法是19世紀(jì)中葉英國(guó)地質(zhì)學(xué)家Roderick Murchison在模擬礦物質(zhì)形成過程中提出的高溫高壓合成技術(shù)[15]。水熱法的主要步驟是將預(yù)先配置好的原料溶液在水熱釜中密封并加熱至一定的溫度。利用水熱法制備的材料具有結(jié)晶性高,分散性良好和成本低等優(yōu)點(diǎn)。IYI等[16]通過在AlCl3和MgCl2混合溶液中,加入六亞甲基四胺作為堿源,利用水熱法成功制備了高結(jié)晶性,粒徑為1~5 μm的層狀Mg ̄Al氫氧化物。劉小鶴等[17-18]利用微波輔助加熱的水熱法制備了結(jié)晶性良好,形貌尺寸均勻,成分可控的層狀氫氧化鈷,氫氧化鈷/鎳納米錐。
2.2 沉淀法
沉淀法主要包括共沉淀法和均相沉淀法。共沉淀法是最簡(jiǎn)單和最常用的制備層狀雙金屬氫氧化物的方法。在含有二價(jià)和三價(jià)金屬陽(yáng)離子溶液中加入沉淀劑(氫氧化鈉,氨水等),通過調(diào)控反應(yīng)體系的pH,可獲得不同形貌尺寸的層狀雙金屬氫氧化物。由于反應(yīng)體系是強(qiáng)堿性(pH為9~11),空氣中的二氧化碳容易溶解到反應(yīng)溶液中形成碳酸根,因此在制備非碳酸根插層的層狀雙金屬氫氧化物時(shí)需要在保護(hù)性氣氛(氮?dú)饣蛘邭鍤獾龋┲羞M(jìn)行反應(yīng)[19]。利用共沉淀法制備的常見層狀雙金屬氫氧化物有:層狀Mg ̄Al[20],Zn ̄Al[21]氫氧化物等。通過共沉淀法制備得到的產(chǎn)物存在形貌不均勻,易團(tuán)聚,粒徑?。M向尺寸為幾十納米)等問題。利用均相沉淀法制備層狀雙金屬氫氧化物的過程中通常使用尿素或者六亞甲基四胺等作為沉淀劑,在一定的溫度下通過水解反應(yīng)提供氫氧根離子,使在整個(gè)反應(yīng)體系中緩慢地析出較均勻的,粒徑較大的晶態(tài)沉淀。劉兆平等[22]以尿素為堿源,通過油浴加熱(約97 ℃),利用均相沉淀法制備了粒徑為微米級(jí),形貌為均勻六方片形的Co ̄Al,F(xiàn)e ̄Al,Zn ̄Al和Ni ̄Al層狀氫氧化物。此外,在均相沉淀法的基礎(chǔ)上,劉小鶴等[23-27]通過加入結(jié)構(gòu)導(dǎo)向劑(十二烷基硫酸鈉),以尿素或六亞甲基四胺為堿源,以水浴或者油浴等方式進(jìn)行加熱,在氮?dú)獾谋Wo(hù)下,可制備一系列微米級(jí)的層狀氫氧化鈷,氫氧化鋅,氫氧化釔納米錐。
2.3 拓?fù)浠瘜W(xué)氧化法
拓?fù)浠瘜W(xué)氧化法指的是原位部分氧化水鎂石中氫氧化物板層中的二價(jià)陽(yáng)離子,同時(shí)陰離子進(jìn)入板層之間,平衡主板層的正電荷,最終形成層狀雙金屬氫氧化物,如圖2所示。此方法可用于合成高結(jié)晶性的非鋁基層狀雙金屬氫氧化物。利用拓?fù)浠瘜W(xué)氧化法,MA等[28-30]合成了結(jié)晶性良好,粒徑為微米級(jí)的層狀Co ̄Fe,Co ̄Co氫氧化物六方片,LIANG等[31]制備了不同Ni/Co比例的微米級(jí)層狀氫氧化物六方片。利用拓?fù)浠瘜W(xué)氧化法所制備的樣品具有結(jié)晶性好,形貌尺寸均勻,層間陰離子可交換,可化學(xué)剝離成單層氫氧化物納米片等優(yōu)點(diǎn)。
3 層狀氫氧化物的應(yīng)用
3.1 光致發(fā)光
層狀稀土金屬氫氧化物作為一種新型的發(fā)光材料主體,可通過摻雜Eu3+,Tb3+等稀土金屬離子,發(fā)出常見的紅光,綠光。胡林峰等[32]通過在正己烷/水界面上的自組裝,制備了緊密填充的單層和多層的層狀稀土氫氧化物Eu(OH)2.5Cl0.5·0.9H2O薄膜,該薄膜具有良好的光致發(fā)光和陰離子交換性能,并可能在光學(xué)器件等方面具有潛在的應(yīng)用前景。但是,由于結(jié)構(gòu)中與稀土金屬離子發(fā)光中心直接配位的羥基或者水分子產(chǎn)生嚴(yán)重的熒光淬滅,導(dǎo)致層狀稀土金屬氫氧化物的發(fā)光強(qiáng)度遠(yuǎn)遠(yuǎn)達(dá)不到工業(yè)生產(chǎn)要求。因此,以層狀稀土金屬氫氧化物作為前驅(qū)物,通過加熱煅燒去除羥基和水分子,能夠有效地提高材料的發(fā)光強(qiáng)度。通過對(duì)層狀稀土氫氧化物Gd(OH)2.5Cl0.5·0.9H2O∶0.05Eu薄膜進(jìn)一步在空氣中進(jìn)行800 ℃高溫煅燒2 h得到對(duì)應(yīng)的氧化物Gd2O3∶0.05Eu薄膜,發(fā)現(xiàn)煅燒后氧化物產(chǎn)物的發(fā)光強(qiáng)度相對(duì)于層狀稀土氫氧化物前驅(qū)體增強(qiáng)了527倍。高溫煅燒后引起的肉眼可見的紅光發(fā)射光增強(qiáng)以及結(jié)構(gòu)變化如圖3所示[33]。鐘一順等[26]同樣發(fā)現(xiàn),相比Yb和Er共摻雜的層狀氫氧化釔納米錐,煅燒后得到的氧化物Y2O3∶Yb,Er納米錐具有更加優(yōu)異的上轉(zhuǎn)換發(fā)光性能。此外,他們還發(fā)現(xiàn),通過對(duì)層狀氫氧化釔納米錐進(jìn)行陰離子交換,能夠有效地降低得到高純氧化物的煅燒溫度(煅燒溫度:十二烷基硫酸根插層氫氧化物為1000 ℃,硝酸根插層氫氧化物為600 ℃)以及更好地保持錐狀形貌。
3.2 光催化降解
具有特定形貌和組成的層狀氫氧化物,亦可用作制備高性能光催化降解水中有機(jī)污染物催化劑的前驅(qū)體。馬煒等[24]通過在油浴合成過程中加入具有結(jié)構(gòu)導(dǎo)向作用的十二烷基硫酸鈉,制備出納米錐形的十二烷基硫酸根插層的層狀氫氧化鋅,并將上述納米錐靜置在濃度為1 mol/L氯化鈉溶液中,得到長(zhǎng)方片形的層狀氫氧化鋅。以納米錐形和長(zhǎng)方片形得層狀氫氧化鋅作為前驅(qū)物,經(jīng)過層間陰離子交換,高溫煅燒后,可獲得氧化鋅納米錐和納米片。如圖4所示,在紫外光的照射下,100 mg上述樣品均能在60min內(nèi)將50mL濃度為15mg/L的有插圖為不同紫外線照射時(shí)間對(duì)應(yīng)得到亞甲基藍(lán)懸浮液照片。
機(jī)污染物亞甲基藍(lán)完全降解。而且相比納米片形貌,氧化鋅納米錐催化活性更高,降解速度更快。張丹等[25]同樣報(bào)道了通過以錐形的層狀氫氧化鋅作為前驅(qū)體合成的具有高比表面積的氧化鋅納米錐,相比氧化鋅納米棒具有更優(yōu)異的光催化降解效率。
3.3 選擇性過濾膜
全球環(huán)境污染越來越嚴(yán)重,導(dǎo)致淡水短缺危機(jī)深化,加速了對(duì)低成本、低能耗、易操作的過濾與分離薄膜的研究。孫鵬展等[34]對(duì)層狀Mg ̄Al和Co ̄Al氫氧化物六方片在甲酰胺中進(jìn)行機(jī)械震蕩剝離,分別獲得帶正電荷單層的Mg ̄Al和Co ̄Al氫氧化物納米片,通過與帶負(fù)電荷的氧化石墨烯組成超晶格單元,進(jìn)一步真空抽濾成新型復(fù)合膜。所制備的復(fù)合膜具有面積可控、厚度可控、半透明、可彎曲、機(jī)械強(qiáng)度高等特點(diǎn)。如圖5所示,該類復(fù)合膜用于過濾分離廢液時(shí),對(duì)一價(jià)(例如Na+,K+)和三價(jià)陽(yáng)離子(例如Al3+)的相對(duì)選擇性高達(dá)30。同為一價(jià)的鉀鹽和鈉鹽的滲透,只與陽(yáng)離子的價(jià)態(tài)相關(guān),幾乎與陰離子類型(例如Cl-,NO-3和CO2-3)無(wú)關(guān)。無(wú)論是氧化石墨烯/Co ̄Al氫氧化物納米片復(fù)合膜還是氧化石墨烯/Mg ̄Al氫氧化物納米片復(fù)合膜均具有高選擇性電荷導(dǎo)向離子過濾和分離的特點(diǎn),在廢水處理和再利用、化學(xué)精制、生物仿生選擇性離子傳輸?shù)确矫婢哂袕V闊的應(yīng)用前景。
3.4 超級(jí)電容器
超級(jí)電容器中能量的儲(chǔ)存和釋放可歸納成兩類電化學(xué)過程:離子吸附/解吸附過程和氧化還原法拉第反應(yīng)。具有高表面積的碳基材料(例如活性炭,碳納米管和石墨烯等)具有離子在材料表面快速吸附/解吸附的能力,一般用于構(gòu)建大功率的雙電層電容器。而具有強(qiáng)氧化還原特性的過渡金屬(Fe,Co,Ni,Mn,Ru等)氧化物/氫氧化物常被用作構(gòu)建高比容量的法拉第準(zhǔn)電容器[35-42]。
如圖6所示,劉小鶴等[18,23]通過調(diào)節(jié)層狀氫氧化鈷的層間插層陰離子,發(fā)現(xiàn)相比層間陰離子為十二烷基硫酸根和硝酸根的層狀氫氧化鈷,氯離子插層的層狀氫氧化鈷用作超級(jí)電容器電極材料具有更高的比容量。此外,通過調(diào)控層狀氫氧化鈷中主板層的金屬陽(yáng)離子(Co/Ni)比例發(fā)現(xiàn),在電流密度為10 A/g時(shí),Co0.5Ni0.5(OH)2具有最高的比容量(1580 F/g),甚至可媲美貴金屬氧化物RuO2的性能。相比導(dǎo)電性良好的貴金屬RuO2,非貴金屬的
過渡金屬(Fe,Co,Ni,Mn)氧化物/氫氧化物導(dǎo)電性很差,電導(dǎo)率僅為10-6~10-5 S/cm。為了進(jìn)一步提高層狀氫氧化物在超級(jí)電容器應(yīng)用中的電化學(xué)性能,可以通過將層狀氫氧化物與導(dǎo)電性良好的石墨烯[43-45],碳納米管[46],石墨紙[47],碳布[48-49],碳素纖維[50],泡沫鎳[51-53]等進(jìn)行復(fù)合或原位生長(zhǎng),提高氧化還原反應(yīng)中的電子轉(zhuǎn)移速率,進(jìn)而提升復(fù)合電極材料的比容量、倍率性以及穩(wěn)定性。
3.5 電催化水分解
水分解可以將太陽(yáng)能和風(fēng)能以化學(xué)燃料的形式儲(chǔ)存起來,即氫能。一直以來析氧反應(yīng)(OER)被視為電催化水分解的瓶頸。即使是商用的貴金屬催化劑RuO2和IrO2,在電催化析氧反應(yīng)中依然需要比較高的過電勢(shì)。開發(fā)高效、廉價(jià)的析氧反應(yīng)催化劑是當(dāng)前可再生能源研究的主要課題之一。層狀過渡金屬氧化物及其衍生物因其多樣性和穩(wěn)定性,而成為有吸引力的催化劑候選材料[54-58]。
SONG等[59]研究了三種層狀雙金屬氫氧化物的電催化析氧活性,如圖7(a)所示。研究發(fā)現(xiàn),無(wú)論是氫氧化物塊體還是剝離后的納米片,催化活性的順序?yàn)椋篘iFegt;NiCogt;CoCo。剝離后的NiFe和NiCo氫氧化物納米片即使在相對(duì)較低的負(fù)載量(007 mg/cm2)時(shí),仍然呈現(xiàn)出比負(fù)載量較高(0.21 mg/cm2)的商用IrO2納米顆粒更低的過電勢(shì)以及更小的塔菲爾斜率。
馬煒等[60-61]通過將導(dǎo)電性較差的帶負(fù)電荷的Ni ̄Fe或Ni ̄Mn納米片與導(dǎo)電性較好的氧化石墨烯(GO)和還原氧化石墨烯(rGO)復(fù)合形成超晶格結(jié)構(gòu)復(fù)合材料,從而提高層狀雙金屬氧化物的電催化活性。在堿性電解液中,相比未復(fù)合前的NiFe納米片的電催化析氧活性(過電勢(shì):310 mV,塔菲爾斜率:76 mV/decade),復(fù)合后的Ni2/3Fe1/3 ̄GO(過電勢(shì):230 mV,塔菲爾斜率:42 mV/decade)和Ni2/3Fe1/3 ̄rGO(過電勢(shì):210 mV,塔菲爾斜率:40 mV/decade)超晶格結(jié)構(gòu)復(fù)合材料的催化性能均有很大的提升,如圖7(b)所示。當(dāng)以Ni2/3Fe1/3 ̄rGO復(fù)合材料作為電催化水分解的催化劑,僅用一節(jié)1.5 V電池作為電源即可將水分解產(chǎn)生氫氣和氧氣。
3.6 氫氧根離子傳導(dǎo)
目前燃料電池主要基于酸性體系,以貴金屬作為電催化劑,以質(zhì)子導(dǎo)體為隔膜。貴金屬催化性能優(yōu)異,但是價(jià)格昂貴而且儲(chǔ)量少。開發(fā)新型氫氧根離子傳導(dǎo)膜有利于實(shí)現(xiàn)燃料電池向堿性體系轉(zhuǎn)變,以相比廉價(jià)且性能良好的過渡金屬氫氧化物或氧化物替代貴金屬作為電催化劑,從而降低成本。近年來,研究者發(fā)現(xiàn)層狀雙氫氧化物具有氫氧根離子傳導(dǎo)特性,并測(cè)量了塊狀氫氧化物的氫氧根離子傳導(dǎo)率(lt;10-2 S/cm),但遠(yuǎn)低于商用質(zhì)子傳導(dǎo)Nafion膜的傳導(dǎo)率(約10-1 S/cm)[62-65]。孫鵬展等[66]報(bào)道了對(duì)層狀雙氫氧化物塊體晶體進(jìn)行化學(xué)剝離形成納米單片后,發(fā)現(xiàn)相比未剝離的塊狀前驅(qū)體,剝離后得到的納米片氫氧根離子的傳導(dǎo)率提高一到三個(gè)數(shù)量級(jí),而且納米片面內(nèi)的氫氧根離子傳導(dǎo)率比垂直于面內(nèi)的氫氧根離子傳導(dǎo)率高四到五個(gè)數(shù)量級(jí),在一定的溫度濕度下能夠達(dá)到10-1 S/cm,如圖8所示。因此,以層狀氫氧化物納米片為基本構(gòu)建單元,制備堿性燃料電池中高性能氫氧根離子傳導(dǎo)膜或?qū)w具有良好的發(fā)展前景。
4 結(jié)論與展望
層狀氫氧化物由于結(jié)構(gòu)的獨(dú)特性,具有主板層陽(yáng)離子種類/價(jià)態(tài)可調(diào),層間陰離子可控的特點(diǎn)。通過水熱法,沉淀法,拓?fù)溲趸ǖ戎苽涫侄?,可?shí)現(xiàn)對(duì)層狀氫氧化物的結(jié)晶性,形貌(六方片,納米錐),尺寸(納米,微米),組分(Mg,Ca,Mn,F(xiàn)e,Co,Ni,Cu和Zn等),價(jià)態(tài)(M2+,M3+),配位(MO6,MO4)等的調(diào)控?;趯訝顨溲趸锛捌溲苌铮褵蟮玫降难趸?,剝離后的納米片,復(fù)合形成超晶格材料)的多樣性和穩(wěn)定性,可廣泛應(yīng)用于環(huán)境(光催化降解,選擇性過濾膜)和能源(超級(jí)電容器,水分解,燃料電池)等領(lǐng)域。相對(duì)塊狀層狀氫氧化物晶體,經(jīng)過剝離后得到的氫氧化物納米片具有更高的比表面積,更多暴露的活性位點(diǎn)。一方面,通過在分子尺度自組裝,與導(dǎo)電石墨烯形成超晶格的微觀結(jié)構(gòu),進(jìn)一步增強(qiáng)不同層狀結(jié)構(gòu)材料功能間的協(xié)同耦合作用。另一方面,可基于對(duì)單個(gè)的納米片進(jìn)行測(cè)試及性能表征,同時(shí)利用分子動(dòng)力學(xué)模擬,能夠更好地分析并獲得材料內(nèi)在的本征性能,進(jìn)而指導(dǎo)并推進(jìn)層狀結(jié)構(gòu)材料在能源和環(huán)境技術(shù)的突破。
參考文獻(xiàn):
[1]ALLMANN R. The crystal structure of pyroaurite[J]. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1968, 24(7): 972-977.
[2]TAYLOR H F W. Segregation and cation ̄ordering in sjgrenite and pyroaurite[J]. Mineralogical Magazine, 1969, 37: 338-342.
[3]TAYLOR H F W. Crystal structures of some double hydroxide minerals[J]. Mineralogical Magazine, 1973, 39: 377-389.
[4]RIVES V. Layered double hydroxides: present and future[M]. New York: Nova Science Publishers, Inc., 2001.
[5]KHAN A I, O′HARE D. Intercalation chemistry of layered double hydroxides: recent developments and applications[J]. Journal of Materials Chemistry, 2002, 12(11): 3191-3198.
[6]GOH K H, LIM TT, DONG Z. Application of layered double hydroxides for removal of oxyanions: a review[J]. Water research, 2008, 42(6/7): 1343-1368.
[7]NALAWADE P, AWARE B, KADAM V J, et al. Layered double hydroxides: A review[J].Journal of scientific and industrial research, 2009, 68(4):267-272.
[8]MOHAPATRA L, PARIDA K. A review on the recent progress, challenges and perspective of layered double hydroxides as promising photocatalysts[J]. Journal of Materials Chemistry A, 2016, 4(28): 10744-10766.
[9]TICHIT D, LAYRAC G, GéRARDIN C. Synthesis of layered double hydroxides through continuous flow processes: A review[J]. Chemical Engineering Journal, 2019,369:302-332.
[10]QU J, SHA L, WU C, et al. Applications of Mechanochemically Prepared Layered Double Hydroxides as Adsorbents and Catalysts: A Mini ̄Review[J]. Nanomaterials, 2019, 9(1): 80.
[11]EVANS D G, SLADE R C T. Structural aspects of layered double hydroxides[M]//Layered double hydroxides. Berlin, Heidelberg:Springer,2006: 1-87.
[12]MA R Z, LIU Z P, TAKADA K, et al. Tetrahedral Co (II) coordination in α ̄type cobalt hydroxide: rietveld refinement and X ̄ray absorption spectroscopy[J]. Inorganic chemistry, 2006, 45(10): 3964-3969.
[13]GENG F X, MA R Z, SASAKI T. Anion ̄exchangeable layered materials based on rare ̄earth phosphors: unique combination of rare ̄earth host and exchangeable anions[J]. Accounts of chemical research, 2010, 43(9): 1177-1185.
[14]GENG F X, MATSUSHITA Y, MA R Z, et al. General Synthesis and Structural Evolution of a Layered Family of Ln8 (OH) 20Cl4· n H2O (Ln= Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Y)[J]. Journal of the American Chemical Society, 2008, 130(48): 16344-16350.
[15] SMIYA S. Hydrothermal Reactions for Materials Science and Engineering: An Overview of Research in Japan[M]. Netherlands:Springer, 1989.
[16]IYI N, MATSUMOTO T, KANEKO Y, et al. A novel synthetic route to layered double hydroxides using hexamethylenetetramine[J]. Chemistry letters, 2004, 33(9): 1122-1123.
[17]LIU X H, MA R Z, BANDO Y, et al. Layered Cobalt Hydroxide Nanocones: Microwave ̄Assisted Synthesis, Exfoliation, and Structural Modification[J]. Angewandte Chemie International Edition, 2010, 49(44): 8253-8256.
[18]LIU X H, MA R Z, BANDO Y, et al. A general strategy to layered transition ̄metal hydroxide nanocones: tuning the composition for high electrochemical performance[J]. Advanced Materials, 2012, 24(16): 2148-2153.
[19]THEISS F L, AYOKO G A, FROST R L. Synthesis of layered double hydroxides containing Mg2+, Zn2+, Ca2+ and Al3+ layer cations by co ̄precipitation methods ̄A review[J]. Applied Surface Science, 2016, 383: 200-213.
[20]PANDA H S, SRIVASTAVA R, BAHADUR D. Synthesis and in situ mechanism of nuclei growth of layered double hydroxides[J]. Bulletin of Materials Science, 2011, 34(7): 1599-1604.
[21]SEFTEL E M, POPOVICI E, MERTENSM, et al. Zn ̄Al layered double hydroxides: synthesis, characterization and photocatalytic application[J]. Microporous and Mesoporous Materials, 2008, 113(1/3): 296-304.
[22]LIU Z P, MA R Z, OSADA M, et al. Synthesis, anion exchange, and delamination of Co ̄Al layered double hydroxide: assembly of the exfoliated nanosheet/polyanion composite films and magneto ̄optical studies[J]. Journal of the American Chemical Society, 2006, 128(14): 4872-4880.
[23]LIU X H, MA R Z, BANDO Y, et al. High ̄yield Preparation, Versatile Structural Modification, and Properties of Layered Cobalt Hydroxide Nanocones[J]. Advanced Functional Materials, 2014, 24(27): 4292-4302.
[24]MA W, MA R Z, LIANG J B, et al. Layered zinc hydroxide nanocones: synthesis, facile morphological and structural modification, and properties[J]. Nanoscale, 2014, 6(22): 13870-13875.
[25]ZHANG D, LIU X H, WAN H, et al. Large ̄Scale Preparation, Chemical Exfoliation, and Structural Modification of Layered Zinc Hydroxide Nanocones: Transformation into Zinc Oxide Nanocones for Enhanced Photocatalytic Properties[J]. ACS Sustainable Chemistry amp; Engineering, 2017, 5(7): 5869-5879.
[26]ZHONG Y S, CHEN G, LIU X H, et al. Layered rare ̄earth hydroxide nanocones with facile host composition modification and anion ̄exchange feature: topotactic transformation into oxide nanocones for upconversion[J]. Nanoscale, 2017, 9(24): 8185-8191.
[27]XIAO Y, ZHONG Y S, LIU X H, et al. Terbium ̄Doped Layered Yttrium Hydroxide Nanocone: Controlled Synthesis, Structure Variations, Phase Conversion to Oxide/Oxysulfate Nanocone and Their Luminescence Properties[J]. Particle amp; Particle Systems Characterization, 2018, 35(7): 1800075.1-1800075.10.
[28]MA R Z, LIU Z P, TAKADA K, et al. Synthesis and exfoliation of Co2+-Fe3+ layered double hydroxides: An innovative topochemical approach[J]. Journal of the American Chemical Society, 2007, 129(16): 5257-5263.
[29]MA R Z, LIANG J B, TAKADA K, et al. Topochemical synthesis of Co ̄Fe layered double hydroxides at varied Fe/Co ratios: unique intercalation of triiodide and its profound effect[J]. Journal of the American chemical society, 2010, 133(3): 613-620.
[30]MA R Z, LIANG J B, LIU X H, et al. General insights into structural evolution of layered double hydroxide: underlying aspects in topochemical transformation from brucite to layered double hydroxide[J]. Journal of the American Chemical Society, 2012, 134(48): 19915-19921.
[31]LIANG J B, MA R Z, IYI N, et al. Topochemical synthesis, anion exchange, and exfoliation of Co ̄Ni layered double hydroxides: A route to positively charged Co ̄Ni hydroxide nanosheets with tunable composition[J]. Chemistry of Materials, 2009, 22(2): 371-378.
[32]HU L F, MA R Z, OZAWA T C, et al. Oriented films of layered rare ̄earth hydroxide crystallites self ̄assembled at the hexane/water interface[J]. Chemical Communications, 2008 (40): 4897-4899.
[33]HU L F, MA R Z, OZAWA T C, et al. Oriented Monolayer Film of Gd2O3: 0.05 Eu Crystallites: Quasi ̄Topotactic Transformation of the Hydroxide Film and Drastic Enhancement of Photoluminescence Properties[J]. Angewandte Chemie International Edition, 2009, 48(21): 3846-3849.
[34]SUN P Z, MA R Z, MA W, et al. Highly selective charge ̄guided ion transport through a hybrid membrane consisting of anionic graphene oxide and cationic hydroxide nanosheet superlattice units[J]. NPG Asia Materials, 2016, 8(4): e259.1-e259.10.
[35]PORTET C, TABERNA P L, SIMON P, et al. High power density electrodes for carbon supercapacitor applications[J]. Electrochimica Acta, 2005, 50(20): 4174-4181.
[36]MALAK ̄POLACZYK A, VIX ̄GUTERL C, FRACKOWIAK E. Carbon/layered double hydroxide (LDH) composites for supercapacitor application[J]. Energy amp; Fuels, 2010, 24(6): 3346-3351.
[37]WANG G P, ZHANG L, ZHANG J J. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews, 2012, 41(2): 797-828.
[38]ZHI M J, XIANG C C, LI J T, et al. Nanostructured carbon ̄metal oxide composite electrodes for supercapacitors: a review[J]. Nanoscale, 2013, 5(1): 72-88.
[39]CHEN H, HU L F, CHEN M, et al. Nickel ̄cobalt layered double hydroxide nanosheets for high ̄performance supercapacitor electrode materials[J]. Advanced Functional Materials, 2014, 24(7): 934-942.
[40]YAN A L, WANG X C, CHENG J P. Research progress of NiMn layered double hydroxides for supercapacitors: a review[J]. Nanomaterials, 2018, 8(10): 747.
[41]WANG S B, LIU H J, LI Z, et al. Facile preparation of Ni ̄Mn layered double hydroxide nanosheets/carbon for supercapacitor[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(8): 7524-7533.
[42]ZHANG Y Q, WEI S. Mg ̄Co ̄Al ̄LDH nanoparticles with attractive electrochemical performance for supercapacitor[J]. Journal of Nanoparticle Research, 2019, 21(1): 14.
[43]WANG L, WANG D, DONG X Y, et al. Layered assembly of graphene oxide and Co ̄Al layered double hydroxide nanosheets as electrode materials for supercapacitors[J]. Chemical Communications, 2011, 47(12): 3556-3558.
[44]MA R Z, LIU X H, LIANG J B, et al. Molecular ̄Scale Heteroassembly of Redoxable Hydroxide Nanosheets and Conductive Graphene into Superlattice Composites for High ̄Performance Supercapacitors[J]. Advanced Materials, 2014, 26(24): 4173-4178.
[45]LI S S, CHENG P P, LUO J X, et al. High ̄performance flexible asymmetric supercapacitor based on CoAl ̄LDH and rGO electrodes[J]. Nano ̄micro letters, 2017, 9(3): 31.
[46]YU L, SHI N N, LIU Q, et al. Facile synthesis of exfoliated Co ̄Al LDH ̄carbon nanotube composites with high performance as supercapacitor electrodes[J]. Physical Chemistry Chemical Physics, 2014, 16(33): 17936-17942.
[47]YANG J, YU C, FAN X M, et al. 3D Architecture Materials Made of NiCoAl ̄LDH Nanoplates Coupled with Ni ̄CoCarbonate Hydroxide Nanowires Grown on Flexible Graphite Paper for Asymmetric Supercapacitors[J]. Advanced Energy Materials, 2014, 4(18): 1400761.1-1400761.7.
[48]SEKHAR S C, NAGARAJU G, YU J S. Conductive silver nanowires ̄fenced carbon cloth fibers ̄supported layered double hydroxide nanosheets as a flexible and binder ̄free electrode for high ̄performance asymmetric supercapacitors[J]. Nano Energy, 2017, 36: 58-67.
[49]GE X J, HE Y, PLACHY T, et al. Hierarchical PANI/NiCo ̄LDH Core ̄Shell Composite Networks on Carbon Cloth for High Performance Asymmetric Supercapacitor[J]. Nanomaterials, 2019, 9(4): 527.
[50]FANG K L, CHEN M F, CHEN J Z, et al. Cotton stalk ̄derived carbon fiber@ Ni ̄Al layered double hydroxide nanosheets with improved performances for supercapacitors[J]. Applied Surface Science, 2019, 475: 372-379.
[51]WANG B, LIU Q, QIAN Z Y, et al. Two steps in situ structure fabrication of Ni ̄Al layered double hydroxide on Ni foam and its electrochemical performance for supercapacitors[J]. Journal of Power Sources, 2014, 246: 747-753.
[52]CHEN H, HU L F, CHEN M, et al. Nickel ̄cobalt layered double hydroxide nanosheets for high ̄performance supercapacitor electrode materials[J]. Advanced Functional Materials, 2014, 24(7): 934-942.
[53]SU D Q, TANG Z H, XIE J F, et al. Co, Mn ̄LDH nanoneedle arrays grown on Ni foam for high performance supercapacitors[J]. Applied Surface Science, 2019, 469: 487-494.
[54]GONG M, DAI H J. A mini review of NiFe ̄based materials as highly active oxygen evolution reaction electrocatalysts[J]. Nano Research, 2015, 8(1): 23-39.
[55]YAN Y, XIA B Y, ZHAO B, et al. A review on noble ̄metal ̄free bifunctional heterogeneous catalysts for overall electrochemical water splitting[J]. Journal of Materials Chemistry A, 2016, 4(45): 17587-17603.
[56]ANANTHARAJ S, KARTHICK K, KUNDU S. Evolution of layered double hydroxides (LDH) as high performance water oxidation electrocatalysts: A review with insights on structure, activity and mechanism[J]. Materials today energy, 2017, 6: 1-26.
[57]DENG X L, HUANG J Z, WAN H, et al. Recent progress in functionalized layered double hydroxides and their application in efficient electrocatalytic water oxidation[J]. Journal of Energy Chemistry,2019,32(5):93-104.
[58]WANG Y Y, YAN D F, EL HANKARI S, et al. Recent progress on layered double hydroxides and their derivatives for electrocatalytic water splitting[J]. Advanced Science, 2018, 5(8): 1800064.
[59]SONG F, HU X L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis[J]. Nature communications, 2014, 5: 4477.
[60]MA W, MA R Z, WANG C X, et al. A superlattice of alternately stacked Ni ̄Fe hydroxide nanosheets and graphene for efficient splitting of water[J]. ACS nano, 2015, 9(2): 1977-1984.
[61]MA W, MA R Z, WU J H, et al. Development of efficient electrocatalysts via molecular hybridization of NiMn layered double hydroxide nanosheets and graphene[J]. Nanoscale, 2016, 8(19): 10425-10432.
[62]TADANAGA K, FURUKAWA Y, HAYASHI A, et al. Direct ethanol fuel cell using hydrotalcite clay as a hydroxide ion conductive electrolyte[J]. Advanced materials, 2010, 22(39): 4401-4404.
[63]KUBO D, TADANAGA K, HAYASHI A, et al. Improvement of electrochemical performance in alkaline fuel cell by hydroxide ion conducting Ni ̄Al layered double hydroxide[J]. Journal of Power Sources, 2013, 222: 493-497.
[64]MIYAZAKI K, ASADA Y, FUKUTSUKA T, et al. Structural insights into ion conduction of layered double hydroxides with various proportions of trivalent cations[J]. Journal of Materials Chemistry A, 2013, 1(46): 14569-14576.
[65]TAMAKI T, NAKANISHI N, OHASHIH, et al. The effect of particle size and surface area on the ion conductivity of layered double hydroxide[J]. Electrochemistry Communications, 2012, 25: 50-53.
[66]SUN P Z, MA R Z, BAI X Y, et al. Single ̄layer nanosheets with exceptionally high and anisotropic hydroxyl ion conductivity[J]. Science advances, 2017, 3(4): e1602629.1-e1602629.8.
(責(zé)任編輯:周曉南)