• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Large Dynamic Range Floating Memristor Emulator With Equal Port Current Restriction

    2020-02-29 14:20:48YifeiPuandBoYu
    IEEE/CAA Journal of Automatica Sinica 2020年1期

    Yifei Pu and Bo Yu

    Abstract—In this paper, a large dynamic range floating memristor emulator (LDRFME) with equal port current restriction is proposed to be achieved by a large dynamic range floating voltage-controlled linear resistor (VCLR). Since real memristors have not been largely commercialized until now, the application of a LDRFME to memristive systems is reasonable. Motivated by this need, this paper proposes an achievement of a LDRFME based on a feasible transistor model. A first circuit extends the voltage range of the triode region of an ordinary junction field effect transistor (JFET). The idea is to use this JFET transistor as a tunable linear resistor. A second memristive non-linear circuit is used to drive the resistance of the first JFET transistor. Then those two circuits are connected together and, under certain conditions, the obtained “resistor” presents a hysteretic behavior,which is considered as a memristive effect. The electrical characteristics of a LDRFME are validated by software simulation and real measurement, respectively.

    I. INTRODUCTION

    THE memristor was originally envisioned [1] and generalized to memristive systems [2] by the great circuit theorist Chua as a missing nonlinear passive two-terminal electrical component [3], which has non-volatility property [4]-[10].A broader definition of the memristor was argued to cover all forms of two-terminal non-volatile memory devices based on resistance switching effects [4]-[8], [11]. The memristor,M,completes the set of relations with [1]

    whereVi(t) andIi(t) denote the instantaneous input voltage and input current of a memristor, respectively.

    Furthermore, from Chua’s axiomatic circuit element system[1]-[6] and according to constitutive relation, logical consistency, axiomatic completeness and formal symmetry,there should be a capacitive fracmemristor (fractional-order memristor) and an inductive fracmemristor corresponding to the capacitive fractor and inductive fractor [12], [13],respectively. The concept of the memristor was generalized preliminarily from the classic integer-order memristor to that of the fractional-order one [14], [15].

    Nowadays, since real memristors were not largely commercialized until recently, the application of a floating memristor emulator to memristive systems is reasonable. A chalcogenide-based ion-conducting Neuro-Bit memristor,made by Bio Inspired Technologies [16], is currently the only memristor commercially available, and is a nano-scale thinfilm resistor fabricated on a silicon wafer that has a memory.However, the applications of the Neuro-Bit memristor are somewhat limited by its relatively small dynamic range of maximum ratings (compliance current 40 μA for writes,10 mA for erases or 1 mA for reads; limit voltage to ±5 V for writes and erases or 50 mV for reads, erases greater than 4 V pose greater risk of damaging the devices than writes due to higher allowable current levels) and its relatively large requirement of testing equipment (Agilent B1500A semiconductor device analyzer, HP4145/56 semiconductor parameter analyzers or equivalent product). Therefore, the scope of applications of this Neuro-Bit memristor are somewhat limited by its relatively small dynamic range of maximum ratings, relatively high requirement of test equipment, working environment effects and relatively high selling price [16]. In addition, although some memristor emulators are designed without grounded restriction, their input current cannot be guaranteed to be equal to the output current as they are only suitable for a specific memristor model. For instance, Yuet al. were the first to propose a floating memristor emulator. However, this equivalent memristor cannot guarantee its input current to be equal to output current [17]. Sahet al. have proposed expandable circuits of memcapacitor emulator. Nevertheless, this emulator is only suitable for HP TiO2 memristor model [18].

    Therefore, to solve these problems, in this paper, a LDRFME with equal port current restriction is proposed using a large dynamic range floating voltage-controlled linear resistor (VCLR). For a LDRFME, to enlarge the dynamic range of maximum ratings, two bootstrapping circuits are applied; to implement a VCLR, an ordinary junction field effect transistor (JFET) is utilized; to achieve a floating memristor emulator, two current followers are employed; and to enlarge the scope of application, it is designed to be feasible to convert between two-port ordinary memristor and threeport mirror one.

    II. A LARGE DYNAMIC RANGE FLOATING MEMRISTOR EMULATOR

    This section proposes the LDRFME with equal port current restrictions, whose idea is based purely on a floating equivalent model for the memristor using JFET. Some electrical characteristics of the LDRFME, such as low implementation cost, low-sensitive to electrostatic discharge,freely accessible floating circuit element, large dynamic range of maximum ratings and feasible conversion between two-port ordinary memristor and three-port mirror one, are its major advantages when compared with the Neuro-Bit memristor[16] and other memristor emulators [19].

    At first, a small dynamic range floating VCLR can be achieved by JFET, which is shown in Fig. 13 in [15]. To further implement a LDRFME with equal port current restriction, inspired by the Fig. 13 in [15], a large dynamic range floating VCLR should be achieved in the first step, as shown in Fig. 1.

    In Fig. 1, we set the parameter 0 <α <1.A,BandCare the input port, output port and input port of control voltage source of a large dynamic range floating VCLR, respectively.VA(t),VB(t),VC(t),IinandIoutare the input voltage source, output voltage source, control voltage source, input current and output current of a large dynamic range floating VCLR,respectively.D,GandSare the drain electrode, gate electrode and source electrode of a JFET. Further,Gis drawn in the middle of the channel of a JFET that suggestsDandSare interchangeable. For the sake of concision, in this paper, we only analyze aN-channel JFET as an example. For aPchannel JFET, we obtain a similar conclusion. For aNchannel JFET, it should satisfyVDS>0. When 0 <VGS<VPandit works in regions of variable resistance (triode region), in which its drain-source current can be expressed as

    whereIDS,IDS S,VP,VGSandVDSare the drain-source current,saturation current at zero gate-source voltage, pinch-off voltage, gate-source voltage and drain-source voltage of a JFET, respectively. Thus, from (3), the resistance between the drain electrode and source electrode,RDS, of a JFET can be derived as

    Equations (3) and (4) show that whenVDSis very small,sinceRDSonly depends onVGS, a JFET is an approximate VCLR. However, withVDSincreasing, sinceRDSis no longer only determined byVGS, but increases with the increase ofVDS, the relationship betweenIDSandVDSdeviates from linearity.

    Therefore, to obtain a VCLR, we should enlarge the dynamic range ofVDSof a JFET. In Fig. 1, (A3andA9) and(A4andA10) are two bootstrapping circuits, respectively.Thus, forA2andA5are two voltage followers,A3andA4are two phase-identical proportioners andA9andA10are two adders, we can derive thatV3=(2?α)VA,V4=(2?α)VB,9=VA+(1?α)VBandV10=VB+(1?α)VA. Then,A14is a subtracter, we getV14=(V9?V10)/2=α(VA?VB)/2 . Thus, forA13is a phaseidentical adder, we obtainVG=V14+V10+VC=α(VA?VB)/2+VB+(1?α)VA+VC. Further, according to the virtual short amplifier, we haveVD=VN11=VP11=V9=VA+(1?α)VB,VS=VN12=VP12=V10=VB+(1?α)VAandVDS=VD?VS=α(VA?VB). Thus, we get

    Substituting (5) into (4), we obtain and virtual off electrical characteristics of an operational

    Equations (6) and (7) show that the dynamic range ofVDSof a JFET is enlarged 1/α-fold by two aforementioned bootstrapping circuits.RDSis a VCLR controlled byVC. Note that with regard to a N-channel JFET, sinceVDS>0,0 <VGS<VPandfrom (5),VA,VBandVCshould satisfyVA>VB, ?α(VA?VB)/2 <VC<VP?α(VA?VB)/2 andIin=Iout. In Fig. 1, (A1,A7andA11) and (A6,A8andA12) areVN12=VP12=V10=VB+(1?α)VA=V12+rIDSandVN11=VP11=V9=VA+(1?α)VB=V11?rIDS. Then, we getV12=VB+(1?α)VA?rIDSandV11=VA+(1?α)VB+rIDS. Thus,forA1andA6are two voltage followers, we obtain

    In addition, to obtain a floating resistor, we should make two current followers, respectively. Thus, we can derive that

    Thus, from (8) and (9), we get

    Fig. 1. A large dynamic range floating VCLR achieved by a JFET.

    Equation (10) shows thatIin=Iout=IDSis achieved by two aforementioned current followers. Thus, from (7) and (10), the input resistance,RAB(t), of a large dynamic range floating VCLR can be derived as

    Comparing (6) with (11), we can further see thatRAB=(1/α)RDS. The input resistance of a large dynamic range floating VCLR is simultaneously enlarged 1/α-fold compared to that of a JFET.

    Second, to implement a LDRFME, an equivalent circuit of the memristor should be achieved in the second step. From(2), we can see that in a controlled pulsing scenario, a memristor retains a state that is a function of both the history of the device and the current applied signal. For a memristor,the corresponding quantity of electric charge iswhereis the first-order integral operator.From (2), the memristance,can be derived as

    wherecan be theoretically an arbitrary analytical function ofq(t) in accordance with specific conditions. Therefore, to implement a LDRFME, a control voltage sourceVC(t)in Fig.1 and (11) should be achieved according to the electrical characteristics of a memristor, given as

    Equation (13) shows that to implement a LDRFME, a control voltage sourceVC(t) in Fig.1 should be generated by an equivalent circuit of the memristor. The dynamical behavior of memristors varies with the process and material that they are made of. However, the physical device models of some memristors, such as the Neuro-Bit memristor [16], are difficult to be explicitly mathematically expressed. Thus,modelling a memristor mathematically is more relevant and useful. With regard to various mathematical dynamical models of a memristor, their corresponding equivalent memristive circuits are different. Without loss of generality,let’s illustrate with an example of the equivalent circuit of a memristor, a second power nonlinear described magneticcontrol memristor [19] in the following.

    Example 1:A control voltage sourceVC(t) in Fig. 1 can be achieved by a second power nonlinear magnetic-control memristor [19], as shown in Fig. 2.

    Fig. 2. A second power nonlinear described magnetic-control memristor.

    In Fig. 2,Eis the input port of a second power memristor andVEis an equivalent control voltage. The portCin Fig. 2 is identical with the portCin Fig. 1.A15is a phase-reversing integrator andA16is a phase-reversing proportioner. gM1is the multiplication gain of a multiplier. Thus, according to the virtual short and virtual off electrical characteristics of an operational amplifier, we have

    Substituting (14) into (11) and (13), we obtain

    Equation (15) shows thatRAB(t) is related to the historical information of a second power memristor, whose nonvolatility property depends on the second power of the integral of an equivalent control voltage,

    Note that, from the aforementioned discussion, we can further observe that at first, connecting the input port of control voltage source of a large dynamic range floating VCLR with the voltage output of the equivalent circuit of an arbitrary memristor, a versatile LDRFME can be implemented. Then, substituting the input port and output port of a LDRFME (the portsAandBin Fig. 1) for those of a memristor, the memristor in system integration can be replaced by the corresponding floating memristor emulator.Second, in Example 1, since the control voltage sourceVC(t)is generated by an equivalent circuit of the memristor, the memristanceof a LDRFME cannot be controlled by its input potential difference (VA?VB). No matter whatVA?VB,the memristanceof a LDRFME is always controlled byVC(t). Thus, in this case, the LDRFME is actually a three-port mirror memristor. Third, in particular, portsAandBin Fig. 1 can be directly connected with portEin Fig. 2 through a subtracter. Then,VA?VBdirectly controls the electrical characteristics of a memristor itself,On this occasion, the LDRFME converts to a two-port ordinary memristor. Fourth, more generally, the control voltage sourceVC(t)can be achieved by a non-memristive nonlinear signal producing circuit. In this case, the LDRFME is simplified to be the analog circuit of a large dynamic range floating VCLR.

    III. EXPERIMENT AND ANALYSIS

    In this section, the electrical characteristics of a LDRFME are analyzed by software simulation and real measurement,respectively.

    Experiment 1:Regarding Example 1, we directly connect portsAandBin Fig. 1 with portEin Fig. 2 through a subtracter.Thus,VE(t)=VA(t)?VB(t). SupposeVE(t)=psinωtin Fig. 2,where ω is driving frequency. Thus, the peak-to-peak value of the input voltage of this LDRFME,VA(t)?VB(t), is equal topV. We use the popular SPICE simulation software from multisim12 and a virtual oscilloscope XSC1 to perform Experiment 1. Note that since the real memristors have not been largely commercialized until now, the application of a floating memristor emulator to memristive systems is reasonable.Further, since the LDRFME is an analog circuit device, its output signal is continuous, and can be detected in a very small time domain. Although the real memristors already have switching speeds of nanoseconds with reading speeds going into the picosecond regeme, for convenience of demonstration by commonly used oscilloscope, we still select reading speeds in the scale of milliseconds, which does not weaken the applicability of a LDRFME in smaller time domain. With regard to the aforementioned Example 1, we select the type of the operational amplifiersA1?A16,N-channel JFET and multiplier are OP07CP, 07N03L and AD633ANZ, respectively.For the convenience of simulation, we assume thatgM1=gM2=gM3=1,r=1Ω andc= 1 μF. Further, without loss of generality, we suppose that the dynamic range ofVDSof a JFET is enlarged 8-fold. Thus, α=1/8. Therefore, from Figs. 1 and 2, the electrical characteristics of a LDRFME can be shown in Fig. 3.

    In Fig. 3 , Channel_A has an input voltage ofVA(t)?VB(t)=VE(t) and Channel_B has currentIin(t) orIout(t). From Fig. 3, we observe that at first, the electrical characteristics of a LDRFME accord with three fingerprints of a memristor [8]. For a LDRFME, if its initial state is zero and it is stimulated by a bipolar periodic signal with zero starting value, there is a pinched hysteresis loop in theVi?Iiplane,which has multiple-valued Lissajous curve for allIi(t) except when it passes through the pinched point (0,0). The corresponding lobe area of its pinched hysteresis loop in theVi?Iiplane decreases with the increasing of the frequency ω ofIi(t). When ω!1, the pinched hysteresis loop of a LDRFME in theVi?Iiplane shrinks to a line segment. These simulation results verify the effectiveness of a LDRFME.Second, one of the fingerprints of a memristor is that the side lobe area of its pinched hysteresis loop decreases with the increase of its driving frequency ω [20], which is inherited by the equivalent circuit of a second power memristor shown in Fig. 2. Thus, as shown in Figs. 3(f) and 3(l), when ω!1, a pinched hysteresis loop in theVi?Iiplane degenerates to a single-valued curve for allIi(t). Third, the dynamic range ofVDSof a JFET is enlarged 1 /α-fold by the two aforementioned bootstrapping circuits of a LDRFME. The variation range of the input peak-to-peak voltage of aN-channel JFET 07N03L is approximatelyVDS2[0 V, 1.25 V]. For α =1/8 in Experiment 1, the variation range of the input peak-to-peak voltage of a LDRFME is enlarged 8 times, (VA?VB)2[0 V, 10 V]. The input voltage of a LDRFME can vary in a large dynamic range.

    Experiment 2:Regarding Example 1, we achieve experimental analysis by real measurements. We keep the aforementioned parameter settings unchanged and use a Tektronix oscilloscope TDS 1012C-EDU. The actual real analog circuit of a LDRFME can be achieved, as shown in Fig. 4.

    Therefore, from Fig. 4, the electrical characteristics of the actual real analog circuit of a LDRFME can be shown in Fig. 5.

    In Fig. 5,ptriωtdenotes a triangular wave function withdriving frequency ω and peak-to-peak valuep. CH_1 is the input voltage ofVA(t)-VB(t)=VE(t) and CH_2 is the currentIin(t)orIout(t) of the actual real analog circuit of a LDRFME.From Fig. 5, we can see that at first, in a similar way to those of Experiment 1, the electrical characteristics of the actual real analog circuit of a LDRFME accord with three fingerprints of a memristor [8], as well as its input voltage can vary in a large dynamic range. Second, the shape variation of input signal can also nonlinearly change the currentIin(t) orIout(t) and the pinched hysteresis loop of a LDRFME. Third, since the power consumption of the actual real analog circuit of a LDRFECM is equal to the output power of the signal generator in Fig. 4,we can directly read out its power consumption is about 1Watt.

    IV. CONCLUSIONS

    In this paper, to enlarge the dynamic range of maximum ratings of a memristor, a LDRFME is proposed to be achieved using VCLR. Equations (3) and (4) show that whenVDSis very small, sinceRDSonly depends onVGS, a JFET is an approximate VCLR. Equations (6) and (7) show that the dynamic range ofVDSof a JFET is enlarged 1 /α-fold by the two aforementioned bootstrapping circuits. Comparing (6)with (11), we can further see thatRAB=(1/α)RDS. The input resistance of a large dynamic range floating VCLR is simultaneously enlarged 1 /α-fold larger than that of a JFET.The proposed LDRFME emulates the behavior and operates in nearly the exact way as that of a memristor, making it a feasible candidate for the floating memristor emulator.

    With respect to the feasible large dynamic range floating memristor emulator and its applications, there are many other fascinating issues that need to be further studied, such as some other type floating equivalent circuits of memristor, the memristor based adaptive intelligence and learning systems,neural networks and weighted feedback systems, spikingtiming-dependent plasticity experimentation, chaotic systems,etc. These will be further discussed in detail in our future work.

    精品人妻1区二区| 老汉色av国产亚洲站长工具| 精品人妻熟女毛片av久久网站| 嫁个100分男人电影在线观看| 手机成人av网站| 午夜福利在线免费观看网站| 精品卡一卡二卡四卡免费| 热99久久久久精品小说推荐| 在线看a的网站| 亚洲 欧美一区二区三区| 亚洲成人国产一区在线观看| 大片电影免费在线观看免费| 美女午夜性视频免费| 精品国产乱码久久久久久小说| 国产精品久久久久久精品古装| 狠狠狠狠99中文字幕| 97精品久久久久久久久久精品| 脱女人内裤的视频| 美女脱内裤让男人舔精品视频| 蜜桃国产av成人99| 亚洲人成电影免费在线| 午夜影院在线不卡| 老司机影院毛片| 99久久综合免费| 一级,二级,三级黄色视频| 纯流量卡能插随身wifi吗| 99热国产这里只有精品6| 999久久久国产精品视频| 久久久国产一区二区| 国产成人系列免费观看| 美女国产高潮福利片在线看| 美女脱内裤让男人舔精品视频| 亚洲精品国产一区二区精华液| 咕卡用的链子| 日韩欧美免费精品| 老司机亚洲免费影院| 免费看十八禁软件| 久久久久久免费高清国产稀缺| 免费观看av网站的网址| 9热在线视频观看99| 亚洲人成电影观看| 超碰97精品在线观看| 亚洲人成电影免费在线| 97人妻天天添夜夜摸| 三级毛片av免费| 一本—道久久a久久精品蜜桃钙片| 国产欧美日韩精品亚洲av| 一本综合久久免费| 午夜福利在线免费观看网站| 亚洲精品成人av观看孕妇| www.熟女人妻精品国产| 亚洲国产欧美在线一区| 国产一级毛片在线| 欧美一级毛片孕妇| 久久久久精品人妻al黑| 色视频在线一区二区三区| 涩涩av久久男人的天堂| 亚洲免费av在线视频| 亚洲专区中文字幕在线| 欧美日韩一级在线毛片| 999久久久精品免费观看国产| 亚洲欧美一区二区三区黑人| 黑人巨大精品欧美一区二区mp4| 亚洲精品日韩在线中文字幕| 老汉色∧v一级毛片| 男女下面插进去视频免费观看| 99九九在线精品视频| 久久久久久久大尺度免费视频| 一区在线观看完整版| 欧美+亚洲+日韩+国产| 国产成人啪精品午夜网站| 欧美黄色片欧美黄色片| 欧美日韩亚洲国产一区二区在线观看 | 国产av国产精品国产| 国产一区二区激情短视频 | 亚洲欧美激情在线| 一区二区av电影网| 国产欧美日韩一区二区三 | 婷婷色av中文字幕| 黑人巨大精品欧美一区二区mp4| 女性被躁到高潮视频| 精品欧美一区二区三区在线| 精品一品国产午夜福利视频| 大片免费播放器 马上看| 久久ye,这里只有精品| 真人做人爱边吃奶动态| 国产成人一区二区三区免费视频网站| 精品人妻1区二区| 91大片在线观看| 人人妻人人澡人人爽人人夜夜| 12—13女人毛片做爰片一| 欧美精品亚洲一区二区| 欧美日韩福利视频一区二区| 一区二区日韩欧美中文字幕| 老司机深夜福利视频在线观看 | 国产精品香港三级国产av潘金莲| 国产精品一区二区免费欧美 | 精品福利永久在线观看| 手机成人av网站| 99精品久久久久人妻精品| 在线观看一区二区三区激情| 国产激情久久老熟女| 美女中出高潮动态图| www.精华液| 成人亚洲精品一区在线观看| 999久久久精品免费观看国产| 欧美另类亚洲清纯唯美| 精品少妇黑人巨大在线播放| 老熟妇乱子伦视频在线观看 | 亚洲国产精品成人久久小说| 女警被强在线播放| 人人妻人人爽人人添夜夜欢视频| 新久久久久国产一级毛片| 国产精品欧美亚洲77777| 精品国产乱码久久久久久男人| 悠悠久久av| 美女脱内裤让男人舔精品视频| 一本综合久久免费| 欧美另类亚洲清纯唯美| 精品国产一区二区三区久久久樱花| 欧美日韩av久久| 亚洲欧美成人综合另类久久久| 久久亚洲国产成人精品v| 男男h啪啪无遮挡| av网站免费在线观看视频| 国产无遮挡羞羞视频在线观看| 亚洲国产av新网站| 久久毛片免费看一区二区三区| 我要看黄色一级片免费的| 亚洲综合色网址| 亚洲欧美清纯卡通| 免费高清在线观看日韩| 99国产极品粉嫩在线观看| 91成年电影在线观看| 久久人妻熟女aⅴ| 热99久久久久精品小说推荐| 黄色毛片三级朝国网站| 精品免费久久久久久久清纯 | 国产伦理片在线播放av一区| 人妻人人澡人人爽人人| 成人手机av| 热re99久久精品国产66热6| 国产高清国产精品国产三级| 中国美女看黄片| 色婷婷久久久亚洲欧美| 国产97色在线日韩免费| 免费黄频网站在线观看国产| 精品高清国产在线一区| a在线观看视频网站| 80岁老熟妇乱子伦牲交| 久久久久网色| 日本vs欧美在线观看视频| 久热这里只有精品99| 激情视频va一区二区三区| av不卡在线播放| 啦啦啦视频在线资源免费观看| 2018国产大陆天天弄谢| 三级毛片av免费| 久久九九热精品免费| 国产成人精品无人区| 亚洲熟女精品中文字幕| 一级毛片精品| av片东京热男人的天堂| 桃红色精品国产亚洲av| 狠狠婷婷综合久久久久久88av| 亚洲精品一二三| 亚洲第一av免费看| 亚洲精品一区蜜桃| 国产一级毛片在线| 手机成人av网站| 午夜日韩欧美国产| 亚洲精品久久午夜乱码| www.熟女人妻精品国产| 婷婷丁香在线五月| 各种免费的搞黄视频| 一个人免费在线观看的高清视频 | 国产一区二区三区av在线| 最新在线观看一区二区三区| 亚洲欧洲日产国产| 亚洲第一av免费看| 亚洲全国av大片| 欧美精品啪啪一区二区三区 | 黄网站色视频无遮挡免费观看| av电影中文网址| 久久久久久久精品精品| 丰满迷人的少妇在线观看| 熟女少妇亚洲综合色aaa.| 欧美国产精品一级二级三级| 亚洲精品一二三| 久久精品熟女亚洲av麻豆精品| 亚洲全国av大片| 性色av一级| 国产精品免费视频内射| 老司机深夜福利视频在线观看 | 美女中出高潮动态图| 国产一区有黄有色的免费视频| av线在线观看网站| 亚洲精品国产区一区二| 男人爽女人下面视频在线观看| 中文字幕高清在线视频| 久久久久久久久免费视频了| 国产男女内射视频| √禁漫天堂资源中文www| 99热网站在线观看| 极品人妻少妇av视频| 精品国产乱码久久久久久小说| 中国美女看黄片| 久久中文字幕一级| 捣出白浆h1v1| 美女午夜性视频免费| 一级黄色大片毛片| 两性午夜刺激爽爽歪歪视频在线观看 | 考比视频在线观看| 十八禁高潮呻吟视频| 每晚都被弄得嗷嗷叫到高潮| 少妇 在线观看| a 毛片基地| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜福利乱码中文字幕| a级片在线免费高清观看视频| 香蕉丝袜av| 久久中文字幕一级| 在线观看免费视频网站a站| 少妇精品久久久久久久| 黄色 视频免费看| 另类精品久久| 色老头精品视频在线观看| 黄色a级毛片大全视频| 国产激情久久老熟女| 桃花免费在线播放| 日韩人妻精品一区2区三区| 欧美av亚洲av综合av国产av| 国产无遮挡羞羞视频在线观看| 一本久久精品| 女人爽到高潮嗷嗷叫在线视频| 精品一区二区三区av网在线观看 | 91成人精品电影| 久久久精品区二区三区| 热re99久久精品国产66热6| 丰满饥渴人妻一区二区三| 日韩一区二区三区影片| 色老头精品视频在线观看| 亚洲av成人一区二区三| 久久久久精品国产欧美久久久 | 久久人人爽av亚洲精品天堂| 欧美中文综合在线视频| 欧美另类亚洲清纯唯美| 两人在一起打扑克的视频| 国产一区二区激情短视频 | 又大又爽又粗| 亚洲激情五月婷婷啪啪| 亚洲精品久久久久久婷婷小说| 大型av网站在线播放| 色94色欧美一区二区| 亚洲第一青青草原| 亚洲,欧美精品.| 国产精品久久久人人做人人爽| 国产xxxxx性猛交| 免费少妇av软件| 久热这里只有精品99| 人妻 亚洲 视频| 国产真人三级小视频在线观看| 欧美精品高潮呻吟av久久| av在线app专区| 午夜影院在线不卡| 男女无遮挡免费网站观看| 男人爽女人下面视频在线观看| 一本久久精品| 亚洲专区字幕在线| 老司机午夜十八禁免费视频| 久久久久久久久久久久大奶| 十八禁网站免费在线| 亚洲成人国产一区在线观看| 国产91精品成人一区二区三区 | 国产精品熟女久久久久浪| 九色亚洲精品在线播放| 色婷婷久久久亚洲欧美| 99久久综合免费| 国产成人精品久久二区二区免费| 中文字幕高清在线视频| 美国免费a级毛片| 精品福利永久在线观看| 91老司机精品| 成人18禁高潮啪啪吃奶动态图| 高清在线国产一区| 伦理电影免费视频| 久久热在线av| 久久久久精品国产欧美久久久 | 国产成人欧美在线观看 | 久久久久国产精品人妻一区二区| 国产精品99久久99久久久不卡| 老司机影院成人| 五月天丁香电影| 一级黄色大片毛片| 国产视频一区二区在线看| 亚洲专区字幕在线| 国产亚洲av高清不卡| 亚洲av成人不卡在线观看播放网 | 十八禁人妻一区二区| 欧美日韩福利视频一区二区| 国产区一区二久久| 中国国产av一级| av不卡在线播放| 久久人人97超碰香蕉20202| 日本欧美视频一区| 高清视频免费观看一区二区| 最近中文字幕2019免费版| 如日韩欧美国产精品一区二区三区| 亚洲第一欧美日韩一区二区三区 | 色94色欧美一区二区| 色精品久久人妻99蜜桃| 人人妻人人澡人人看| 精品一区在线观看国产| 午夜福利影视在线免费观看| 日韩中文字幕欧美一区二区| 亚洲国产看品久久| 一个人免费在线观看的高清视频 | 午夜影院在线不卡| 亚洲av美国av| 天天添夜夜摸| 如日韩欧美国产精品一区二区三区| 人妻久久中文字幕网| 啦啦啦视频在线资源免费观看| 亚洲精品第二区| 男女午夜视频在线观看| 亚洲久久久国产精品| 亚洲av国产av综合av卡| 欧美日韩亚洲国产一区二区在线观看 | 午夜激情久久久久久久| 啦啦啦在线免费观看视频4| 麻豆乱淫一区二区| 精品一品国产午夜福利视频| 色94色欧美一区二区| 麻豆国产av国片精品| 高清av免费在线| 狂野欧美激情性bbbbbb| xxxhd国产人妻xxx| 搡老熟女国产l中国老女人| 热re99久久精品国产66热6| 欧美变态另类bdsm刘玥| 在线看a的网站| 成人国语在线视频| 久久国产亚洲av麻豆专区| 不卡一级毛片| 欧美黄色片欧美黄色片| 亚洲国产欧美一区二区综合| 亚洲av男天堂| 亚洲av成人一区二区三| 欧美日韩黄片免| 久久亚洲国产成人精品v| a级毛片在线看网站| 午夜激情久久久久久久| 欧美 亚洲 国产 日韩一| 日韩欧美国产一区二区入口| 亚洲,欧美精品.| 在线看a的网站| 日本vs欧美在线观看视频| 亚洲精品久久午夜乱码| 在线 av 中文字幕| 日韩一区二区三区影片| 美女午夜性视频免费| 久久天躁狠狠躁夜夜2o2o| 国产精品国产三级国产专区5o| 国产在线一区二区三区精| 18禁国产床啪视频网站| 伊人亚洲综合成人网| 久久久久国产一级毛片高清牌| 一区二区三区四区激情视频| 国产精品一二三区在线看| 在线观看免费视频网站a站| 国产男女超爽视频在线观看| 亚洲av日韩在线播放| 在线观看免费日韩欧美大片| 两人在一起打扑克的视频| 国精品久久久久久国模美| 国产视频一区二区在线看| 日韩欧美一区二区三区在线观看 | 捣出白浆h1v1| 欧美亚洲 丝袜 人妻 在线| 午夜久久久在线观看| 美国免费a级毛片| 在线观看人妻少妇| 国产在线免费精品| 国产一区二区三区av在线| 亚洲精品国产一区二区精华液| 一本久久精品| 亚洲精品一区蜜桃| 女性生殖器流出的白浆| 一区在线观看完整版| 制服人妻中文乱码| 中文字幕高清在线视频| 在线观看免费高清a一片| 免费av中文字幕在线| 母亲3免费完整高清在线观看| 人妻 亚洲 视频| 欧美激情 高清一区二区三区| 国产精品 国内视频| 美女福利国产在线| 婷婷色av中文字幕| 久久久久精品人妻al黑| 国产成人影院久久av| 不卡一级毛片| 国产区一区二久久| 大片免费播放器 马上看| 成人av一区二区三区在线看 | 两人在一起打扑克的视频| 午夜91福利影院| 国产精品影院久久| 亚洲人成77777在线视频| 操出白浆在线播放| 一区二区三区四区激情视频| 999久久久国产精品视频| 免费高清在线观看日韩| 一区二区av电影网| 精品高清国产在线一区| 999久久久国产精品视频| 久久国产精品大桥未久av| 亚洲国产av新网站| 人妻人人澡人人爽人人| 男女无遮挡免费网站观看| a级毛片在线看网站| 国产人伦9x9x在线观看| 欧美日韩黄片免| av有码第一页| 国产成人免费观看mmmm| 国产精品99久久99久久久不卡| 人妻 亚洲 视频| a级毛片在线看网站| 精品少妇久久久久久888优播| 老熟女久久久| 黄频高清免费视频| 久久久国产一区二区| 亚洲欧美激情在线| 十八禁网站免费在线| 免费不卡黄色视频| 91精品伊人久久大香线蕉| 欧美精品高潮呻吟av久久| 日韩人妻精品一区2区三区| 黄色a级毛片大全视频| 自线自在国产av| 91精品国产国语对白视频| 国产精品久久久久久人妻精品电影 | 在线观看人妻少妇| 久久久久久久久久久久大奶| 精品一区二区三区四区五区乱码| 熟女少妇亚洲综合色aaa.| 免费在线观看视频国产中文字幕亚洲 | 90打野战视频偷拍视频| 中文精品一卡2卡3卡4更新| 久久久久国产精品人妻一区二区| 少妇被粗大的猛进出69影院| 久久精品久久久久久噜噜老黄| 精品第一国产精品| 日本五十路高清| 中亚洲国语对白在线视频| 脱女人内裤的视频| 国产在线观看jvid| 又大又爽又粗| 久久国产精品人妻蜜桃| 三上悠亚av全集在线观看| 99精国产麻豆久久婷婷| av天堂久久9| 精品人妻1区二区| 久久久久久久久久久久大奶| xxxhd国产人妻xxx| 国产又爽黄色视频| 亚洲美女黄色视频免费看| 国产成+人综合+亚洲专区| 亚洲,欧美精品.| 日韩制服骚丝袜av| 亚洲五月色婷婷综合| 欧美黄色片欧美黄色片| 久久久国产成人免费| 天堂中文最新版在线下载| 亚洲一卡2卡3卡4卡5卡精品中文| 久久精品国产综合久久久| 天天躁夜夜躁狠狠躁躁| 免费观看人在逋| 一本色道久久久久久精品综合| 麻豆乱淫一区二区| 国产精品久久久人人做人人爽| 国产一区二区三区综合在线观看| a在线观看视频网站| 精品第一国产精品| 新久久久久国产一级毛片| 女人久久www免费人成看片| e午夜精品久久久久久久| 欧美人与性动交α欧美软件| 久久久久久人人人人人| 天天添夜夜摸| 日韩制服骚丝袜av| 欧美日韩av久久| 精品人妻一区二区三区麻豆| 国产在线视频一区二区| 99久久国产精品久久久| 脱女人内裤的视频| 国产精品麻豆人妻色哟哟久久| 大陆偷拍与自拍| 国产黄频视频在线观看| 日本av手机在线免费观看| 亚洲国产欧美日韩在线播放| 91成年电影在线观看| 国产区一区二久久| av国产精品久久久久影院| 好男人电影高清在线观看| 亚洲九九香蕉| 2018国产大陆天天弄谢| 老司机在亚洲福利影院| 国产一卡二卡三卡精品| 1024视频免费在线观看| 亚洲情色 制服丝袜| 国产亚洲精品第一综合不卡| 亚洲国产精品一区二区三区在线| 日韩制服丝袜自拍偷拍| 熟女少妇亚洲综合色aaa.| 美国免费a级毛片| 欧美变态另类bdsm刘玥| 日本a在线网址| 欧美精品av麻豆av| 黄网站色视频无遮挡免费观看| 一个人免费在线观看的高清视频 | 免费女性裸体啪啪无遮挡网站| 久久热在线av| 97在线人人人人妻| 国产av又大| 国产成人精品久久二区二区免费| 欧美老熟妇乱子伦牲交| 别揉我奶头~嗯~啊~动态视频 | 9热在线视频观看99| 亚洲国产毛片av蜜桃av| 一区二区av电影网| 久久99热这里只频精品6学生| 国产精品香港三级国产av潘金莲| 桃红色精品国产亚洲av| 色老头精品视频在线观看| h视频一区二区三区| 日韩有码中文字幕| 下体分泌物呈黄色| 丝袜美腿诱惑在线| av一本久久久久| 精品人妻1区二区| 亚洲人成电影观看| 亚洲午夜精品一区,二区,三区| 人人妻人人爽人人添夜夜欢视频| 精品欧美一区二区三区在线| 韩国高清视频一区二区三区| 精品免费久久久久久久清纯 | 欧美人与性动交α欧美软件| 人妻 亚洲 视频| 老司机午夜福利在线观看视频 | 亚洲一区二区三区欧美精品| 男男h啪啪无遮挡| 一本一本久久a久久精品综合妖精| 亚洲第一欧美日韩一区二区三区 | 久久精品国产亚洲av香蕉五月 | 久久久久久亚洲精品国产蜜桃av| 亚洲午夜精品一区,二区,三区| 伊人亚洲综合成人网| 亚洲成av片中文字幕在线观看| 老司机午夜福利在线观看视频 | 51午夜福利影视在线观看| 欧美另类一区| 人人妻,人人澡人人爽秒播| 大型av网站在线播放| 亚洲中文日韩欧美视频| 精品人妻1区二区| 免费观看人在逋| 日日爽夜夜爽网站| 午夜福利视频在线观看免费| 国产av又大| 下体分泌物呈黄色| 精品国产乱码久久久久久男人| 国产国语露脸激情在线看| 国产精品国产三级国产专区5o| 日韩熟女老妇一区二区性免费视频| 久久国产精品人妻蜜桃| 亚洲国产毛片av蜜桃av| 三级毛片av免费| 欧美成人午夜精品| 久久精品国产亚洲av高清一级| 午夜免费鲁丝| 蜜桃在线观看..| 亚洲免费av在线视频| www.自偷自拍.com| 久久久久久久久久久久大奶| 女性被躁到高潮视频| 一二三四社区在线视频社区8| 久久ye,这里只有精品| 亚洲全国av大片| 国产一区二区三区av在线| 中文字幕精品免费在线观看视频| 免费高清在线观看日韩| av一本久久久久| 国产欧美日韩一区二区三 | 亚洲九九香蕉| 天堂8中文在线网| 99精品欧美一区二区三区四区| 自拍欧美九色日韩亚洲蝌蚪91| 啦啦啦啦在线视频资源| 国产精品九九99| 脱女人内裤的视频| 欧美日韩国产mv在线观看视频| 国产亚洲一区二区精品| 少妇裸体淫交视频免费看高清 | 啦啦啦中文免费视频观看日本| 国产精品二区激情视频| 一级片'在线观看视频| 美女中出高潮动态图| 女人精品久久久久毛片| 国产野战对白在线观看| 麻豆国产av国片精品| 少妇粗大呻吟视频| 男女边摸边吃奶| 亚洲精品一卡2卡三卡4卡5卡 | 欧美精品一区二区免费开放|