• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    C/SiOC Composites by a Modified PIP Using Solid Polysiloxane:Fabrication,Microstructure and Mechanical Properties

    2019-12-28 01:28:16WUQingQingWANGZhenDINGQiNIDeWeiKANYanMeiDONGShaoMing
    無機材料學報 2019年12期

    WU Qing-Qing,WANG Zhen,DING Qi,4,NI De-Wei,KAN Yan-Mei,DONG Shao-Ming

    (1.The State Key Lab of High Performance Ceramics and Superfine Microstructures,Shanghai Institute of Ceramics,Chinese Academy of Sciences,Shanghai 200050,China;2.University of Chinese Academy of Sciences,Beijing 100049,China;3.Structural Ceramics and Composites Engineering Research Center,Shanghai Institute of Ceramics,Chinese Academy of Sciences,Shanghai 200050,China;4.ShanghaiTech University,Shanghai 201210,China;5.Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China)

    Abstract:A modified polymer infiltration and pyrolysis method (PIP) was developed to enhance the densification of C/SiOC composites,using molten MK resin (polymethylsilsesquioxane) as precursor.Organic sulfonic acid was added as cross-linking agent to lower the curing temperature.The cross-linking mechanism and ceramization behavior of MK resin was studied.A high ceramic yield of about 85wt% and low free carbon content below 3wt% are achieved,with excellent high-temperature stability of the derived SiOC.The modified PIP approach presents a high densification efficiency.After only 8 PIP cycles,the final C/SiOC composites possess a density of about 1.81 g/cm3.Compared with those composites fabricated by conventional PIP process,the C/SiOC composites prepared by modified PIP process show a much denser microstructure with much more improved densification efficiency.Bending strength of the as-fabricated C/SiOC composites is of (312±25) MPa,showing obvious non-brittle fracture behavior.

    Key words:C/SiOC composite;high-efficient PIP;microstructure;cross-linking mechanism

    Continuous fiber reinforced ceramic matrix composites (CFRCMCs) have been considered as excellent structure materials for the applications requiring low specific weight,high strength and toughness at elevated temperature[1-2].Generally,several approaches can be used for the fabrication of CFRCMCs,such as chemical vapor infiltration (CVI),slurry infiltration (SI),and precursor infiltration and pyrolysis (PIP),etc.[3-4].Among these methods,the PIP route is getting increasing attention in recent years,due to its advantages in low processing temperature,controllable ceramic compositions,suitable for large-scale components fabrication with complicated shapes and low cost[5-6].

    As a type of amorphous ceramic,SiOC can be considered as an anionic modification of silica glass in which Si-O bonds are partially replaced by Si-C bonds,and the other carbon atoms,free carbon,form graphene-like layers[7],which are expected to improve the thermal and mechanical properties for the applications at high temperatures[8-9].Owing to the advantages such as excellent high temperature stability,oxidization resistance and low cost,polymer-derived silicon oxycarbides (SiOC) ceramics attract lots of attention being of CRFCMCs.As reported,C/SiOC composites showed excellent mechanical performance,which was fabricated by using polysiloxane(PSO) as SiOC precursor[10].In recent years,liquid hydrogen-containing PSO or polymethyl(phenyl)siloxane flake was used as precursor for SiOC.Their pyrolysates at 1000 ℃ have relatively high content of free carbon(about 26wt% or even 29wt%)[11-12],which can easily react with SiO2phase at high temperature,leading to high-temperature instability of composites.Among the common polysiloxanes,MK resin is a carbon-poor precursor for SiOC ceramic with carbon content of about 14wt% and only about 8wt% free carbon[13-14],which makes MK resin a promising precursor for C/SiOC composites.

    In the present study,a modified PIP process with high efficiency was developed to fabricate C/SiOC composites based on MK resin.The cross-linking and pyrolysis behavior of MK resin was optimized and the crosslinking mechanism was studied.The microstructures and mechanical properties of C/SiOC composites fabricated through the modified PIP process were investigated.

    1 Experimental

    A commercially available polysiloxane (MK resin,Wacker GmbH,Burghausen,Germany) was used as the precursor for SiOC matrix.As reported in literature[15-17],MK resin in state of white powders,possessesca.2mol%of cross-linkable hydroxy and ethoxy groups with[CH3SiO1.5]nbasic structure referred as polymethylsilsesquioxane.Its possible structure is depicted in Fig.1[15].To lower the curing temperature and shorten the curing period,organic sulfonic acid was chosen as crosslinking agent (henceforth referred as CLA).

    MK resin was firstly compacted into a cylindroid tablet with a diameter of 10 mm,to investigate its softening behavior.The photograph and the size of the tablet were recordedin situas a function of temperature by a high temperature real-time observation and test system (TOMAC,FRAUNHOFER- GESELLSCHAFT,Germany) at a heating rate of 1 ℃/min in vacuum.The viscosity of MK resin at different temperatures and the dynamic modulus at 160 ℃ were measured by a rheometer (MCR301,Anton Paar GmbH,Austria).In order to investigate the curing mechanism,the functional groups of PSO before and after cross-linking process were analyzed by a FT-IR spectroscopy (NICOLET ls10,Thermo Scientific,America).To investigate ceramization behavior of MK resin,the thermogravimetric (TG) and differential thermal analysis (DTA) were performed with MK resin on a STA 449/F3 simultaneous thermal analyzer (Netzsch,Germany).The heating rate for DTA measurement was 10 ℃/min in flowing Ar.Content of oxygen and carbon atoms were analyzed by oxygen/ nitrogen detertminator (TC600C,LECO,America) and carbon/ sulfur detertminator(CS2000,ELTRA,Germany),respectively.

    Three-dimensional needle-punched carbon fiber preforms fabricated with T700SC carbon fiber (12 K) were used as the reinforcement in this study.MK resin with different contents of CLA was cross-linked at 160 ℃ in vacuum and then pyrolyzed at 1000 ℃ in Ar atmosphere.A modified PIP process illustrated in Fig.2 was performed to fabricate the C/SiOC composites.Following this process,the composites with dense matrix can be achieved.In the modified PIP process,MK resin with CLA was firstly heated to melt,and then was infiltrated into the fiber preform placed in a flexible container with aids of pressure difference between inside and outside of the flexible container.Secondly,the infiltrated preform was cured at 160 ℃ for 6 h.Thirdly,the cured specimens were pyrolyzed at 1000 ℃ for 30 min at a heating rate of 5 ℃/min in Ar atmosphere,and then cooled down to room temperature.PIP process was repeated for 8 times to get C/SiOC composites with high densities.As a contrast,a conventional PIP process with ethanol solution of MK resin being used as precursor was utlized to fabricate C/SiOC composites.To clearly distinguish between the two kinds of C/SiOC composites,the C/SiOC composites fabricated by the modified PIP process is henceforth referred as M-C/SiOC composites,and the C/SiOC composites fabricated by the conventional PIP process is referred as C-C/SiOC composites.

    The densities as well as open porosities of the C/SiC composites were measured by Archimedes method with deionized water as the immersion medium.The bending strength of the final composites was characterized by three-point bending test (DDL20,Changchun Research Institute for Mechanical Science Co.Ltd,Changchun,China) with a span length of 50 mm and a crosshead speed of 0.5 mm/min.The dimensions of the specimens for three-point bending test were 60 mm×6 mm ×4 mm.Microstructures of composites were observed on both the fracture surfaces and polished cross-sections using a field-emission scanning electron microscope (Hitachi SU8220,Japan).

    Fig.1 Scheme of the possible structure of MK resin[15]

    Fig.2 Schematic diagram of the modified PIP process

    2 Results and discussion

    2.1 Viscosity-temperature characteristics of MK resin

    The viscosity of precursor is a key parameter for control of the PIP process.The high viscosity of precursor would lead to a poor fluidity during the impregnation process,while the excessively low viscosity would make the precursor easily flow out of the preforms during the crosslinking process[18].Therefore,the viscosity of MK resin was investigated firstly as a function of temperature.Softening point was determined by the change of geometric size of the MK resin as shown in Fig.3(a).It can be observed that there is no obvious deformation of MK resin at temperature below 55 ℃,while the right angle turned into round ones when the temperature was rising above 60 ℃.It reveals that the softening point of MK resin is in the range of 55-60 ℃.As shown in Fig.3(b),it is clear that the viscosity of MK resin drops sharply at temperature higher than 110 ℃.The viscosities of MK resin are about 100 mPa?s at 150 ℃,144 mPa?s at 160 ℃ and 87 mPa?s at 170 ℃,respectively.

    Fig.3 (a) Change of geometric size of MK resin as a function of temperature;(b) Temperature dependence of the viscosity of MK resin

    2.2 Curing and ceramization behavior of MK resin

    As a kind of thermoplastic polymer,MK resin begins to cross-link above 250 ℃,while the low viscosity can lead to waste of precursor during the pyrolysis.To lower the curing temperature,CLA was applied as crosslinking agent considering the cross-linkable hydroxy and ethoxy groups.

    CLA of various contents (1wt%,0.5wt%,0.1wt%,0.05wt%,and 0.01wt%) were added into MK resin to pick out the most suitable ratio.The optical photographs of MK resin with different contents of CLA heated at 160 ℃ are shown in Fig.4,and the weight losses are also labeled.It can be observed that when no CLA was added,MK resin kept in the liquid state even after being heated at 160 ℃ for 12 h and the weight loss is only 0.67wt%.With the addition of CLA,MK resin can convert into solid state and the weight loss increased,which meant CLA could effectively promote the cross-linking of MK resin.When the content of CLA was higher than 0.1wt%,MK resin can get cross-linked within 30 min.When 1wt% CLA was added,the cross-linking time was as short as 5 min and the weight loss increased to 3.32wt%.When the content of CLA decreased to 0.05wt% and 0.01wt%,the cross-linking time increased to about 1 and 3 h,respectively.It can also be observed that when more than 0.05wt% CLA was added,the crosslinked precursor presented a porous structure,which may be caused by escaping of generated gases during the cross-linking.

    Rheological parameters such as storage modulus (G')and loss modulus (G") were employed to further evaluate the curing behavior of MK resin.For the sake of convenience,MK resin with 0.05wt% CLA was selected for rheological test.As shown in Fig.5,storage moduli and loss moduli kept constant at the beginning of the test and then increased slowly until 1000 s.Two moduli increased sharply after 1000 s,and there was an intersection point ofG'andG"at about 1970 s.After the intersection point,theG'exceededG",which indicated that the elastic deformation of MK resin was dominant rather than viscous deformation of materials.Furthermore,the polymer began to transform into elastomer.The gel point of MK resin,on which the polymer begins to crosslink,can be determined by the intersection point ofG'andG"[19].It can be concluded that MK resin with 0.05wt% CLA began to crosslink after being treated at 160 ℃ for 0.5 h,which is in consistent with the phenomenon referred above.

    To investigate the curing mechanism,FT-IR spectroscopy of the as-received MK resin (without cross-linking)and MK resin with 0.01wt% CLA cured at 160 ℃ were tested (Fig.6).The spectrum of MK resin shows absorption bands atv=765,1275 cm-1(Si-CH3),v=2913,2975 cm-1(C-H),v=1618,3437 cm-1(Si-OH),v=1023 cm-1(Si-O-C) andv=1111 cm-1(Si-O-Si),as previously reported[16,20-23].As the curing time increases,the intensity of absorption bands assigned to Si-O-C and Si-O-Si slightly increases.What's more,the intensities of Si-O-Si and Si-O-C increases with curing time,indicating that the network of Si-O-Si was gradually formed.It can be concluded that condensation reactions of Si-OH with Si-OH,Si-OEt as well as with RSO2-OH groups with the aids of CLA are main reactions involved during cross-linking.

    Fig.4 Optical photographs of MK resin with different contents of CLA after heat treatment at 160 ℃

    Fig.5 Storage moduli and loss moduli versus curing time for MK resin with 0.05wt% CLA at 160 ℃

    Fig.6 (a) Cross-linking reactions during the curing process;(b) FT-IR spectra of as-obtained MK resin without curing and MK resin with 0.01wt% CLA after curing at 160 ℃ for different time;(c) details in enlarged view of wavenumber in the range from 1250 cm-1 to 500 cm-1

    FT-IR spectroscopy of the cured MK resins with different contents of CLA were also tested as shown in Fig.7.There is no obvious difference in their IR spectra except for the absorption bands for Si-O (at 1023 and 1111 cm-1) and -OH (at 1618 and 3437 cm-1).As the CLA content increases,the intensity ratio of Si-O-Si and Si-O-C absorption increases,which reveals that CLA affects curing rate and cross-linking degree of MK resin.Excessively rapid cross-linking rate results in generation of a mass of small molecules such as ethanol and H2O which fails to volatilize before Si-O-Si network is formed,and is then absorbed in porous structure of the cured MK resin.Consequently,the intensity of -OH bands show a remarkable increase.

    Fig.7 FT-IR spectra of MK resin with various contents of CLA after being treated at 160 ℃ for 8 h

    Fig.8 TGA-DTA curves of the decomposition behavior for MK resin

    TG-DTA curves of MK resin without CLA from 100 ℃ to 1000 ℃ were shown in Fig.8.The ceramic yield is as high as 88wt% after pyrolyzation at 1000 ℃.The weight loss mainly occurred in two temperature ranges.A weight loss of about 4.91wt% occurred at temperatures ranging from 170 ℃ to 350 ℃,which may be ascribed to the vaporization of H2O,n-propanol,ethanol and POSS during the cross-linking process[16,23-26].A further weight loss of about ~6.09wt% occurs between 350 and 900 ℃,which may be resulted from breakage/rearrangement of molecular chains and release of a large number of small molecular gas,such as H2,H2O and propane,etc.[15,22].Table 1 shows the ceramic yields of MK resin with different CLA contents pyrolized at 1000 ℃ in Ar atmosphere and the chemical compositions of the pyrolysates in the formation ofxSiO2·ySiC·zC.The ceramic yields of MK resin with different contents of CLA ranges from 82.9wt% to 85.6wt%,which means that the effect of CLA on the ceramic yield is negligible.It is indicated that free carbon is less than 3wt% in pyrolysates.

    2.3 Microstructures and mechanical properties of C/SiOC composites

    Based on the above-mentioned cross-linking and pyrolysis behavior of MK resin with different CLA contents,it is found that the MK resin with 0.01wt% of CLA is a suitable matrix precursor for the fabrication of C/SiOC composites,which can guarantee enough time for the molten precursor to be infiltrated into the fiber preform.During the PIP process,the precursor was first cross-linked at 160 ℃ for 4 h before pyrolysis.

    Fig.9 shows the density and the open porosity of C/SiOC composites as a function of PIP cycles.It is obvious that the density increases with the increase of PIP cycles,and the open porosity decreases.As a result of high ceramic yield of precursor as well as eliminating effect of solvent,the high efficiency in modified PIP was realized in comparation with the conventional ones.Remarkably,the open porosity of M-C/SiOC composites(6.2%) is much lower than that of C-C/SiOC composites(17.4%) after 8 cycles.After the first cycle,the density of M-C/SiOC composites increased from 0.6 g/cm3to 1.14 g/cm3.Compared with the C-C/SiOC composites,the final M-C/SiOC composite possessed relatively high density of about 1.81 g/cm3after the eighth cycle.Similarly,the density of C/SiOC composites fabricatedviathe modified PIP process in this work is increased by about 10% in comparation with the results of 1.64 g/cm3in the reported literature[27].

    Fig.10 shows the cross-sectional microstructures of the final C/SiOC composites fabricated by two different PIP processes.Compared with the C-C/SiOC composites(Fig.10(a)),the inter-bundle pores in M-C/SiOC composites is obviously much less (Fig.10(b)).Although some pores can still be found in the matrices,the final M-C/SiOC composites are highly dense in general.When the preforms were infiltratedviathe modified PIP process,the precursors with moderate viscosity can fill in almost all pores and turn into solid state during the cross-link process.The existence of sevaral micro-pores and microcracks in matrices (Fig.10(b-d)) can be attributed to generation of close pores resulted from porous precursor pyrolysates during the precious PIP cycles.Therefore,the precursor can't reach anymore in the latter infiltration process.

    Table 1 The ceramic yield and the element composition for MK resin with different CLA contents pyrolized at 1000 ℃

    Fig.9 Density and open porosity variation of C/SiOC composites during the PIP process

    Fig.10 SEM images of the polished cross sections of (a)C-C/SiOC composites;(b-d) M-C/SiOC composites

    Fig.11 Typical bending stress vs.strain curve for the C/SiOC composites

    Fig.12 SEM micrographs of the fracture surfaces of M-C/SiOC composites

    The three-point-bending test shows that the M-C/SiOC composites possess a relatively higher bending strength of (312±25) MPa than the C-C/SiOC composites with a bending strength of (211±7) MPa.The M-C/SiOC composites also show superiority in mechanical properties as compared to the C/SiOC composites prepared by conventional PIP process with other polysiloxane precursors reported (217[28],247[29]and 265[1]).The M-C/SiOC composites show a typical non-brittle fracture behavior,which can be concluded from the bending stress-strain curves of three-point bending test as shown in Fig.11.The stress-strain curve of the M-C/SiOC composites can be divided into three regions,namely,linear region,non-linear region and fracture region.In the non-linear region,micro-cracks generation and propagation as well as the interfacial debonding are responsible for the pseudo-plastic deformation behavior[30].Once the stress reaching to the maximum as observed in the fracture region,the stress drops abruptly.Then the stress show a step-like decrease,which may be ascribed to the layer-fiber-distribution characteristics of the preforms.At the beginning of three-point-bending test,fibers on the underside layer have the largest deformation.When fibers at this layer was destroyed,the second layer of fibers momentarily bear the load,therefore the imposed load dropped abruptly,then slightly increased again.Meanwhile,the C-C/ SiOC composites show a narrower non-linear region,leading to the worse bending strength.

    Fig.12 shows the microstructure of fracture surfaces of the M-C/SiOC composites.Pulled-out fibers can be observed in the SiOC matrix.As the deposited PyC interphase ensures the weak bonding between matrix and fiber,cracks can propagate either along the matrix-PyC interface or along PyC-fiber interphase.Therefore,the de-bonding phenomenon can be observed on the surface of the pulled-out fibers.

    3 Conclusion

    Based on a modified highly-efficient PIP process using molten MK resin,C/SiOC composites with a density of 1.81 g/cm3was fabricated by only 8 cycles of PIP.When MK resin with 0.01wt% CLA was firstly crosslinked at 160 ℃ for 4 h,precursor can tranform into solid state and fill in both inter-bundle pores and intrabundle pores,therefore only very small amount of micropores can be found in the composites.The as-fabricated C/SiOC composites possess a relatively high bending strength of (312±25) MPa and show an obvious nonbrittle fracture behavior.

    成人国语在线视频| 在线观看免费日韩欧美大片| 夜夜躁狠狠躁天天躁| 国产精品久久久久久人妻精品电影| 他把我摸到了高潮在线观看| 免费观看精品视频网站| 热99re8久久精品国产| 久久久久九九精品影院| 淫秽高清视频在线观看| 久久 成人 亚洲| 国产色视频综合| 国产不卡一卡二| 国产精品影院久久| 亚洲欧美精品综合一区二区三区| 91国产中文字幕| 久久中文看片网| 欧美日本亚洲视频在线播放| 成年版毛片免费区| 国产精品电影一区二区三区| 国产精品秋霞免费鲁丝片| 国产成人精品久久二区二区91| 国产三级黄色录像| 国产av精品麻豆| 国产一区二区三区在线臀色熟女 | 两个人看的免费小视频| 交换朋友夫妻互换小说| 国产一区二区三区在线臀色熟女 | 一级a爱片免费观看的视频| 国产精品久久久久成人av| 国产精品一区二区在线不卡| www国产在线视频色| 十八禁人妻一区二区| 一夜夜www| 亚洲人成77777在线视频| 乱人伦中国视频| 亚洲欧美日韩另类电影网站| 亚洲 欧美一区二区三区| 桃色一区二区三区在线观看| 在线av久久热| 成人手机av| 久久人妻熟女aⅴ| 久久欧美精品欧美久久欧美| 天堂中文最新版在线下载| avwww免费| 免费在线观看视频国产中文字幕亚洲| 国内久久婷婷六月综合欲色啪| 国产精品亚洲av一区麻豆| 欧美日韩福利视频一区二区| 国产精华一区二区三区| 国产成人精品无人区| 高清黄色对白视频在线免费看| 叶爱在线成人免费视频播放| 国产一区二区激情短视频| 免费女性裸体啪啪无遮挡网站| 国产精品久久视频播放| 69精品国产乱码久久久| 最新在线观看一区二区三区| 一级片'在线观看视频| 一区二区三区国产精品乱码| 精品福利观看| 99re在线观看精品视频| 国产成人影院久久av| 国产人伦9x9x在线观看| 亚洲成人久久性| 天堂√8在线中文| 国产熟女午夜一区二区三区| 99久久99久久久精品蜜桃| 黑人巨大精品欧美一区二区蜜桃| 午夜亚洲福利在线播放| 国产精品永久免费网站| 色哟哟哟哟哟哟| 亚洲精品美女久久久久99蜜臀| 大香蕉久久成人网| 久久国产亚洲av麻豆专区| 97碰自拍视频| 大型av网站在线播放| 成人亚洲精品av一区二区 | 久久久久久久午夜电影 | 日韩欧美一区视频在线观看| 人成视频在线观看免费观看| 久久影院123| 妹子高潮喷水视频| 国产av精品麻豆| 亚洲五月天丁香| 最近最新中文字幕大全免费视频| 自拍欧美九色日韩亚洲蝌蚪91| 欧美 亚洲 国产 日韩一| 日本欧美视频一区| 亚洲人成电影观看| 一区二区三区国产精品乱码| 亚洲国产看品久久| 国产精品九九99| 中亚洲国语对白在线视频| 欧美中文综合在线视频| 亚洲一区二区三区色噜噜 | 伦理电影免费视频| 亚洲专区中文字幕在线| 狠狠狠狠99中文字幕| 人妻久久中文字幕网| 亚洲色图av天堂| 另类亚洲欧美激情| 在线观看免费日韩欧美大片| 99久久99久久久精品蜜桃| 久久久国产欧美日韩av| 超色免费av| 精品国产乱子伦一区二区三区| 少妇粗大呻吟视频| 露出奶头的视频| 亚洲一区高清亚洲精品| 夜夜看夜夜爽夜夜摸 | 高清在线国产一区| 国产高清视频在线播放一区| 欧美日韩乱码在线| 男女高潮啪啪啪动态图| 老汉色∧v一级毛片| 亚洲中文av在线| 成年人黄色毛片网站| 精品久久蜜臀av无| 久久久久久久久免费视频了| 怎么达到女性高潮| 精品午夜福利视频在线观看一区| 国产成人啪精品午夜网站| www国产在线视频色| 亚洲精品国产色婷婷电影| 99精品在免费线老司机午夜| 国产精品国产高清国产av| 国产亚洲精品久久久久久毛片| 黄网站色视频无遮挡免费观看| 亚洲国产欧美日韩在线播放| 黄色女人牲交| 操出白浆在线播放| 欧美人与性动交α欧美软件| 国产成年人精品一区二区 | 久久国产精品男人的天堂亚洲| 久久亚洲真实| 国产成人av激情在线播放| 18禁观看日本| 久久久久久久久久久久大奶| 国产精品野战在线观看 | 成人18禁高潮啪啪吃奶动态图| 国产无遮挡羞羞视频在线观看| www.999成人在线观看| 18禁黄网站禁片午夜丰满| 一本综合久久免费| 亚洲av美国av| 国产成人欧美在线观看| 激情视频va一区二区三区| 久久久国产精品麻豆| 最新在线观看一区二区三区| 精品一区二区三区视频在线观看免费 | 欧美不卡视频在线免费观看 | 国内久久婷婷六月综合欲色啪| 999久久久精品免费观看国产| 亚洲熟妇熟女久久| 操美女的视频在线观看| 黄色成人免费大全| 一个人免费在线观看的高清视频| 午夜成年电影在线免费观看| 好男人电影高清在线观看| 性色av乱码一区二区三区2| 丰满人妻熟妇乱又伦精品不卡| 老司机靠b影院| 极品教师在线免费播放| 国产精品一区二区免费欧美| 男女午夜视频在线观看| 久久99一区二区三区| 国产成人一区二区三区免费视频网站| 国产熟女xx| 日韩精品免费视频一区二区三区| 国产成人一区二区三区免费视频网站| 国产亚洲av高清不卡| 国产精品九九99| 少妇的丰满在线观看| 国产成+人综合+亚洲专区| 欧美在线黄色| 99在线视频只有这里精品首页| 精品卡一卡二卡四卡免费| 午夜a级毛片| 中文欧美无线码| 久久久久久久久中文| 亚洲美女黄片视频| 在线观看免费日韩欧美大片| 麻豆一二三区av精品| 天天影视国产精品| 操出白浆在线播放| 欧美日韩瑟瑟在线播放| 亚洲av美国av| 免费在线观看黄色视频的| 日韩免费高清中文字幕av| 国产xxxxx性猛交| 日韩视频一区二区在线观看| 99久久国产精品久久久| 91老司机精品| 国产精品乱码一区二三区的特点 | 女人被躁到高潮嗷嗷叫费观| 亚洲男人天堂网一区| 一个人观看的视频www高清免费观看 | 欧美不卡视频在线免费观看 | 久久精品人人爽人人爽视色| 亚洲人成电影免费在线| 精品国产乱子伦一区二区三区| 欧美日本亚洲视频在线播放| 午夜精品久久久久久毛片777| 一本大道久久a久久精品| 日韩欧美三级三区| www.精华液| ponron亚洲| 亚洲黑人精品在线| 丁香六月欧美| 久久精品国产清高在天天线| av片东京热男人的天堂| 亚洲精品国产区一区二| 午夜福利在线观看吧| 热re99久久国产66热| av视频免费观看在线观看| 一进一出抽搐动态| 亚洲三区欧美一区| 亚洲aⅴ乱码一区二区在线播放 | 日韩高清综合在线| 一本综合久久免费| 亚洲av日韩精品久久久久久密| 免费久久久久久久精品成人欧美视频| av中文乱码字幕在线| 午夜免费激情av| 好看av亚洲va欧美ⅴa在| 欧美黑人精品巨大| 精品一区二区三区四区五区乱码| 亚洲精品中文字幕在线视频| 久久精品91无色码中文字幕| 欧美 亚洲 国产 日韩一| 长腿黑丝高跟| 欧美日韩亚洲国产一区二区在线观看| 欧美+亚洲+日韩+国产| 1024视频免费在线观看| 国产亚洲精品综合一区在线观看 | 欧美日韩国产mv在线观看视频| 亚洲视频免费观看视频| 成熟少妇高潮喷水视频| 男女午夜视频在线观看| 国产欧美日韩综合在线一区二区| 九色亚洲精品在线播放| 在线看a的网站| 窝窝影院91人妻| 亚洲精品久久成人aⅴ小说| 国产国语露脸激情在线看| 水蜜桃什么品种好| 51午夜福利影视在线观看| 一级毛片女人18水好多| 91麻豆精品激情在线观看国产 | 午夜福利一区二区在线看| 久久这里只有精品19| 免费一级毛片在线播放高清视频 | 视频区欧美日本亚洲| 久久久精品国产亚洲av高清涩受| 免费日韩欧美在线观看| 精品久久久久久久毛片微露脸| 欧美大码av| 国产成人系列免费观看| aaaaa片日本免费| 欧美日韩黄片免| 亚洲aⅴ乱码一区二区在线播放 | 两性夫妻黄色片| 色老头精品视频在线观看| 久久久久久久午夜电影 | 亚洲狠狠婷婷综合久久图片| 精品国内亚洲2022精品成人| 一进一出好大好爽视频| 中文字幕色久视频| 亚洲美女黄片视频| 日本撒尿小便嘘嘘汇集6| 久久精品91蜜桃| 精品福利永久在线观看| av国产精品久久久久影院| 国产av一区二区精品久久| 女人爽到高潮嗷嗷叫在线视频| 涩涩av久久男人的天堂| 在线观看日韩欧美| 亚洲精品中文字幕在线视频| 在线观看免费日韩欧美大片| 国产精品亚洲一级av第二区| 男女下面插进去视频免费观看| 看黄色毛片网站| 亚洲,欧美精品.| 久久精品国产99精品国产亚洲性色 | a级毛片黄视频| 午夜福利免费观看在线| 精品久久久久久久久久免费视频 | 首页视频小说图片口味搜索| 在线观看www视频免费| 久久久久久久精品吃奶| 99热国产这里只有精品6| 国产有黄有色有爽视频| 亚洲欧美精品综合久久99| 欧美日韩精品网址| 欧美黑人精品巨大| 男人的好看免费观看在线视频 | 老司机在亚洲福利影院| 他把我摸到了高潮在线观看| 99久久综合精品五月天人人| 日韩成人在线观看一区二区三区| 性少妇av在线| 大型黄色视频在线免费观看| 在线观看免费午夜福利视频| 亚洲精品国产区一区二| 国产av又大| 国产视频一区二区在线看| 日韩av在线大香蕉| www日本在线高清视频| 亚洲av电影在线进入| 欧美最黄视频在线播放免费 | 日韩欧美在线二视频| 久久人人97超碰香蕉20202| 桃红色精品国产亚洲av| 女同久久另类99精品国产91| 中国美女看黄片| 欧美日韩瑟瑟在线播放| 国产成人精品久久二区二区91| 真人做人爱边吃奶动态| 女性生殖器流出的白浆| 看片在线看免费视频| 国产欧美日韩一区二区三| 99久久综合精品五月天人人| 国产xxxxx性猛交| 性欧美人与动物交配| 亚洲全国av大片| 欧美成狂野欧美在线观看| 黄色成人免费大全| 在线观看午夜福利视频| 亚洲人成网站在线播放欧美日韩| 午夜福利在线观看吧| 老熟妇乱子伦视频在线观看| 交换朋友夫妻互换小说| 欧美精品亚洲一区二区| 日韩人妻精品一区2区三区| 免费日韩欧美在线观看| 亚洲aⅴ乱码一区二区在线播放 | 欧美日韩福利视频一区二区| 亚洲专区中文字幕在线| 久久久精品国产亚洲av高清涩受| 亚洲精品在线观看二区| 十分钟在线观看高清视频www| 伊人久久大香线蕉亚洲五| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲成人久久性| 成人黄色视频免费在线看| 国产视频一区二区在线看| 麻豆av在线久日| 成年版毛片免费区| 99国产精品一区二区蜜桃av| 手机成人av网站| 女性生殖器流出的白浆| 久久青草综合色| 久久精品影院6| xxxhd国产人妻xxx| 久久久久久久午夜电影 | 欧美在线一区亚洲| 国产精品一区二区精品视频观看| 深夜精品福利| 国产99久久九九免费精品| 天堂√8在线中文| 亚洲精品久久午夜乱码| 欧美黄色片欧美黄色片| 久久人人爽av亚洲精品天堂| 亚洲国产看品久久| 国产精品久久电影中文字幕| 一a级毛片在线观看| 国产亚洲欧美精品永久| 久久久久亚洲av毛片大全| 亚洲精华国产精华精| 亚洲欧美一区二区三区久久| 俄罗斯特黄特色一大片| 脱女人内裤的视频| 亚洲国产毛片av蜜桃av| 欧美黄色淫秽网站| 久久狼人影院| 国产精品 欧美亚洲| 日韩精品免费视频一区二区三区| 高清在线国产一区| 男女床上黄色一级片免费看| 一级毛片精品| 一个人免费在线观看的高清视频| 午夜福利影视在线免费观看| 大型av网站在线播放| 9热在线视频观看99| 电影成人av| 97人妻天天添夜夜摸| 色精品久久人妻99蜜桃| 精品国产亚洲在线| 欧美日韩一级在线毛片| 乱人伦中国视频| 国产区一区二久久| 男人舔女人下体高潮全视频| 成人影院久久| www.999成人在线观看| 欧美最黄视频在线播放免费 | 黄片播放在线免费| 亚洲精品粉嫩美女一区| 精品卡一卡二卡四卡免费| 99精国产麻豆久久婷婷| 国产精品乱码一区二三区的特点 | 免费av中文字幕在线| 国产欧美日韩一区二区三| 久久热在线av| 欧美激情极品国产一区二区三区| 色综合婷婷激情| 亚洲性夜色夜夜综合| 在线观看舔阴道视频| 黄频高清免费视频| 亚洲精品一卡2卡三卡4卡5卡| 久久天躁狠狠躁夜夜2o2o| 在线观看免费视频日本深夜| 后天国语完整版免费观看| 三上悠亚av全集在线观看| 精品一区二区三区四区五区乱码| 一级a爱片免费观看的视频| 亚洲国产中文字幕在线视频| 欧美老熟妇乱子伦牲交| 一级毛片女人18水好多| 黄色视频,在线免费观看| 亚洲一区二区三区不卡视频| 免费人成视频x8x8入口观看| 日本黄色视频三级网站网址| 女警被强在线播放| 亚洲国产精品sss在线观看 | 欧美av亚洲av综合av国产av| 多毛熟女@视频| 欧美激情 高清一区二区三区| xxxhd国产人妻xxx| av在线天堂中文字幕 | 嫩草影院精品99| 两性午夜刺激爽爽歪歪视频在线观看 | 怎么达到女性高潮| 免费高清在线观看日韩| 欧美精品啪啪一区二区三区| 午夜福利在线观看吧| 亚洲在线自拍视频| 91精品三级在线观看| 国产1区2区3区精品| 久久中文字幕人妻熟女| 水蜜桃什么品种好| 男人操女人黄网站| 欧美日本亚洲视频在线播放| 高清av免费在线| av视频免费观看在线观看| 人人澡人人妻人| 国产亚洲欧美在线一区二区| 亚洲va日本ⅴa欧美va伊人久久| a级毛片在线看网站| 热re99久久精品国产66热6| 欧美日韩福利视频一区二区| 在线视频色国产色| 黑人猛操日本美女一级片| 免费在线观看完整版高清| 免费一级毛片在线播放高清视频 | 久久草成人影院| 精品人妻在线不人妻| 级片在线观看| 精品人妻在线不人妻| 日韩欧美在线二视频| 美女午夜性视频免费| 日韩一卡2卡3卡4卡2021年| 国产99白浆流出| 久久天躁狠狠躁夜夜2o2o| 黑人操中国人逼视频| 国产真人三级小视频在线观看| 操出白浆在线播放| 久久久久久免费高清国产稀缺| 久久精品人人爽人人爽视色| 搡老乐熟女国产| 欧美黑人精品巨大| 日本wwww免费看| 成人国产一区最新在线观看| 天堂中文最新版在线下载| 好看av亚洲va欧美ⅴa在| 国产成年人精品一区二区 | 在线观看免费视频网站a站| 亚洲成国产人片在线观看| 一进一出抽搐gif免费好疼 | www.自偷自拍.com| 久久久久国产一级毛片高清牌| 久久天堂一区二区三区四区| 中文字幕高清在线视频| 日日干狠狠操夜夜爽| 夜夜看夜夜爽夜夜摸 | 成人av一区二区三区在线看| 狂野欧美激情性xxxx| 亚洲激情在线av| 99国产精品99久久久久| 免费人成视频x8x8入口观看| 每晚都被弄得嗷嗷叫到高潮| 欧美中文日本在线观看视频| 国产真人三级小视频在线观看| 久久热在线av| 欧美日韩亚洲综合一区二区三区_| 久久精品亚洲熟妇少妇任你| 日韩大码丰满熟妇| 99国产极品粉嫩在线观看| 多毛熟女@视频| 国产一区二区在线av高清观看| 不卡av一区二区三区| 18禁裸乳无遮挡免费网站照片 | 国产亚洲精品一区二区www| 色精品久久人妻99蜜桃| 自线自在国产av| 精品久久久久久成人av| 国产午夜精品久久久久久| 99国产精品一区二区三区| 久久久久九九精品影院| 国产三级在线视频| 国产日韩一区二区三区精品不卡| 国产av精品麻豆| 麻豆成人av在线观看| 午夜老司机福利片| 国产蜜桃级精品一区二区三区| 脱女人内裤的视频| 国产成人精品久久二区二区91| 丰满饥渴人妻一区二区三| 亚洲欧美激情综合另类| 午夜免费观看网址| 久久青草综合色| 日韩视频一区二区在线观看| 麻豆成人av在线观看| 一区在线观看完整版| 成人三级黄色视频| 免费观看精品视频网站| 国产成人精品久久二区二区91| 国产成人欧美| 欧美一级毛片孕妇| 在线天堂中文资源库| 久久久久国产精品人妻aⅴ院| 欧美色视频一区免费| 国产又爽黄色视频| 亚洲色图综合在线观看| 亚洲国产精品一区二区三区在线| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品国产一区二区精华液| 亚洲精品粉嫩美女一区| 亚洲av五月六月丁香网| 无人区码免费观看不卡| 国产av一区二区精品久久| 国产成人精品久久二区二区免费| 免费人成视频x8x8入口观看| 欧美亚洲日本最大视频资源| 国产亚洲欧美98| 午夜福利,免费看| 欧美人与性动交α欧美软件| 国产欧美日韩一区二区精品| 国产精品香港三级国产av潘金莲| 看免费av毛片| 欧美成人性av电影在线观看| 99久久久亚洲精品蜜臀av| 精品久久久久久成人av| 90打野战视频偷拍视频| 久久香蕉精品热| 久久久久久亚洲精品国产蜜桃av| 国产高清激情床上av| 免费av中文字幕在线| 日韩欧美三级三区| 不卡av一区二区三区| 这个男人来自地球电影免费观看| 国产无遮挡羞羞视频在线观看| 一级作爱视频免费观看| 国产在线观看jvid| 中文字幕最新亚洲高清| 亚洲av电影在线进入| 亚洲三区欧美一区| 国产区一区二久久| 一二三四社区在线视频社区8| 欧美性长视频在线观看| 69精品国产乱码久久久| 男女做爰动态图高潮gif福利片 | 欧美日韩精品网址| 极品人妻少妇av视频| 他把我摸到了高潮在线观看| 美国免费a级毛片| 欧美色视频一区免费| 久久亚洲精品不卡| 国产熟女xx| 国产欧美日韩一区二区精品| 一区二区日韩欧美中文字幕| 91九色精品人成在线观看| 制服诱惑二区| 欧美黑人精品巨大| 国产熟女xx| 一区在线观看完整版| 精品人妻在线不人妻| 咕卡用的链子| 久9热在线精品视频| 男女做爰动态图高潮gif福利片 | 亚洲人成网站在线播放欧美日韩| 国产成人欧美在线观看| 国产三级黄色录像| 午夜两性在线视频| 成人三级做爰电影| 免费高清在线观看日韩| 999久久久精品免费观看国产| 欧美另类亚洲清纯唯美| 亚洲性夜色夜夜综合| 999精品在线视频| 免费av中文字幕在线| 国产亚洲精品久久久久5区| 纯流量卡能插随身wifi吗| 黄色丝袜av网址大全| 少妇裸体淫交视频免费看高清 | 久久九九热精品免费| avwww免费| 美国免费a级毛片| 欧美日韩一级在线毛片| 91麻豆精品激情在线观看国产 | 亚洲色图 男人天堂 中文字幕| 亚洲精品久久成人aⅴ小说| 香蕉久久夜色| 久99久视频精品免费| 久久天堂一区二区三区四区| 老司机亚洲免费影院|